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2 | Course Outline

1. Introduction to Artificial Intelligence and Machine Learning (Ray Byrne)
Machine Learning Overview (David Stracuzzi)
Machine Learning Approaches and Data Considerations (Warren Davis)

Optimization with Application to Machine Learning and Power Systems (JP Watson)

P g= W

Integrating Artificial Intelligence/Machine Learning into Power Systems Applications (Matt
Reno/Logan Blakely)

6. Example: Phase Identification (Matt Reno/Logan Blakely)

7.  Future Research Directions and Conclusions



Introduction to Artificial
Intelligence and Machine
Learning

Raymond H. Byrne (rthbyrne@sandia.gov)
September 9, 2019



+ | Why is Artificial Intelligence a Hot Topic? @

"

Examples of Successful Artificial Intelligence (AI) Applications:

Southwest®

amazon alexa

Personal assistants

Eall

Self-driving cars, lane Credit card fraud detection
departure detection, etc.

y : B&®XEVER JOHN PAU|
(cogito ——— P

. . Customer interaction Music Existing client interactions -
Conversation optimization  optimization (travel, etc.)  recommendations luxury travel concierge

amazon NETFL'X nest

Thermostat control

Product recommendations Product recommendations

R.L. Adams, “10 Powerful Examples Of Artificial Intelligence In Use Today,” Forbes, www.forbes.com.



- ‘ What is Al? — Federal Perspective @)

“The term ‘artificial intelligence’ means the full extent of Federal investments in Al to include: R&D of core Al techniques
and technologies; Al prototype systems; application and adaptation of Al techniques; architectural and systems support for
Al; and cyberinfrastructure, data sets, and standards for AI”

— Presidential Executive Order

“The research priorities outlined in this AI R&D Strategic Plan focus on areas that industry 1s unlikely to address on their

own, and thus, areas that are most likely to benefit from Federal investment. These priorities cut across all of Al to include

needs common to the Al sub-fields of perception, automated reasoning/planning, cognitive systems, machine learning,

natural language processing, robotics, and related fields. Because of the breadth of Al, these priorities span the entire field,

rather than only focusing on individual research challenges specific to each sub-domain. To implement the plan, detailed

roadmaps should be developed that address the capability gaps consistent with the plan.”
- National AT Research and Development Strategic Plan (pg5)

https://www.whitehouse.gov/presidential-actions/executive-order-maintaining-american-leadership-artificial-intelligence/

https:/ /www.whitehouse.gov/wp-content/uploads/2019/06/National-Al-Research-and-Development-Strategic-Plan-2019-Update-June-2019.pdf



What is Al? — DOE Perspective from the Artificial Intelligence &
Technology Office

“Artificial Intelligence has the power to literally change the world we live in by tackling some of the biggest problems facing
humanity — from improving our environment, to advancing our understanding of the cosmos; from increasing cyber security

2

to improving crop production, . . .
—Rick Perry

“Artificial Intelligence or Al is a new way of thinking, of discovering, of dreaming. Al reimagines computer programming
to mirror human reasoning. It gives us the power to search through vast datasets to discover new patterns and hidden
correlations to solve deeper mysteries to see future horizons.”

— Mindy Overbaugh (DOE)

“It’s the process of trying to make computer act intelligent, make them act like humans.”
-Kathy Yelick (Berkeley Lab)

“Artificial intelligence is a way to take our ability to reason and put it into a more automated

format in a computing system.
— Conrad James (SNL)

https:/ /www.energy.gov/science-innovation/artificial-intelligence-and-technology-office




7 I Families of Al Techniques
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Huang Ling-fang, “Artificial Intelligence,” 2010 The 2nd International Conference on Computer and Automation Engineering (ICCAE), Singapore, 2010, pp. 575-578.



Al versus Machine Learning

Machine learning 1s considered a subset of artificial intelligence

Artificial Intelligence: a branch of computer science which studies building machines capable of
intelligent behavior

Machine Learning: a computer learns to perform a task, often without explicit instructions, by
studying a training set of examples

Artificial
Intelligence

K. Bakshi and K. Bakshi, "Considerations for artificial intelligence and machine learning: Approaches and use cases,” 2018 IEEE
Aerospace Conference, Big Sky, MT, 2018, pp. 1-9.
P. Louridas and C. Ebert, "Machine Learning," in IEEE Software, vol. 33, no. 5, pp. 110-115, Sept.-Oct. 2016.




9 I Machine Learning is a Subset of Al [
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Tables making comparisons are often incorrect ... since machine learning is a subset of Al every
machine learning approach has some application to Al

Machine Learning Example Al application

Image segmentation and classification to visually
identify manufacturing flaws

Linear regression to predict future samples of a
time series (e.g., GDP growth)

Natural language (text and voice) processing for
translation (e.g., Google translate) of business
documents

Pattern recognition applied to credit card fraud
detection

Product recommendations to improve customer
experience and boost online sales

Image segmentation and classification is a key
component in Al applications (e.g., humanoid
robots, etc.)

Numerous Al applications related to prediction
(e.g., motion of images in a scene for
autonomous navigation and obstacle avoidance)

Natural language processing is required for any Al
application that involves language

Pattern recognition applied to autonomous
grasping (e.g., pick up the ball not like the
others)

Product recommendations provided by an Al
assistant

In addition, there are many fields of Al that are not application specific and are not related to
machine learning ... examples include research on planning and cognitive architectures

|



0 | Machine Learning

While there are many machine learning techniques, the basic process flow is the same for all

approaches

Machine learning
process - (truth)
data is the key!

Training
Data

Machine
Learning
Algorithm

New Data

Model

Prediction

o |F

J\]

=]



11 I Enabling Technological Advances @)

Moore's Law is AliveandwWet -~ e """"" . ~ 80 bthS/ pu nCh Ca I’d

Transistors per Square Millimeter by Year

133 bytes/sec

100000000

10000000

1951 - 7200 bytes/sec

1990 - 400MB, 0.7MB/sec
2008 - 750GB, 64MB/sec

today - solid state drive

, 4TB, 500MB/sec
Moore’s Law: the number of transistors on

an IC would double every few years.

[
1980 - 5MB, 0.625MB/sec |

E. P. DeBenedictis, "It's Time to Redefine Moore's Law Again,” in Computer, vol. 50, no. 2, pp. 72-75, Feb. 2017.



12 | Enabling Technological Advances (continued)

Low cost, high performance sensors, platforms

Image
GPS Sensors

AW,

LIDAR (Light Detection
and Ranging)

Application Specific Integrated Circuits (ASICs)
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Enabling Technological Advances (continued)

Truth data for training/validation — there are a large number of datasets available for image

processing, natural language processing, and audio/speech processing
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“25 Open Datasets for Deep Learning Every Data Scientist Must Work With”,

https://www.analyticsvidhya.com/blog/2018/03/comprehensive-collection-deep-learning-datasets/



14 | A Brief History of Al — The Turing Test (@)
Proposed by Alan Touring in 1950

Three players
> A — computing machine

° B — human being

° C — interrogator

All communication is through a textual device A - computer ‘7 .—.
(e.g., keyboard)

Can the interrogator identify the human and

computer?

_ . . C - interrogator
Turing predicted that a computer could convince

~33% of the judges after 5 minutes of
questioning by the year 2000

June 2014, A chatbot called Eugene Goostman,
which simulates a 13-year-old Ukrainian boy,
convinced 30% of the judges

S. Guccione and G. Tamburrini, "Turing's Test Revisited," Proceedings of the 1988 IEEE International Conference on
Systems, Man, and Cybernetics, Beijing, China, 1988, pp. 38-41.



15 ‘ A Brief History of Al — the Dartmouth Workshop

The term ““artificial intelligence” was first coined by John McCarthy, Marvin
Minsky, Nathaniel Rochester, and Claude Shannon in 1956

They proposed a summer workshop on artificial intelligence at Dartmouth

College
Topics included:

Automatic Computers — “If a machine can do a job, then an automatic calculator can be programmed to
simulate the machine. The speeds and memory capacities of present computers may be sufficient to

simulate many of the higher functions of the human brain, but the major obstacle is not the lack of
machine capacity, but our inability to write programs taking full advantage of what we have.”

o How Can a Computer be Programmed to Use a Language — “It may be speculated that a large part of
human thought consists of manipulating words according to rules of reasoning and rules of conlecture.
From this point of view, forming a generalization consists of admitting a new word and some rules whereby

sentences containing it imply and are implied by others. This idea has never been very precisely formulated
nor have examples been worked out.”

