
VritSti
Mr"

MP-

A ToolKit for Scientific
Visualization on
Many-Core Processors

Hank Childs University of Oregon
Kenneth Moreland Sandia National Laboratories

David Pugmire Oak Ridge National Laboratory
Robert Maynard Kitware, Inc.

More Advanced Algorithm #1

Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary
of Honeywell International, Inc., for the U.S. Department of Energys National Nuclear Security Administration under contract DE-NA0003525. SAND NO. 2019-XXXXP

EPP EXRSCRLE
COMPUTING
PROJECT

exascaleproject.org •41:.CCR
Center for Computing Research

SAND2019-12456PE

Motivating Example: Average Point Data to Cells

2

EXRSCRLE
COMPUTING
PROJECT

Motivating Example: Average Point Data to Cells

5.0

3

2.3

•6.7

NO5.3

E4).1= EXRSCRLE
COMPUTING
PROJECT

Motivating Example: Average Point Data to Cells

4

EXRSCRLE
COMPUTING
PROJECT

5

To follow along...

• The source code shown in this session is in the tut point to cell.cxx

.........

EP.1= EXRSCRLE
COMPUTING
PROJECT

struct ConvertPointFieldToCells

{

struct ConvertPointFieldToCells : vtkm::worklet::WorkletVisitCellsWithPoints

{

struct ConvertPointFieldToCells : vtkm::worklet::WorkletVisitCellsWithPoints

{

3.8

3.0

4 i

/
Worklet semantics visits a
cell in each thread with
access to points.

VTK-m Parallel Pattern: Visit Cells with Points

Input Array #1

Output Array #1

9 EP.1= EXRSCRLE
COMPUTING
PROJECT

VTK-m Parallel Pattern: Visit Cells with Points

Input Array #1

Output Array #1

10

■
0 1 2 3 4

EXRSCRLE
COMPUTING
PROJECT

struct ConvertPointFieldToCells : vtkm::worklet::WorkletVisitCellsWithPoints

{

struct ConvertPointFieldToCells : vtkm::worklet::WorkletVisitCellsWithPoints

{
using ControlSignature void(CellSetIn topology,

FieldInPoint inPointField,

FieldOutCell outCellField);

struct ConvertPointFieldToCells : vtkm::worklet::WorkletVisitCellsWithPoints

{
using ControlSignature void(CellSetIn topology, To follow topology

FieldInPoint inPointField, connections,
FieldOutCell outCellField); VTK-m must be

given the cell set.

struct ConvertPointFieldToCells : vtkm::worklet::WorkletVisitCellsWithPoints

{
using ControlSignature = void(CellSetIn topology,

FieldInPoint inPointField,

FieldOutCell outCellField);

Field in/out now has to
specify whether they come
from the points or the cells.

To follow topology
connections,
VTK-m must be
given the cell set.

struct ConvertPointFieldToCells : vtkm::worklet::WorkletVisitCellsWithPoints

{
using ControlSignature void(CellSetIn topology,

FieldInPoint inPointField,

FieldOutCell outCellField);

struct ConvertPointFieldToCells : vtkm::worklet::WorkletVisitCellsWithPoints

{
using ControlSignature

using InputDomain = 1;

void(CellSetIn topology,

FieldInPoint inPointField,

FieldOutCell outCellField);

struct ConvertPointFieldToCells : vtkm::worklet::WorkletVisitCellsWithPoints

{
using ControlSignature = void(llSetIn topology,

FieldInPoint inPointField,

FieldOutCell outCellField);

using InputDomain -

/
-1

Specifies which argument
of the ControlSignature is
used for scheduling.

struct ConvertPointFieldToCells : vtkm::worklet::WorkletVisitCellsWithPoints

{
using ControlSignature

using InputDomain = 1;

void(CellSetIn topology,

FieldInPoint inPointField,

FieldOutCell outCellField);

struct ConvertPointFieldToCells : vtkm::worklet::WorkletVisitCellsWithPoints

{
using ControlSignature

using ExecutionSignature

using InputDomain = 1;

void(CellSetIn topology,

FieldInPoint inPointField,

FieldOutCell outCellField);

void(2, 3);

struct ConvertPointFieldToCells : vtkm::worklet::WorkletVisitCellsWithPoints

{
using ControlSignature = void(CellSetIn topology,

FieldInPoint inPointField,

FieldOutCell outCellField);

using ExecutionSignature

using InputDomain = 1;

void(2, 3);

\
Specifies which arguments
of the ControlSignature are
passed to the worklet's
operator.

struct ConvertPointFieldToCells : vtkm::worklet::WorkletVisitCellsWithPoints

{
using ControlSignature = void(CellSetIn topology,

FieldInPoint inPointField,

FieldOutCell outCellField);

using ExecutionSignature = void(2, 3);

using InputDomain = 1;

template <typename InPointFieldVecType, typename OutCellFieldType>

void operator()(const InPointFieldVecType& inPointFieldVec,

OutCellFieldType& outCellField) const

{

struct ConvertPointFieldToCells : vtkm::worklet::WorkletVisitCellsWithPoints

{
using ControlSignature = void(CellSetIn topology,

FieldInPoint inPointField,

FieldOutCell outCellField);

using ExecutionSignature = void(2, 3);

using InputDomain = 1;

template <typename InPointFieldVecTyp

void operator()(const InPointFielTiVec

OutCellFieldType& out

{

typename OutCellFieldType>

ype& inPointFieldVec,

ellField) const

struct ConvertPointFieldToCells : vtkm::worklet::WorkletVisitCellsWithPoints

{
using ControlSignature = void(CellSetIn topology,

FieldInPoint inPointField,

FieldOutCell outCellField);

using ExecutionSignature = void(2, 3);

using InputDomain = 1;

template <typename InPointFieldVecType, typename OutCellFieldType>

void operator()(const InPointFieldVecType& inPointFieldVec,

OutCellFieldType& outCellField) const

{
Input point field is passed in
a Vec-like object containing
the values for all connected
points.

