~ \
EXASCALE

u u LN ol ; SAND2}19 12456PE_"INE
A ToolKit for Scientific =%
Visualization on
Many-Core Processors

Hank Childs University of Oregon
Kenneth Moreland Sandia National Laboratories
David Pugmire Oak Ridge National Laboratory

a
e
B Robert Maynard Kitware, Inc.

. More Advanced Algorithm #1

Sandia National Laboratories is a multi-mission laboratory managed and operated byN t nal Technology a d E g ing Solutions of Sandia, LLC., a wholly owned subsidiary
of Honeywell International, Inc., for the U.S. Department of Energy’s National Nucleal tyAdmln stratio t ct DE-| NA0003525 SAND NO. 2019-XXXXP

omputing

Motivating Example: Average Point Data to Cells

S

\ all“.ll“u

X

|

O g

Motivating Example: Average Point Data to Cells

\ all“.ll“u

— \
EXASCALE
— (\)E—] COMPUTING
\ PROJECT
Lnmd

Motivating Example: Average Point Data to Cells

el 4

2.3.\/

To follow along... T

« The source code shown in this session is in the tut_point_to_cell. cx)‘l'l'l_

EXASCALE

struct ConvertPolntFieldToCells
{

struct ConvertPolintFieldToCells : vtkm::worklet::WorkletVisitCellsWithPoints
{

struct ConvertPointFieldToCells : vtkm: :worklet::WorkletVisitCellsWithPoints
{ [

Worklet semantics visits a

el 4 cell in each thread with
/ l\lccess to points.
2.3
®
\\’ 20 @26

;.\.) 4.1
@

VTK-m Parallel Pattern: Visit Cells with Points

Output Array #1

VTK-m Parallel Pattern: Visit Cells with Points

Input Array #1

Output Array #1

10

struct ConvertPolintFieldToCells : vtkm::worklet::WorkletVisitCellsWithPoints
{

struct ConvertPointFieldToCells : vtkm::worklet::WorkletVisitCellsWithPoints
{
using ControlSignature = void(CellSetIn topology,
FieldInPoint inPointField,
FieldOutCell outCellField) ;

struct ConvertPolintFieldToCells : vtkm::worklet::WorkletVisitCellsWithPoints
{

using ControlSignature = void(CellSetIn topology, < To follow topology
FieldInPoint inPointField, connections,
FieldOutCell outCellField); VTK-m mustbe

given the cell set.

struct ConvertPolintFieldToCells : vtkm::worklet::WorkletVisitCellsWithPoints
{

using ControlSignature = void(CellSetIn topology, < To follow topology
FieldInPoint inPointField, connecﬁons,
FieldOutCell outCellField); VTK-m mustbe

given the cell set.

Field infout now has to
specify whether they come
from the points or the cells.

struct ConvertPointFieldToCells : vtkm::worklet::WorkletVisitCellsWithPoints
{
using ControlSignature = void(CellSetIn topology,
FieldInPoint inPointField,
FieldOutCell outCellField) ;

struct ConvertPointFieldToCells : vtkm::worklet::WorkletVisitCellsWithPoints
{
using ControlSignature = void(CellSetIn topology,
FieldInPoint inPointField,
FieldOutCell outCellField);

using InputDomain = 1;

struct ConvertPointFieldToCells : wvtkm::worklet::WorkletVisitCellsWithPoints
{

using ControlSignature = void

11SetIn topology,
FieldInPoint inPointField,
FieldOutCell outCellField);

using InputDomain = 1;

Specifies which argument
of the ControlSignature is
used for scheduling.

struct ConvertPointFieldToCells : vtkm::worklet::WorkletVisitCellsWithPoints
{
using ControlSignature = void(CellSetIn topology,
FieldInPoint inPointField,
FieldOutCell outCellField);

using InputDomain = 1;

struct ConvertPointFieldToCells : vtkm::worklet::WorkletVisitCellsWithPoints
{
using ControlSignature = void(CellSetIn topology,
FieldInPoint inPointField,
FieldOutCell outCellField);
using ExecufionSignature = veoid{ 2, 3);
using InputDomain = 1;

struct ConvertPointFieldToCells : wvtkm::worklet::WorkletVisitCellsWithPoints

{

using ControlSignature = void(CellSetIn topology,
FieldInPoint inPointField,
FieldOutCell outCellField);
using ExecutionSignature = wvoid(2, 3);

using InputDomain = 1; \

Specifies which arguments
of the ControlSignature are
passed to the worklet’s
operator.

struct ConvertPointFieldToCells : vtkm::worklet::WorkletVisitCellsWithPoints
{
using ControlSignature = void(CellSetIn topology,
FieldInPoint inPointField,
FieldOutCell outCellField) ;
using ExecutionSignature = void(2, 3);
using InputDomain = 1;
template <typename InPointFieldVecType, typename OutCellFieldType>
vold operator () (const InPointFieldVecType& inPointFieldVec,
OutCellFieldType& outCellField) const

struct ConvertPointFieldToCells : vtkm::worklet::WorkletVisitCellsWithPoints
{
using ControlSignature = void(CellSetIn topology,
FieldInPoint inPointField,
FieldOutCell outCellField) ;
using ExecutionSignature = void(2, 3);
using InputDomain = 1;
template <typename InPointFieldVefpTypg4, typename OutCellFieldType>
void operator () (const InPointFiel8VecType& inPointFieldVec,
OutCellFieldType& outCellField) const

struct ConvertPolintFieldToCells : vtkm::worklet::WorkletVisitCellsWithPoints

{

using ControlSignature = void(CellSetIn topology,
FieldInPoint inPointField,

FieldOutCell outCellField):;
using ExecutionSignature = void(2, 3);
using InputDomain = 1;

template <typename InPointFieldVecType, typename OutCellFieldType>

vold operator () (const InPointFieldVecType& inPointFieldVec,
OutCellFieldType& outCellField) const ‘\\\\\