> Neuron Nets — “How can a set of (hypothetical) neurons be arranged so as to form concepts.
Considerable theoretical and experimental work has been done on this problem ...”

> Theory of the Size of Calculation — you have to understand the size of the calculation to measure the
efficiency of an algorithm

o Self Improvement — a truly intelligent machine will carry out self-improvement
> Abstractions — machine methods of forming abstractions from sensory and other data
> Randomness and Creativity — conjectured that creative thinking involves some randomness

J. McCarthy, M.L. Minsky, Nathaniel Rochester, and C.E. Shannon, “A proposal for the Dartmouth summer research project
on artificial intelligence”, submitted to the Rockefeller Foundation, August 31, 1955.

1 L e OB "



16 ‘ A Brief History of Al - Timeline

2015
Google DeepMind’s

Al Winter: period of significantly reduced research funding. One AlphaGo beats
. . . . human champion
cause was outlandish claims that were impossible to meet.

2011
1997 IBM’s Watson
IBM’s Deep ~2006 beats two
1950 1958 197‘,"'80 Blue defeats Al for image legendary
Alan Turing proposes LISP Al Winter Garry processing humans at
“Turing Test” developed Funding Cuts Kasparov takes off Jeopardy

L |
000 550 a5 197 15305 15900 20000 200

1956 1965 1981 1987-93 2008 2014 |

Dartmouth First Expert First Al Winter Google’s speech Chatbot Eugene
Workshop System Commercial Funding Cuts recognition app Goostman passes
Expert System on iPhone “Turing Test”

2011
Siri released with

SIRI was spun out of the DARPA funded CALO (Cognitive iPhone 45
Assistant that Learns and Organizes) project, 2003-2008.

-




17 | Research in Machine Learning Applied to Energy Systems

700
£
400

400

Documents

300
200
100
o
2000 2002 2004 2006 2008 2010 2012 2014 20ls 2018

Year
Figure 2. The growth in the number of articles during the past two decades.

A. Mosavi, M. Salimi, S. F. Ardabili, T. Rabczuk, S. Shamshirband, and A. R. Varkonyi-Koczy, “State of the Art of Machine
Learning Models in Energy Systems, a Systematic Review,” Energies, vol. 12, no. 7, Apr. 2019.




8 | Limitations of Machine Learning

Performance of a ML algorithm can be very good if the characteristics of the training data match the
observed data

If the characteristics of the data change over time, and this is not captured in the training data, the
performance of the ML algorithm can vary widely

Training
data

Characteristics
change



19 | Limitations of Machine Learning

For some problems, there 1s a known non-machine learning solution that 1s efficient, elegant, and

robust

Is machine learning the best fit for my problem?




20 | Course Outline

1. Introduction to Artificial Intelligence and Machine Learning (Ray Byrne)
Machine Learning Overview (David Stracuzzi)
Machine Learning Approaches and Data Considerations (Warren Davis)

Optimization with Application to Machine Learning and Power Systems (JP Watson)

P g= W

Integrating Artificial Intelligence/Machine Learning into Power Systems Applications (Matt
Reno/Logan Blakely)

6. Example: Phase Identification (Matt Reno/Logan Blakely)

7.  Future Research Directions and Conclusions



Machine Learning Overview

L e

David J. Stracuzzi (djstrac@sandia.gov)
September 9, 2019
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2 | Artificial Intelligence

Knowledge
Representation

“The automation of
activities that we
associate with
human thinking ...”
(Bellman, 1978)

“The art of creating
machines that
perform functions
that require
intelligence when
performed by
people.”

(Kurzweil, 1990)

Learning .
Perception

|

Action &
Execution

“The study of the
computations that
make it possible to
perceive, reason,
and act.”
(Winston, 1992)

Inference &
Reasoning

Planning &

. Problem Solving




23 ‘ What is Machine Learning?

Machine I earning coined in 1959 by Arthur Samuel while trying to

use data to improve performance of a checkers playing program.

N v‘ »0'-"'— y
y e
\\ I’J
e, ~ -
L . ) -
»

.
B

IBM, 1956

@)

Samuel, A.L. (1959). Some
studies in machine learning
using the game of checkers.
IBM Journal of Research and
Development.

T '



24 I What is Machine Learning?

A computer program is said to learn from
experience E with respect to some class of
tasks T and performance measure P

if its performance at tasks in 1, as measured by P, |

Improves with experience E. l
— Tom Mitchell, Machine 1 earning, 1997 ‘



25 | Many Types of Tasks and Methods

Tasks:

Supervised vs Unsupervised
Classification

Clustering

Regression

Anomaly Detection

Time Series Analysis

Policy Learning

Transfer Learning

Methods:

Decision Trees
Rule-Based Methods
Neural Networks
Inductive Logic

Support Vector Machines
Bayesian Methods
Genetic Algorithms
Statistical Algorithms

Ensembles

|



26 | Example Problem: Handwriting Recognition (™

Task (T): Recognizing and classifying handwritten numbers within images
Performance measure (P): Percent of numbers correctly classified

Experience (E): Database of handwritten numbers with given classifications

0] |Z|39)8 62 &84

labei 0 fabei 1 label 2 label 3 Tabel & label 5 laber 6 label 7 labei 8 label 9

Ol A3 45 eéeF &9 —

label. 0 labei 1 label 2 label 3 labet 4 label 5 label 6 label 7 label 8 label 3

0 ) #2396 46 1684

labei 0 fabei 1 labei 2 Tabel 3 label 3 label 5 label 6 label 7 label 8 label 9

o\ 231862 §F 9

label 0 label 1 label 2 label 3 label 4 label 5 label 6 label 7 label 8 label 9

01234+ 6729 |
Example adapted from Tom Mitchell, Machine 1 earning, 1997 Data from MNIST database, http://yann.lecun.com/exdb/mnist/ M



27 ‘ How Does Machine Learning Work?

X = {Xq, Xg, «ey X}

f(x) =01x1 + O0;x; + -

— Risk stimate witho conaderng
uncestarty on hased and fragiity

Pdf of Aek estimate

=09 (f (x;) —

0.00€-0 5.00607 100€-06 1 S0E0S 200606 250605 3.00606 25006 4.00E-05 4 50E06 5.00606
Annual probability of exceeding damage state




28 I Learning Example : Decision Trees

Task: Determine if Bill will play SN OURIOOK | Temperature Humicity 1 Windy 1 PIay Tennise |

tennis given weather observations D1 Sunny Hot High Weak No
Performance Metric: Prediction D2 Sunny Hot High Strong No
accuracy D3 Overcast Hot High Weak Yes
Experience: Past observations D4 Ram Hiid High Weak 158
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Overcast Mild High Strong Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No

Example from Mitchell, T.M. (1997). Machine Learning.



29 | Learning Example: Data Preprocessing and Feature Engineering

* Many learning algorithms take a set or sequence of vectors as input
o Raw data needs to be encoded in this format

> For many data types, there are existing encoding conventions

* Feature engineering uses domain knowledge to create these encodings
° Highly manual and time consuming

° Quality of learned model often dependent on feature encodings

Example: Play Tennis?

Outlook: {sunny, overcast, rain} or
{sunny, partly cloudy, mostly cloudy, cloudy, drizzle, rain, downpour} or
RGB image from TennisCam

Temperature: {hot, mild, cool} or
{hot, warm, mild, cool, cold} or
{-20F, -19F, ..., 114F, 115F} or
continuous

()



0 % Learning Example: Decision Trees

General Approach:
* Split the data based on No
information theory (entropy) No
* Entropy measures the Yes
distribution of positive and Yes
negative examples in each block Yes
* Greedy search through No
attribute (feature) space Yes
I Entropy _ Sum of Entropies No
~ all data after split Yes
Yes
Yes
Yes
Yes
No

G=0.247 G=0.029 G=0.152  G=0.048




31 | Learning Example: Decision Trees

(Day 15) What will happen on a sunny, cool, humid, windy day?

2

’ Overcast

$
%

Many design decisions affect performance:

* Training data
(number and quality of examples)

* Which variables describe the data

e

* Splitting criterion

g
S

* Binary versus multivariate splits

* What to do with numeric variables

* Stopping criterion



2 | Decision Tree Hypothesis Space

sunny, cool, high, strong

- | I
< o I | on
2| 1+ i - S
T | + | =
L)
> — 1 1 — (92
= I I
S . _ loveeeeeeeeeeeseeeeeseseeeenne °
I I ©
g | | >
- E 1 + 1+ X7
g -+ | | + 8
| |
§ + | o | + g
| |
| |
] ]
Sunny Overcast Rain
Outlook

Note: Original data was in 5 dimensions. Only showing 3 here compressed into 2.