struct ConvertPointFieldToCells : vtkm::worklet::WorkletVisitCellsWithPoints

{
using ControlSignature

using ExecutionSignature

using InputDomain = 1;

void(CellSetIn topology,

FieldInPoint inPointField,

FieldOutCell outCellField);

void(2, 3);

template <typename InPointFieldVecType, typename OutCellFieldType>

void operator()(const InPointFieldVecType& inPointFieldVec,

OutCellFieldType& outCellField) const

{

}

vtkm::IdComponent numPoints = inPointFieldVec.GetNumberOfComponents();

outCellField = OutCellFieldType(0);

for (vtkm::IdComponent pointIndex = 0; pointIndex < numPoints; ++pointIndex)

{
outCellField = outCellField + inPointFieldVec[pointIndex];

}

outCellField = outCellField / OutCellFieldType(numPoints);

1 ;

template<typename ArrayHandleType, typename Policy>

VTKM CONT cont::DataSet ConvertPointFieldToCells::DoExecute(

const vtkm::cont::DataSet& inDataSet,

const ArrayHandleType& inField,

const vtkm::filter::FieldMetadata& fieldMetadata,

vtkm::filter::PolicyBase<Policy> policy)

{
VTKM IS ARRAY HANDLE(ArrayHandleType);

using ValueType = typename ArrayHandleType::ValueType;

vtkm::cont::ArrayHandle<ValueType> outField;

this->Invoke(vtkm::worklet::ConvertPointFieldToCells{},

vtkm::filter::ApplyPolicyCellSet(inDataSet.GetCellSet(), policy),

inField,

outField);

template<typename ArrayHandleType, typename Policy>

VTKM CONT cont::DataSet ConvertPointFieldToCells::DoExecute(

const vtkm::cont::DataSet& inDataSet,

const ArrayHandleType& inField,

const vtkm::filter::FieldMetadata& fieldMetadata,

vtkm::filter::PolicyBase<Policy> policy)

{
VTKM IS ARRAY HANDLE(ArrayHandleType);

using ValueType = typename ArrayHandleType::ValueType;

vtkm::cont::ArrayHandle<ValueType> outField;

this->Invoke(vtkm::worklet::ConvertPointFieldToCells{},

vtkm::filter::ApplyPolicyCellSet(inDataSet.GetCellSet(), policy),

inField,

outField);

You should apply the policy to
the cell set. (Specifies which
cell set types to build for.)

— 1.7e-01 — 1.7e-01

— 0.14
— 0.12
— 0.1
0.08
0.06
0.04
0.02
-7.0e-16

ez

o

ez

— 0.14
— 0.12
— 0.1
— 0.08
0.06
0.04
0.02
-7.0e-16

An assignment for you: convert cell data to point data

• Can use tut point to cell.cxx as a starting point.

28

EXRSCRLE
COMPUTING
PROJECT

struct ConvertPointFieldToCells : vtkm::worklet::WorkletVisitCellsWithPoints

{
using ControlSignature

using ExecutionSignature

using InputDomain = 1;

void(CellSetIn topology,

FieldInPoint inPointField,

FieldOutCell outCellField);

void(2, 3);

template <typename InPointFieldVecType, typename OutCellFieldType>

void operator()(const InPointFieldVecType& inPointFieldVec,

OutCellFieldType& outCellField) const

{

}

vtkm::IdComponent numPoints = inPointFieldVec.GetNumberOfComponents();

outCellField = OutCellFieldType(0);

for (vtkm::IdComponent pointIndex = 0; pointIndex < numPoints; ++pointIndex)

{
outCellField = outCellField + inPointFieldVec[pointIndex];

}

outCellField = outCellField / OutCellFieldType(numPoints);

1 ;

struct ConvertPointFieldToCells : vtkm::worklet::WorkletVisitCellsWithPoints

{
using ControlSignature

using ExecutionSignature

using InputDomain = 1;

void(CellSetIn topology,

FieldInPoint inPointField,

FieldOutCell outCellField);

void(2, 3);

\
Need to visit
points with cells

template <typename InPointFieldVecType, typename OutCellFieldType>

void operator()(const InPointFieldVecType& inPointFieldVec,

OutCellFieldType& outCellField) const

{

}

vtkm::IdComponent numPoints = inPointFieldVec.GetNumberOfComponents();

outCellField = OutCellFieldType(0);

for (vtkm::IdComponent pointIndex = 0; pointIndex < numPoints; ++pointIndex)

{
outCellField = outCellField + inPointFieldVec[pointIndex];

}

outCellField = outCellField / OutCellFieldType(numPoints);

1 ;

struct ConvertPointFieldToCells : vtkm::worklet::WorkletVisitCellsWithPoints

{

using ExecutionSignature = void(2, 3); \

using InputDomain = 1; Reverse point/cell semantics

template <typename InPointFieldVecType, typename OutCellFieldType>

void operator()(const InPointFieldVecType& inPointFieldVec,

OutCellFieldType& outCellField) const

using ControlSignature = void(CellSetIn topology, \
FieldInPoint inPointField, Need to visit
FieldOutCell outCellField); points with cells

{

}

vtkm::IdComponent numPoints = inPointFieldVec.GetNumberOfComponents();

outCellField = OutCellFieldType(0);

for (vtkm::IdComponent pointIndex = 0; pointIndex < numPoints; ++pointIndex)

{
outCellField = outCellField + inPointFieldVec[pointIndex];

}

outCellField = outCellField / OutCellFieldType(numPoints);

1 ;