Input point field is passed in
a Vec-like object containing
the values for all connected
points.

gtruct ConvertPolintFieldTolCells : vtkm::worklet: :HorkletVisitCellsWithPoints
{

using ControlSignature = void(CellSetIn topology,

FieldInPoint inPointField,
FieldOutCell outCellField);
using ExecutionSignature = void(2, 3);
using InputDomaid = 1;
template <typename InPointFieldVecType, typename OutCellFieldType>
vold operator () (const InPointFieldVecType& inPointFieldVec,
OutCellFieldType& outCellField) const

vtkm: :IdComponent numPoints = inPoilntFieldVec.GetNumberOfComponents () ;

outCellField = OutCellFieldType (0)

for (vtkm::IdComponent pointIndex
|

°
4

0; pointIndex < numPolnts; ++pointIndex)

outCellField = outCellField + inPointFieldVec[polintIndex];
}

outCellField = outCellField / OutCellFieldType (numPoints) ;

¥

template<typename ArrayHandleType, typename Policy>

VTKM CONT cont::DataSet ConvertPointFieldToCells::DoExecute (
const vtkm::cont::DataSet& inDataSet,
const ArrayHandleType& inField,
const vtkm::filter::FieldMetadata& fieldMetadata,
vtkm::filter::PolicyBase<Policy> policy)

VTKM IS ARRAY HANDLE (ArrayHandleType) ;
using ValueType = typename ArrayHandleType::ValueType;

vtkm: :cont: :ArrayHandle<ValueType> outField;

this->Invoke (vtkm: :worklet::ConvertPointFieldToCells{},
vtkm::filter::ApplyPolicyCellSet (inDataSet.GetCellSet (), policy),
inField,
outField);

template<typename ArrayHandleType, typename Policy>

VTKM CONT cont::DataSet ConvertPointFieldToCells: :DoExecute (
const vtkm::cont::DataSet& inDataSet,
const ArrayHandleType& inField,
const vtkm::filter::FieldMetadata& fieldMetadata,
vtkm::filter::PolicyBase<Policy> policy)

VTKM IS ARRAY HANDLE (ArrayHandleType) ;
using ValueType = typename ArrayHandleType::ValueType;

vtkm: :cont::ArrayHandle<ValueType> outField;

this->Invoke (vtkm: :worklet::ConvertPointFieldToCells{},
vtkm::filter::ApplyPolicyCellSet (inDataSet.GetCellSet (), policy),
inField,
outField);

You should apply the policy to
the cell set. (Specifies which
cell set types to build for.)

An assignment for you: convert cell data to point data -

« Can use tut_point_to_cell.cxx as a starting point.

’-';\

EXASCALE

'"“\(_ [S

gtruct ConvertPolintFieldTolCells : vtkm::worklet: :HorkletVisitCellsWithPoints
{

using ControlSignature = void(CellSetIn topology,

FieldInPoint inPointField,
FieldOutCell outCellField);
using ExecutionSignature = void(2, 3);
using InputDomaid = 1;
template <typename InPointFieldVecType, typename OutCellFieldType>
vold operator () (const InPointFieldVecType& inPointFieldVec,
OutCellFieldType& outCellField) const

vtkm: :IdComponent numPoints = inPoilntFieldVec.GetNumberOfComponents () ;

outCellField = OutCellFieldType (0)

for (vtkm::IdComponent pointIndex
|

°
4

0; pointIndex < numPolnts; ++pointIndex)

outCellField = outCellField + inPointFieldVec[polintIndex];
}

outCellField = outCellField / OutCellFieldType (numPoints) ;

¥

gtruct ConvertPolintFieldTolCells : vtkm::worklet: :HorkletVisitCellsWithPoints

{

Y i

using ControlSignature = void(CellSetIn topology, \

FieldInPoint inPointField, Need to visit

FieldOutCell outCellField); points with cells
using ExecutionSignature = void(2, 3);

using InputDomaid = 1; a

template <typename InPointFieldVecType, typename OutCellFieldType>

vold operator () (const InPointFieldVecType& inPointFieldVec,
OutCellFieldType& outCellField) const

vtkm: :IdComponent numPoints = inPoilntFieldVec.GetNumberOfComponents () ;

outCellField = OutCellFieldType (0)

for (vtkm::IdComponent pointIndex
{

°
4

outCellField = outCellField + inPointFieldVec[polintIndex];
}

outCellField = outCellField / OutCellFieldType (numPoints) ;

0; pointIndex < numPolnts; ++pointIndex)

gtruct ConvertPolintFieldTolCells : vtkm::worklet: :HorkletVisitCellsWithPoints

{

Y i

using ControlSignature = void(CellSetIn topology, \

FieldInPoint inPointField, Need to visit
FieldOutCell outCellField); points with cells
using ExecutionSignature = void(2, 3); \
using InputDomain = _l; Reverse point/cell semantics
template <typename InPointFieldVecType, typename OutCellFieldType>
vold operator () (const InPointFieldVecType& inPointFieldVec,
OutCellFieldType& outCellField) const

vtkm: :IdComponent numPoints = inPoilntFieldVec.GetNumberOfComponents () ;

outCellField = OutCellFieldType (0)

for (vtkm::IdComponent pointIndex
{

°
4

outCellField = outCellField + inPointFieldVec[polintIndex];
}

outCellField = outCellField / OutCellFieldType (numPoints) ;

0; pointIndex < numPolnts; ++pointIndex)