=

|



4 layers

@ 15 gates
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34 I Learning Example: Image Analysis

Task: Classity pixels as tree, grass, roof, water, concrete, or boat
Performance Metric: Accuracy

Experience: Labeled pixels

RGB Color

Labels




35 | Learning Example: Image Analysis

As we develop an application, we need to

ask: * What is the most appropriate knowledge

* How else might we formulate the problem? representation?

* What input variables might provide the most * What is the most appropriate performance metric?
informations * Given the task and the data, what learning

* How good are my labels? algorithms are likely to perform well?

Labels
Color Only (78%)



36 | Evaluation

Performance (Loss) Metrics

Accuracy = (TP + TN)/n
* Precision = TP / (TP+FP)

* Recall (Sensitivity) = TP / (TP+FN)
Validation Data * F-score = (P*R) / (P+R)

* Confusion Matrices

-1
* LoglLoss =— B 9’4=1 Vij % log(pij)

e ROC Curves: calibrate classification
thresholds

* P-R Curves: similar to ROC; lots of negatives

Learning Process

* Regression metrics:

What makes evaluation hard? * Root Mean Squated Error

e Mean Absolute Error

* Many ways to formulate error and performance metrics + R2— vasiance explanation

* Highly dependent on the data, task, and goals
All of these can be applied with cross validation,

* Extrapolation ability is difficult to evaluate , e
random resampling, and stratification

* Hard to determine if/when we are extrapolating




37 | Learning Example: Time Series Application

Task: Change detection

Want to know, as precisely as possible,
when the signal first arrived

Model the noise

24 26

Performance Metric: No Ground Truth!!
Internal distance metrics only

Experience: Waveform data,
containing both signal and noise

Optimize fit; Models
meet at change point

l Model the signal

28




33 I Uncertainty

Measurement
Errors

Regularization
Effects

f(x) =01x1 +03x; + -

Inference
Errors

_1¢n ) — V-
€=~ Do d(f(x) = 1) \ Model Form

Uncertainty




39 I Uncertainty Example: Seismic Onset Detection

Noise-Signal Onset Search Window Noise-Signal Onset Search Window

i:: 1 b il
| dfmﬂ— : mlly,‘lgim,“!'!‘{'l‘l’l I ﬁ “m
| lil M“ |
|l | “

-400 “

-40
—— High/Low Filtered Seismic Data
-600 =— A.I.C. for AR(2) “ - Raw Seismic Data

A.l.C. for ARMA(1,1) —— A.L.C. for ARMA(2,2)
—— A.I.C. for ARMA(1,3) —— A.L.C. for AR(4)
-60
0 50 100 150 200 0 50 100 150 200

-800




» I Uncertainty Example: Seismic Onset Detection

data
s Analyst Mode

MOde Of .-‘ J ? - Aut?mfted Mode
Analyst Picks | : '
- = et S P __ . \ N S\ S/ \ —/ \ | - / | . \ /|
Mode of v
Automated Picks "'
Analyst

Picks
Automated

Picks

1100 1150 Sample Time (40hz) 1200 1250



# | Domain Knowledge

« Variable selection
Representative data

Structural
knowledge

f(x) =01x1 + O0;x; + -

£= Y, g(F(x) — Y))

Domain
constraints




Interactions Between Domain Theories and Machine Learning

https://www.facebook.com/help/cookies/?ref=sitefooter
\_/ v
HostName Path Parameters
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4 | Outline

® Factors in deciding upon a machine learning approach

= Classes of Machine Learning
= Supervised Learning
= Unsupervised Learning
= Semi-Supervised Learning

= Reinforcement Learning

= Information Representation

(@)

T Ol B 00000 |



s | Deciding Upon a Machine Learning Approach

What problem are you trying to solve?
° Predict a category

o Predict a value
> Group data

o Find anomalies

(o]

Find correlations

> Optimize parameters

What data is available?
° Numerical
> Categorical
° Images/Audio/Video
o Text

o

(@)

T Ol B 00000 |



48

Supervised Learning @)
Iris Data (subset)

length | width | length | width P

Tasks 5.1 3.5 1.4 setosa
. . 4.9 3 1.4 0.2 setosa
o Regressmn (continuous response) i 15 s 0
- A . X setosa
> Classtification (discrete response) 46 31 15 0.2 Hloma
° Binary (2 classes) 5 3.6 1.4 0.2 setosa
> Multiclass (>2 classes) 7 3.2 4.7 1.4 versicolor
6.4 3.2 4.5 1.5 versicolor
Experlence (data) 6.9 3.1 4.9 1.5 versicolor
> Regression: input-output pairs 2 = & ol e eaie]
) ; ; 6.5 2.8 4.6 1.5 versicolor
o Classification: feature-label pairs 3 13 . )5 ——
5 5 - v1rg1mca
5.8 2.7 5.1 1.9 virginica
Performance measures . : - . e
_ . . . virginica
° Many different methods 6.3 2.9 5.6 1.8 virginica
6.9 3 5.8 2.2 virginica
| J\ J
|
Features Label

Fisher, 1936. The use of multiple measurements in taxonomic problems. Annals of Eugenics. 7 (2): 179-188.
Anderson, 1936. The species problem in Iris. Annals of the Missouri Botanical Garden. 23 (3): 457-509.

|



s | Examples of Supervised Learning

“Linear Regression

“Support Vector Machines

*Naive Bayes

*Decision Trees / Random Forests
*"Neural Networks

"k-Nearest Neighbor

petal width < 1
YES NO

m petal length > 5

YES NO

support vectors

Yi 5504;511814 €; |
y=XB+e€

maximum-margin hyperplane

\\’

/

4
/
/
/
7
/
/
/
4 Vi

maximum margin

i)

support vectors



so I Neural Networks

Brain has neurons that communicate with other neurons
through electrical impulses.
> Approximately 100 billion in human brain

Connections strengthen with experience

Neural networks are mathematical models inspired by

the connectionist model of the brain




51 ‘ Artificial Neural Networks

Petal
Length
Petal
Width

S
A%
1,1

Hidden
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Advanced Neural Networks

Convolutional/Deep Networks
> Convolutional networks take advantage of local dependencies
> Deep networks capitalize on the power of deeper networks to encode/represent higher level, latent features
> Deep convolutional networks revolutionized the processing of images, sounds, and video
> Applicable to other modalities

Recurrent Neural Networks
o Takes data of varying length

o Useful for temporal and sequential data (e.g,, text, signal processing)

Autoencoders/Generative Adversarial Networks
> Autoencoders create compressed representations of the original data
> Useful in anomaly detection, compression, domain feedback

° Variational autoencoders can generate new data
> Generative Adversarial Networks pit two models (usually neural networks) against each other

> Generator creates new samples
> Discriminator learns to tell original samples from generated samples
> Generator and Discriminator co-evolve

° ”Battle-tested” generator produces high quality new samples

|
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k-Nearest Neighbor

Input: £ closest instances (nearest neighbors) in feature space

Output

> Regression: average values of £ nearest neighbors

> Classification: majority class of £ nearest neighbors

|
]
Class 1
3
|
u
&
@
Class 2
= [

https://www.quora.com/How-is-the-k-nearest-neighbor-algorithm-different-from-k-means-clustering

kNN: example of instance-based learning

Function only approximated locally
Computation deferred until prediction

(@



Unsupervised Learning

Iris Data (red=setosa,green=versicolor,blue=virginica)
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° Challenging due to lack of labels/known solutions
> Validation often leverages labeled data sets (labels only used in testing)

Fisher, 1936. The use of multiple measurements in taxonomic problems. Annals of Eugenics. 7 (2): 179-188.
Anderson, 1936. The species problem in Iris. Annals of the Missouri Botanical Garden. 23 (3): 457-509.




55 ‘ K-means Clustering

Task
> Group data instances by distance into K groups

° Data instances are points in a multidimensional feature vector space

Standard Algorithm
1. Initialize cluster centroids randomly

2. Iterate until convergence
a)  Assign each instance to the cluster whose centroid is “closest”

b)  Update the centroids given the current cluster assignments

cluster centroid =
arithmetic mean of
the points in the
cluster

o © « ° o
oy oXg ey eoXgq ® eX o
Q o Q ¢ o ] ® e o
o 9 XQ « * Xe « * @
O o ® e e
© J * o e o

@)

Assignment of instances
to cluster with closest centroid

Update centroids based
on new cluster assignments

Centroids (x) and cluster
assignments (color) at start of iteration



56 ‘ K-means Clustering

Task
> Group data instances by distance into K groups

° Data instances are points in a multidimensional feature vector space

Challenges
° What value to use for K?
> Most often chosen by the user/analyst/subject matter expert
° How to initialize the centroids?
> Random instances as centroids vs. random cluster assighments
> How to compute distances?
> KHuclidean distance often used
> Often data- and problem-dependent
> When to stop iterating?

> Assighment stagnation often used

° K-means clustering is equivalent to local minimization

@)

T '



s7 I Other Partitional Clustering Methods

K-medoids

> K-means like algorithm using medoids (median values of cluster points) instead of means for assignments

Fuzzy K-means

° Fuzzy set membership for observations

DBSCAN

> density-based clustering with outlier detection and no predetermined number of clusters

Gaussian Mixture Models

> K-means like algorithm with Gaussian distribution assumptions & probabilistic assignment

Spectral Clustering

> Useful for exploiting affinities (e.g;, connections, similarities), in data points, regardless of Cartesian
proximity

=

|



58 ‘ Hierarchical Clustering

Dendrogram

Clusters

Clustering Approaches
> Agglomerative

° Merging from bottom to top
° Divisive
o Splitting from top to bottom

Metric

> Distance between data points

Linkage Criteria

o Distance between sets
> Single: minimum
> Complete: maximum

° Average

Number of clusters

> Choose a level to cut dendrogram

Gan, et al., Data Clustering: Theory, Algorithms, and Applications. SIAM, 2007.

|

T Tl



s9 I Semi-Supervised Learning

Tasks

° Supervised Learning Tasks

Experience (data)

o Small amount of labeled data

> Mostly unlabeled data

Performance measures

° Supervised Learning measures

Training model
° Train a model using labeled data
> Use model to predict labels for unlabeled data
> Add (some) unlabeled data and predicted labels to labeled data

> Repeat

Co-training
> Multiple classifiers working in tandem

> Requires independence between classifiers

@)

T '



60

Reinforcement Learning

Tasks

> Take the best action based on current state (i.e., information available)

Experience (data)

° Interactions with the environment/system

° State of environment/system

Performance measures
o Maximize reward

o Minimize risk

Agent

P

Stﬂte Reward Actiﬂﬂ

Environment

Reinforcement Learning: State-of-the-Art. Eds. Wiering and van Otterlo, Springer-Verlag, 2012.

@)
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Information Representation is Key to Machine Learning
Success

Aforementioned examples assume that the data is already in the correct form to solve the problem

Knowledge Elicitation
> Gaining knowledge from Subject Matter Experts

Feature engineering / Data wrangling
> Getting the data in a form useful for answering the pertinent questions

> Often an iterative process

Feature selection
> Some features may be irrelevant

° Many algorithms are robust to this, but irrelevant features can degrade performance or cause machine learning methods to take
longer than desired

Data properties
o Are the relevant features included?

° Is there enough of the data?

o [s the data drawn from the correct distribution?

|



o2 | Technical References

Tools
° Scikit-learn
° https://scikit-learn.org/
> PyTorch
° https://pytorch.org

o Tensorflow

° https://www.tensorflow.org

Data
> UCI Machine Learning Repository:

° https://archive.ics.uci.edu/ml/index.php

> Kaggle:
° https://www.kaggle.com/datasets
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. | What Do We Mean By “Optimization™?

Linear programming (LP)

argmin ¢’ x
st. Ax<b
xe(Q"

Classic example: Linear Assignment Problem (LAP)

argmin Y, > c;x;
X

jeN ieN
s.t. inj -1 VjeN
ieN

jeN

x, >0 VieN,jeN

y

(“Standard " form: b
argmin ¢’ x
st. Ax=b
x>0
xeQ"
€ 4

We generally assume that an
algebraic description of the

underlying problem is available

Popular extensions:

Mixed-integer programming
Non-linear programming
Stochastic programming
Robust optimization

|



s I Machine Learning and Optimization (I)

Hi | 1SS0 Nné

Linear regression is an optimization problem

Find 1;1151 Q(a, B), for Q(a,B) = Z Z — = ,Bmg)2
1 ?, ].
T

Slope-intercept
parameters of a line

100 200 300
X
E ] v [w] '-:{"‘E.'ﬁ-c»_.-::-—jb-_'—_)_ -:,LQL-T—D B
Non-linear regression is still an o
optimization problem - you just shift 1 £
from linear programming to non- o]
linear programming models and .13
methods [', T - - v -
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Machine Learning and Optimization (2)

OPTIMIZATION

FOR MACHINE LEARNING

MIT Press

ICML | 2019

Thirty-sixth International Conference on

Machine Learning

“The interplay between

Help ~

optimization and machine
learning is one of the most = _

important developments in
modern computational
science. Optimization
formulations and methods
are proving to be vital in
designing algorithms to
extract essential knowledge
from huge volumes of data.”

A word doodle of accepted papers at
@NeurlPSConf -- Learning is more than
deep.

ai ... berkeley brain california carnegie c
columt deep deepmind eboo
enerative .. g0OOQlE lab
learning mellon
microsoft mit models networks
neural | y
science stanford inghua UC
wang

Code of Conduct

Future Meetings

Wed Jun 12th 04:00 -- 04:20 PM @ Room 103

Program Highlights »

Oral

Linear C of in
Bugra Can - Mert Gurbuzbalaban - Lingjiong Zhu
Video »

Wed Jun 12th 04:20 - 04:25 PM @ Room 103
SGD Rates for Convex F

In Convex Optimization

Dheera| Nagara) - Prateek Jain - Praneeth Netrapalll
Slides » | Video »

Wed Jun 12th 04:25 - 04:30 PM @ Room 103

On the Cq of App Bar

Alexey Kroshnin - Nazarii Tupitsa - Darina Dvinskikh - Pavel Dvurechenskil - Alexander Gasnikov - Cesar Uribe
Slides » Video »

In Convex Optimization

Oral

In Convex Optimization L

Oral

Wed Jun 12th 04:30 — 04:35 PM @ Room 103
for Ci O

Andrei Kulunchakov « Julien Mairal
Slides » | Video »

in Convex Optimization

Wed Jun 12th 04:35 — 04:40 PM @ Room 103
A P on
Michael Muehiebach - Michael Jordan

Slides » Video »

Wed Jun 12th 04:40 - 05:00 PM @ Room 103
Random Shuffling Beats SGD after Finite Epochs
Jeff HaoChen - Suvrit Sra

Slides » Video »

Wed Jun 12th 05:00 - 05:05 PM @ Room 103
First-Order Algorithms Converge Faster than O(1/k) on Convex Problems
Ching-pei Lee - Stephen Wright

Slides » Video »

In Convex Optimization

in Convex Optimization

In Convex Optimization

Many talk sessions at major machine
learning conferences would be at
home at optimization conferences
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Journal of Machine Learning Research|7 (2006) 1265-1281 Submitted 7/06 — Th] Sl]esa?:;]r]g ?:i?)iﬁ tggﬁ d ee p

The Interplay of Optimization and Machine Learning Research

Kristin P. Bennett BENNEK @RPI.EDU
Department of Mathematical Sciences

Rensselaer Polytechnic Institute

Troy, NY 12018, USA

Emilio Parrado-Hernandez EMIPAR@TSC.UC3M.ES
Department of Signal Processing and Communications

University Carlos Il de Madrid

Leganés (Madrid), 28911, Spain

Editors: Kristin P. Bennett and Emilio Parrado-Herndandez

Abstract
” . . . .
The fields of machine learning and mathematical programming are increasingly intertwined. Op- — Opt] m]zat]on prOblemS l]e at

timization problems lie at the heart of most machine learning approaches. The Special Topic on .
Machine Learning and Large Scale Optimization examines this interplay. Machine learning re- the hea rt Of mOSt maCh] ne
searchers have embraced the advances in mathematical programming allowing new types of models . 7]

to be pursued. The special topic includes models using quadratic, linear, second-order cone, semi- lea rn] n g p rO b le m S

definite, and semi-infinite programs. We observe that the qualities of good optimization algorithms

from the machine learning and optimization perspectives can be quite different. Mathematical pro-

gramming puts a premium on accuracy, speed, and robustness. Since generalization is the bottom

line in machine learning and training is normally done off-line, accuracy and small speed im-

provements are of little concern in machine learning. Machine learning prefers simpler algorithms

that work in reasonable computational time for specific classes of problems. Reducing machine

learning problems to well-explored mathematical programming classes with robust general pur-

pose optimization codes allows machine learning researchers to rapidly develop new techniques.

In turn, machine learning presents new challenges to mathematical programming. The special issue

include papers from two primary themes: novel machine learning models and novel optimization

approaches for existing models. Many papers blend both themes, making small changes in the

underlying core mathematical program that enable the develop of effective new algorithms.

e -



68

Machine Learning and Optimization (4)

Stochastic gradient descent (SGD) - a now standard optimization

method - is at the center of the deep learning revolution

There is still much more that optimization can do for
machine learning, e.g.,

» Rigorous proofs of global optimality

» Basis for adversarial machine learning

» From neural net training to architecture design

Training of deep (autoencoder)
neural networks is a non-linear
optimization problem to minimize
reconstruction errors

But: SGD is a local method for solving a
non-linear optimization model
* A heuristic - not a rigorous,
complete solution method
» Absolutely no guarantee of
optimality
* Nor any indication of how far you
are from a global optimum




oo I Most of Power Systems Operations and Planning is
Optimization...

Decision making in power systems looks at processes ranging from very large time constants to
near real-time:
Years, Seasons, Months, Weeks: Resource adequacy, transmission and hydro resource
planning
Days: Hydro-thermal coordination, day-ahead UC of energy and reserves, intra-day UC
Hours: intra-day look-ahead processes, dynamic economic dispatch
Minutes: Economic Dispatch (ED)
Seconds: Automatic Generation Control (AGC)

Real-time

Uncertainty

Time

Every problem at the five minute and larger time scales is formulated and
solved as an optimization problem
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ML for Power Systems Optimization: Warm Starting

The time required to solve operations problems such as commitment and dispatch can be
significantly lowered by up to 80% via “warm starting” - use historical data to fit a ML model that
predicts what are likely to be high-quality solutions for a given

€ -

A Distributed Framework for Solving and Benchmarking Security Constrained

Learning to Solve Large-Scale Security-Constrained Unit Unit Commitment with Warm Start

. Publisher: IEEE
Commitment Problems

: . 9 4 Author(s Yonghong Chen ; Fengyu Wang ; Yaming Ma ; Yiyun Yao View All Authors
Alinson S. Xavier!, Feng Qiu!, and Shabbir Ahmed? Ul ) g ¢ 4

Energy Systems Division, Argonne National Laboratory, Argonne, IL, USA. {axavier,fqiu}@anl.gov 26 o

; 7

2 School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA, USA. Full @ &4 0 3] © .

R Text Views
sahmed@isye.gatech.edu

Abstract. Security-Constrained Unit Commitment (SCUC) is a fundamental problem in power systems Abstract Abstract:
and electricity markets. In practical settings, SCUC is repeatedly solved via Mixed-Integer Linear This paper discusses several methods to improve commercial optimization solver performance on day
Programming, sometimes multiple times per day, with only minor changes in input data. In this work, Authors ahead security constrained unit commitment through warm start and lazy constraint settings. Data analytics

e S ber of hine i ML) techniques to effectively extract information fi 5 < i ; : o 3
we/ipropose & niurriber ofmachiitie learalug (ML) teclmiques to effectively extract Information from is performed to greatly improve the quality of the initial commitment solution and lazy constraint setting. A
previously solved instances in order to significantly improve the computational performance of MIP N = ) . =

Keywords distributed optimization framework is proposed to take advantage of the diversity from prevalent solvers

solvers when solving similar instances in the future. Based on statistical data, we predict redundant

(GUROBI and CPLEX) and different warm start strategies. A systematic distribution profile based
benchmarking method is also proposed.

constraints in the formulation, good initial feasible solutions and affine subspaces where the optimal
solution is likely to lie, leading to significant reduction in problem size. Computational results on a Metrics

diverse set of realistic and large-scale instances show that, using the proposed techniques, SCUC can

Published in: IEEE Transactions on Power Systems ( Early Access )

Related techniques hold even more promise in the context of
stochastic power systems operations problems, which are
significantly more difficult in practice

T '
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71 ‘ ML for Power Systems Optimization: Scenario Construction

Day-Ahead Scenarios for Bulk Load

Historical forecasts and T

corresponding actuals are fed into
ML algorithms to characterize error
distributions...

2500

"y B T .. which are Day-Ahead Scenarios for Bulk Solar
| .t | :se= thenusedto —
2 B N construct == o E
_______________ S probabilistic orro
............... . | ©7 scenarios for =

Probabilistic scenarios form the basis for stochastic power systems
operations and planning problems - and they are provided by ML

T Ol B 00000 |



(Examples of) Machine Learning

for the North American Energy
Resilience Model (NAERM)
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73 | Resilience Quantification: Stochastic Models are Critical

ML is central to developing probabilistic models of threats - which are
critical inputs to resilience analysis

N

Reduced Expected Financial Consequence

[
»

Reduced Risk

A

Probability of Consequences [$]
Given Threat X

/

E’(:C) E(é) \ | Consequences [$]

Resilience of System after | ‘
Improvements Improvements must Baseline System
cost significantly Resilience

less than E-E’

QUADRENNIAL TECHNOLOGY REVIEW
AN ASSESSMENT OF ENERGY
TECHNOLOGIES AND RESEARCH
OPPORTUNITIES

,'"l A

[+ /) September 2015

QUADRENNIAL ENERGY REVIEW:
ENERGY TRANSMISSION, STORAGE,
AND DISTRIBUTION INFRASTRUCTURE




74 | Resilience Analysis: Probabilistic Outage Scenarios

Historical transmission outage data associated
with extreme weather events
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Probabilistic outage scenarios are a pre-requisite for proactive resilience operations and investment strategies..
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Probabilistic ML models calibrated
using historical outage data
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... and are equally applicable in planning and real-time contexts
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75 ‘ ML for Accelerating National-Scale Grid Computation

Future El Case (ERGIS, from NREL) Significant technology development efforts
required to execute ERGIS cases in tractable
run times

=y
wan
=

Time Domain Partitioning of

Voltage (kV)

o Lo Electricity Production Cost

765

I’ »
’ = =
- ) (24 7 . o :
WA ket 408 :
\ AN i i N
500 = -
‘‘‘‘‘ w Simulations
----- 230-287
----- 100-161

Clayton Barrows, Marissa Hummon,
Wesley Jones, and Elaine Hale

~11K generators in entire system

* Includes two very large I1SOs ML methods for accelerating
« Difficult to solve in isolation, let alone in a commitment and dispatch
coordinated manner optimization model solves can
* Major challenges for solving core operations potentially yield order-of-magnitude
simulations such as commitment and dispatch reductions in run times




76 ‘ ML-Based Grid Situational Awareness and Control

Significant emerging efforts in the realm of ML for
proactive power grid operations via deep ML

From Grid Eye to Grid Mind Smart
Prepare for The Future

-A Data-driven Autonomous Grid Dispatch Robot Based on PMU Measurements ) Bt i rescarch instiute helps the powesr g more ecinty and okably

Di Shi, Ruisheng Diao, Jiajun Duan, Bei Zhang, Zhe Yu, Zhiwei Wang, Xiao Lu”,
Haifeng Li*, Chunlei Xu®, Yar 7-= "=~ 7%~~~

. L ZRPN Cha"en e GEIRI North America Research Areas
GEIRI North America (GEIRINA g
*State Grid Jiangsu Electric Power ( - Learning to Run a Power Network throu Global Energy Interconnection Research Insttute North America (GEIRI North  Graph Computing & Grid Al & System Analytics
d America or GEIRINA), previously named as SGRI North America Inc., is a Modemization
Apn[ 15-17. 21 subsidiary of GEIRI Beijing which is an institute focusing on the research and
2 development of cutting-edge technologies for a smarter electric power grid.
‘GEIRI Beijing is affiliated to State Grid Corporation of China (SGCC) which is Advanced CO[‘HDHTH‘Q & Data Smart Chips
D' Sh s the largest electric utility company in the world and was ranked 2nd on 2016 Intelligence
1 1 Fortune Global 500. SR

@ NASPI April Work G T
Team: Tu Lan, Jiajun Duan, Bei Zhang, Zhiwei 1+ aug, asaviu

Zhang, Ruisheng Diao, Yan Zan

Al & System Analytics
GEIRI North America (GEIRINA)

@PSERC Summer Workshop
July 16, 2019

Key question is whether such methods can be extended from reliability to resilience contexts,
and beyond minute-scale look-ahead




Integrating Artificial Intelligence/Machine
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s I Power System Applications of Artificial Intelligence

o Power Systems is a perfect application for Artificial Intelligence due to the complex systems and large
amounts of data. This is made possible recently due to:

° Advances in computing power for real-time learning and decision making
> Additions of new sensing equipment such as smart meters and PMU

> New Artificial Intelligence algorithms to handle large datasets, transferable learning, and physics-based algorithms

O These slides will go through several different examples of Al challenges, Al successes in Power Systems,
and future research directions, with references throughout.

The key topics are:
1. Integrating Physics-Based Constraints into Al
2. Access to Training Data for Al
3. Al for Controls and Protection Applications

Each topic includes:

1. Overview — Al challenges, problem statement, and current areas where Al has been successful
2. Example Project — Specific example using Al to solve this challenge

3. Future - Ongoing challenges, current research, and continuing problems phrased as questions
4. References



79 ‘ Physics-Based Constraints in Al

Many AI/ML methods do not incorporate known physical constraints and equations.

o Given that we know many of the relationships in power systems (Ohms law, power flow equations, etc.), it 1s

advantageous to use the known physics equations.

o Challenges Integrating Physics-Based Constraints into Al

> Much recent work in Al uses raw data input (image pixels, etc.) and
ignores physics-based constraints

> AI/ML so far has not been designed to incorporate this type of
known information

° Areas such as power systems have large quantities of physics-based
constraints and Al should be able to use that knowledge without
starting from scratch

O Successful Integrations of Physics-Based Constraints into Al

> Al for calibrating distribution system models (phase identification,
topology parameter estimation, etc.)

N
High %
(@)
N =
ks 9
21l 8 Theory-guided
< g‘ Data Science Models
o O
] L
& |LE
(@)
wv
Qo
(@)
% I
s |
Data Science Models I
Low I,
Low Use of Data High

A. Karpatne et al., “Theory-guided Data Science: A New Paradigm for
Scientific Discovery from Data,” IEEE Trans. Knowl. Data Eng., vol. 29, no.
10, pp. 2318-2331, 2017.



80 ‘ Physics-Based Constraints in Al — Example )

Use measured data to estimate distribution system parameter and state

Ingest data from AMI, SCADA, uPMU, etc. and use data analytics and machine learning methods to estimate
system parameters (phase, meter-transformer pairing, line lengths, etc.) and do state estimation

Meter to Transformer
Pairing

Parameter Estimation

Phase Identification

National

Sandia “Physics-Based Data-Driven Grid Modeling to
Laboratories Accelerate Accurate PV Integration”

Behind-the-meter PV

. . ® “Visualization and Analytics of Distributed
Parameter Estimation

Energy Resources (VADER)”

T Ol B 00000 |



81 ‘ Al for Resilient Response

Grid Resilience and Intelligence Platform (GRIP) aggregates data, anticipates
disruptions, validates control options, and reduces recovery time from extreme events

Data Platform Layer

https://gmlc.doe.gov/sites/default/files/resources/1.5.01_GRIP_Fact%20Sheet_8-30-18.pdf



82 ‘ Physics-Based Constraints in Al i)
Ongoing Challenges and Current Research Areas

o How do we effectively leverage recent developments in Al while still incorporating physics-based system knowledge?

> Integration of physics-based constraints in training algorithms (like backpropagation) to train faster by limiting relationships between weights.

© What physics-based constraints can be effectively added to AI? Physics-based equations versus (possibly) incorrect topology
information?

o Can physics-based constraints help with error bounding and uncertainty quantification?

Successful integration of physical motion constraints into deep learning for robotic arm control

: -bg ,\4./ | = 3
1 <l @ T I
I - '« 0 0] |
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|:| ReLu Network D Linear Network |:| Physics Transformations

M. Lutter, C. Ritter, and J. Peters, “Deep Lagrangian Networks: Using Physics as Model Prior for Deep Learning,” Int. Conf. Learn. Represent. ICLR, 2019.
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g3 I Physics-Based Constraints in Al — References (™
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R. A. Sevlian ez al., “VADER: Visualization and Analytics for Distributed Energy Resources,” 47X
170809473 Cs CY, 2017,

M. Lave, M. J. Reno, R. J. Broderick, and J. Peppanen, “Full-Scale Demonstration of Distribution System
Parameter Estimation to Improve Low-Voltage Circuit Models,” presented at the IEEE Photovoltaic
Specialists Conference (PVSC), 2017.
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A. Karpatne ¢ al., “Theory-guided Data Science: A New Paradigm for Scientific Discovery from Data,”
IEEE Trans. Knowl. Data Eng., vol. 29, no. 10, pp. 2318-2331, 2017.

M. Lutter, C. Ritter, and J. Peters, “Deep Lagrangian Networks: Using Physics as Model Prior for Deep
Learning,” Int. Conf. Learn. Represent. ICLR, 2019.



s« I Access to Training Data for Al

Much of the recent success of Al is driven by access to large quantities of high-quality data. This is

often difficult to obtain for real-world applications

o Challenges with Training Data Availability and Quality for Al

> Many real-world applications have either unlabeled data, incompletely
labeled data, or few to no examples of critical event types

> How do you get labeled data for the Al to use? Manual entry?
> Some events (rare resiliency events, cyber attacks, etc.) have never occurred

> How does bad data or mislabeled data impact the training and learning
algorithms?

o Successful Applications of Al with Limited Access to Training
Data

° Semi-supervised learning or transfer learning that uses some previous data
and training to apply to a new application

> Detection of incipient failures of devices like transformers

> Power system protection, including fault classification and location

@)
Causes of Outages Worldwide
Supply Shortage Cybf.f‘ég/:ack
—
Vandalism
Malfunctions
(misc)
Equipment
Failure

(internal cause)

Natural
Disasters

Z. Bie, Y. Lin, G. Li, and Li Furong, “Battling the Extreme: A Study on the
Power System Resilience,” Proc. IEEE, vol. 105, no. 7, pp. 1253-1266.



s | Access to Training Data for Al — Example @

Neural Networks for Fault Identification and Fault Location

Training and Testing Dataset

© Simulated using the IEEE 34-node feeder No. Fault type Size of training dataset ~ Size of test dataset

O Separate networks for Fault Section Identification and

Fonslt Losaticn I Single phase-to-ground 500 100
2 Two phase 400 100
3 Twophase-to-ground 400 100
o How do we obtain training data to make this application 4 Three phase 150 30
viable?
Methodology successfully identifies and locates | Fault Section
faults within this distribution test feeder Identification
3 ph. & zero
sequence currents WEE
Dis tributi DWT Feature /EPU
istribution I 5 qa ure ANN Models
Network Decomposition Extraction
A. C. Adewole, R. Tzoneva, and S. Behardien, “Distribution Network Fault Section Identification and Fault

Location Using Wavelet Entropy and Neural Networks,” Appl. Soft Comput., vol. 46, pp. 296-306, 2016. =1 Fault Location




ss | Access to Training Data for Al @

Ongoing Challenges and Current Research

Areas

o How do we obtain the necessary data to train Al on these types of tasks?

o Is it possible to achieve excellent results by altering the algorithm design to use the available data?

o Can realistic data be generated for these tasks?

o Is AI/ML the cortect tool to apply to this arear

Generated images enhance the accuracy
of the original classifier and human
experts concur the generated images
are excellent examples

Generative Adversarial Networks (GAN) for Data
Augmentation to Classify Liver Lesions

i
Generate Classic D‘”'-‘f‘ Classify liver

data — lesions

augmentations ChN

Find the
optimal group i
For increasing

size of
augmentations

aptimal J
I):m_;'\ + I)’ ynth Classifv liver

Generate :
Synthetic data . lesions

augmentations CNN

For increasing
size of
augmentations
j=(1,...,m}

M. Frid-Adar, I. Diamant, E. Klang, M. Amitai, J. Goldberger, and H. Greenspan, “GAN-based Synthetic Medical Image
Augmentation for Increased CNN Performance in Liver Lesion Classification,” Neurocomputing, vol. 321, pp. 321-331, 2018
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s | Al for Controls Applications

Using Al for real-time controls requires processing large amounts
of data very quickly.

o Challenges with Applying Al for Controls

> Many real-time power system controls applications operate sub-second to
regulate the grid and maintain stability. Applying Al for controls applications
requires processing large amounts of data size and significant computational
effort

> Al algorithms are generally black boxes, which creates i1ssues understanding
and explaining the controls structure they have learned. Standard control
theory methods need formula representations for demonstrating stability and
stability margins

> Uncertainty Quantification — How bad could the prediction/action be?

° For controls applications, Al needs to be able to perform online learning,
otherwise it will not be able to adapt to new situations

O Successful Applications of Al for Controls
> Device control with reinforcement learning (generation, relays, substation)

° Smart Home/Building control with reinforcement learning (HVAC, demand
response, lighting)

° Real-time forecasting with supervised learning (renewable generation, load)

Real-world
action

Black Box
Agent ‘

Input Data
(Environment, Rewards)

(@)

T Ol B 00000 |



89 ‘ Al for Controls Applications — Example

Reinforcement learning control of generator output to prevent cascading failures

Simulations:
o N-1 contingency without control (blackout)
o N-1 contingency with RL control

o N-1-1 contingency with RL control

Reinforcement learning algorithm
successfully learns to avert
blackout conditions in both the
N-1 and N-1-1 conditions tested

--1

o Q-Learning algorithm controls the outputs of three
generators on the IEEE 118-bus test system

o Simulate tripping of an overloaded line

Power Network

uoneX3

Reinforcement
Learning Block

S. Zarrabian, R. Belkacemi, and A. A. Babalola, “Reinforcement Learning Approach for Congestion Management and
Cascading Failure Prevention with Experimental Application,” Electr. Power Syst. Res., vol. 141, pp. 179-190, 2016.



9 ‘ Al for Controls Applications

Deep Reinforcement Learning for Emergency Scenarios

-

El

Ip

B’

o Al can improve grid resiliency during extreme events by providing rapid controls such as dynamic generator brake and
under-voltage load shedding

1. Prepare study cases and configuration files

-  ———— ———— N
L !
E [ 2.Initialize the power system simulation .
: ! module :
1
| . ;
- 3. Create an instance of PowerDynSimEnv ]l :
. ° ] . .
Deep Reinforcement learning | R R
. ! C w !
algorithm successfully learns the | 2 — = |
. : . 4. Run power system simulation for one ®
dynamic generator brake task as : interaction step_nextStepDynSim(*) 3 !
| X —
well as the under-voltage load Update |!]| Actiom b peEmObuseatangT) S, |
config. . | applyAction(*) Reward getReward(*) 3 :
shedding task, outperforming when || — :
conventional methods R E 5. Conduct RL training in RL module, multiple :
I algorithms are available, including Algorithm 1 :
1 1
| [ _No .. |
1 ]
| |Reset Sim. Env. YES )
! |reset(*) :
: |
. . —— !
v

—{ 6. Test the trained RL model(s) for grid control ]

Q. Huang, R. Huang, W. Hao, J. Tan, R. Fan, and H. Zhenyu, “Adaptive Power System Emergency Control Using Deep Reinforcement Learning,” IEEE Transacation Smart Grid, 2019.




91 ‘ Al for Protection Applications

Resilient Protection Using Al-based Relays (proposed approach)

o Algorithm on the relay learns correct settings based on measured values, with a backup to predict values in the case of
communications failure. This will allow the relay to continue to function during resiliency events

Al-based, adaptive relay
dynamically sets relay
parameters and maintains
control during
communication failure

Maps real-time measurements
(or predictions) to relay settings

Irradiance training data

Use measured values under normal conditions and switch to
predicted values during communication failure event

Trained to predicted solar
irradiance in the case of
communications failure




92 ‘ Al for Controls and Protection Applications
Ongoing Challenges and Current Research Areas

© How do we add explainability to controls decisions made by AI?
> Non-blackbox Al
° Physics-based Al

o How do we quantity the uncertainty inherent in Al-based decisions?

o Can the computational burden of Al controls be distributed?
> Edge/Fog Computing

Thousands
jJauiaju| / 8109

Reliable Connectivity Location Awareness

© What happens to Al controls in a loss-of-communication event? Computing Power Mobilty Support
> Non-centralized (distributed) Al controls Data Longevity Geo distribution
Data Storage Responsive

Reliability Interactive

Latency Delay Jitter

yodsues) |

'

1]

®

=2

0 =
€23
9 =
=0 £
@ 3
®

wn

A. Yousefpour et al., “All One Needs to Know About Fog Computing and Related Edge
Computing Paradigms: A Complete Survey,” J. Syst. Archit., vol. 98, pp. 289—-330, Sep. 2019.
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o5 | Artificial Intelligence for Power System Model Calibration @®

o To provide more technical insight into Al applied to power systems problems, this section goes through an
example, including the design of the problem, Al workflow, data needs, and some of the technical 1ssues.

> Slides include some questions that should be asked in each stage of a project

o Example from “Physics-Based Data-Driven Grid Modeling to Accelerate Accurate PV Integration” Project

° Ingest data from AMI, SCADA, uPMU, etc. and use data analytics and machine learning methods to estimate system
parameters (phase, meter-transformer pairing, line lengths, etc.) and do state estimation

> We are specifically focusing on the example of phase identification because of the variety of AI/ML solutions

=)
B Meter to Transformer

Physics-Based = ' S y Pairing
Models / J

High-Resolution |

Novel Algorithms ‘( Accurate //5 * u\:\/“:‘ ; \uw)

Distribution ‘\\ l\ Parameter Estimation
Data-Driven
Approach

Field Measurements

AMI, SCADA,
PMU, PV, ...

System Models . ) I\

i
&

Z
v

Phase Identification

L
) Behind-the-meter PV
Parameter Estimation

|



9% | Artificial Intelligence for Power System Model Calibration )

o Power system models are used in all aspects of utility real-time operations and planning
O But the models can be prone to errors due to manual data entry and decades of changes

o New types of sensors and measurement provide Al the ability to learn the models from Big Data

Phase Identification of the —

Electric Distribution System ‘ N
O Much of the U.S. distribution
. é .
system 1s single-phase for 9
residential customers, so it is e '

important to track which phase (A
B, or C) each customer is
connected to.

[\

b

o Physically tracking the cables to
millions of customers in the U.S. is
not feasible

Is the customer
connected to
A, B, or C?




o7 I Phase Identification Expert Knowledge

Conceptually we understand from experience and the physical design of the system, that customers
connected to the same wire (Phase A, Phase B, or Phase C) probably vary together.

Obijective: Use artificial intelligence and big data from grid edge measurements to identify the phase of
each customer

j Question: What
n expert knowledge
£ can be leveraged
Q. in formulating the
problem?

(2]

)

(%)

©

£

o

Phase C




98 ‘ Types of Al to Solve Phase ldentification Problem @)

From the previous overview, there are many types of AI/ML that could be used to solve this problem.

Solutions to the Phase Identification Task

 Learning based on the known

phases of some customers The next slides will go into the details of
each options with some appropriate

references for how that type of Al/ML was

applied to the phase identification problem

Supervised

e Clustering of customers with

Unsupervised similar responses

Physics- « Using physical characteristics of
constrained the network

Physical o Learning the best physical model
Model Fitting that represents the system

|



99 I Supervised Phase ldentification

@)

Supervised machine learning can be trained to learn characteristics to identify each customer’s phase
P g p

o For example, some portion of the customers on the feeder can be physically evaluated for their phase, and these customers are

used as the training set with known phases.

o Supervised algorithms for phase identification
¢ K-Nearest Neighbor
*  Decision Trees
*  Random Forest
* Adaboost
*  Softmax/Perceptron Classifier
* Neural Networks
* Bayesian NN
*  MC Dropout

B. Foggo and N. Yu, “A Comprehensive Evaluation of Supervised Machine Learning for the Phase Identification Problem,” World Acad. Sci. Eng. Technol. Int. J. Comput. Syst.

Accuracy

0.95

0.9

el s M Dropout

— {-Meighbor

0.8 — O-Meighbors
Trea
m— Random Forest
0.75 — Soltmax
Adaboost Tree
0.7 Meural
0.05%5 0.15% (1.2% (1.35 045 0.5% (1.6%5 LI .85

Training Portion

Eng., vol. 12, no. 6, 2018.

|
|
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91 Unsupervised Phase Identification With Clustering @

Use Unsupervised Al to identify similarities between customers with unknown or suspect labels

o Al groups all customers into clusters, based on their voltage timeseries

o After clustering, the phase of the cluster is determined by the majority of customers’ phase in the original utility
model

Customer Phase in Original Utility Model
A PhaseA [JPhaseB (QPhaseC

Assigned to Phase A Assigned to Phase B Assigned to Phase C

L. Blakely, M. J. Reno, and W. Feng, “Spectral Clustering for Customer Phase Identification Using AMI Voltage Timeseries,” Power and Energy Conference at Illinois, 2019.



9 ‘ Physics-Constrained Al for Phase Identification )

|

Certain physical constraints can be included in the AI/ML algorithms.

o For example, customers on the same single-phase transformer must be on the same phase
o This can increase accuracy and speed training, although confidence in the constraints must be high
Distribution
Step 1. collect
network
data from smart = i
connectivity
NIEIERRaH information
SCADA system
4
v
Step 2: normalize
C C, C, customer voltage time Generate must-
1 series and extract top link constraints
@ @ @ principal components

A 4

Step 3: use constrained
k-means clustering to |
group customers

’

| When convergence is reached | Step 4: identify the

* * + ¢ ¢ ¢ phase connectivity of

phase b || phase a || phase ¢ each cluster

When all measurements
are assigned to a cluster

I phase b ” phase a H phase ¢ |

E
References: ‘

1) F. Olivier, A. Sutera, P. Geurts, R. Fonteneau, and D. Ernst, “Phase Identification of Smart Meters by Clustering Voltage Measurements,” Power Syst. Comput. Conf. PSCC,
2018.

2) W. Wang, N. Yu, B. Foggo, J. Davis, and J. Li, “Phase Identification in Electric Power Distribution Systems by Clustering of Smart Meter Data,” in 2016 15th IEEE
International Conference on Machine Learning and Applications (ICMLA), 2016, pp. 259-265




10 ‘ Phase Identification with Physical Model Fitting

4698
120 121 122 123 124 125

Known power system models can be applied to the problem to
determine which physical model is better.

14.4

14.3
V_A

14.2

o For example, distribution system state estimation can be used to test
different phase connection and see which state estimation from the
models best represent the system measurements.

14.1

14.5

o In the figure, regression fit is used to determine the phase connections

14.4
1

V_B
14.3
1

14.2
1

14.1
1

143 144

14.2
V_C

141

14.0

T T T T T T
120 121 122 123 124 125

References: 867

1) T. A. Short, "Advanced Metering for Phase Identification, Transformer Identification, and Secondary Modeling," in IEEE Transactions on Smart Grid, 2013.

2) M. H. F. Wen, R. Arghandeh, A. von Meier, K. Poolla and V. O. K. Li, "Phase identification in distribution networks with micro-synchrophasors,” 2015 IEEE Power & Energy
Society General Meeting, 2015.



103‘ Phase ldentification Data Decisions @)

Since AI/ML is data driven, it is very important to consider how the data is handled.

o Phase Identification Algorithms Input Data Decisions Question: What

kind of data
sources are
available?

> What type of data is required (voltage, power, PMU, substation, customer information)?
> What is the appropriate time-step resolution for the data?
> Should the data be normalized (or some other transformation) beforehand?

> Are known classification required for training?
o What 1s the best input representation?
o Data must be partitioned into sets for training versus validation

o Data partitioning (sampling) between training, validation, and testing can sometimes drastically effect
results

Question: How did
you separate the

1. Feature extraction/engineering 2. Feature relevance 3. Multiple testing _g training and the
‘ i ?
. s . (e » » | z testing data?
v
—>1 3.45 | —> 0 | ; l 5
Decision about o
: J o | selected features | &

Scalable filtered feature extraction




104‘ Phase lIdentification Data Issues

Some types of Al algorithms struggle with missing data.

o Depending on the type of sensors and communication network, missing data for single

time-steps or long periods can be common.

° Time series methods (correlations or RNN require data for every timestep, otherwise the
customer cannot be classified for that period

> State or model-based Al algorithms require data from all meters, otherwise that timestep cannot

be used in the algorithm

1.03

1.025

1.02

1.015

Voltage

0.995

0.99

0.985

1.01

1.005 5%

T T T

Two Phase A Customers

T T T

T

Two Phase B Customers

Phase A -

=—Phase A -

Phase B -
Phase B -

#=* Phase C -

==+ Phase C -

Customer 1
Customer 2
Customer 3
Customer 4
Customer §
Customer 6

..... ’_
........... 1.5
'.,:’ /_‘
W wed 't
TR RARSTE
v : 5 :
e Two Phase C Customers S Sl WK I U
L . . g
| | | | | | | |
950 960 970 980 990 1000 1010 1020

Time (1 tick = 15 min)

Question: How
does the algorithm
handle missing or
bad data?

T '



os| Phase ldentification Data Issues

@)

Example of feature engineering for phase identification using ensemble spectral clustering

Phase Identification Data Representation Process:

1. Try raw, unprocessed, measured voltages

2. Try normalized, measured voltages

There is significant improvement with the normalized data versus
unprocessed data

However, performance was still unsatisfactory
3. Apply expert knowledge to refine data representation
4. Try normalized voltage difference representation

T'his data representation is critical to achieving success
with this methodology. 1t is a significant improvement over the
other two representations

Other Possible Data Representations for

Phase Identification:
o Pourier (or wavelet) transform

O Statistical features
o Statistical features with pairs of profiles
o0 Add other data streams

> Power

> Topology information
> PMU data



06 I Selection of Al Algorithm

Algorithm Selection Considerations:
o Desired outcome

o Characteristics of the data and the amount of data available

o What physical constraints are there and how could those be incorporated into different algorithms?

o Algorithm scalability (O(n) vs O(n?)) and scalability relative to the update rate

Question: Why did

you select that
type of Al for this
problem?

Power-Based
Phase
Identification

Substation

Voltage Per
Phase Data

1. Method 1

Yes No

Power-Based
Ph . .
o The characteristics of the data
[ ML available guides the algorithm

selection

Question: Is it
possible to include
any physical
constraints into
the AlI?

€

|



107‘ Phase Identification Accuracy Evaluation

Accuracy Evaluation Considerations

o Determine the appropriate metrics of success for a task

o Confusion matrices can help identify the difference between false positives and
false negatives

° Ensure that the algorithm 1s not making the model worse by classifying customers on the
wrong phase that were on the right phase originally

> Precision, Sensitivity, Selectivity, and Accuracy

o To evaluate certain Al algorithms and situations, Monte Carlo simulations or
multiple folds are required to obtain a range of accuracy

> For phase identification does it matter which customers are labeled incorrectly in the
model?

° Are there random factors involved (measurement noise in the voltage data)?

> Some algorithms (neural networks, k-means, . . . ) are sensitive to randomly initialized
parameters, potentially resulting in different results each time

Question: What
statistics are you
using to measure
accuracy?

C
3

A B
- A 295 6
3
2 B 11 289
c 1 8

Question: What is
the range of
accuracies seen
from the multiple
folds or Monte
Carlo?

|
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Future Research Directions

Many innovations in Al and machine learning have not yet been applied to the
power systems domain

> As improvements and breakthroughs happen in other domains, those concepts can be adjusted and
applied to solve power systems problems

° Similarly, lessons learned from other domains can be used to avoid similar situations

————————— — ——— —— ————————— | j— ————— ——— — — — — —— — —— — —

» Image Processing

» Recognition
» Captioning
» Generation

» Style Transfer
» Natural Language Processing

detection
scores

> Translation

=T i boundinT
boxes

|

|

|

|

|

|

|

|

|

|

|

captions | |

- :

|

|

|

» Summarization !
> Generation :
|

» Autonomous Vehicles 2 ]
» Game The ory region detection network localization and captioning network

X. Liu, Q. Xu, and N. Wang, “A Survey on Deep Neural Network-based Image Captioning,” Vis.
Comput., vol. 35, no. 3, pp. 445-470, Mar. 2019.



1; Future Research Directions @)

High || Integration of Physics-based Constraints into Al
o
|l 3 - Leverage existing knowledge (physical laws, power flow,
] . .
% 3 Theory-guided etc) in Al-based algorithms
c . . . . .
2 § Data Science Models - Achieve more accurate results and faster training
& @
= <
@ - ) ) . .
3 - SNL LLDRD — “Integrating Physics Knowledge in Multi-Sensor
9 Machine 1 earning Models”
= Real-world
Data Science Models action
Low N
Low Use of Data Highr
,_A. Kgr-pat.ne et al., “Theory-guided Data Science: A New Paradigm for
Scientific Discovery from Data,” IEEE Trans. Knowl. Data Eng., vol. 29, no. Black BOX

10, pp. 2318-2331, 2017.

Agent ‘

Explainable Al and Uncertainty Quantification
- Understand why a particular prediction/decision was given
- Understand the error bounds on predictions/decisions

- SNL LDRD on “Opening the ‘Black Box’: An Experimentally-
Validated Explainable Machine L earning Framework”

Input Data
(Environment, Rewards)



" | Future Research Directions

1

00

Reliable Connectivity
Computing Power
Data Longevity

Data Storage
Reliability
Latency

JouIBju| / B

A. Yousefpour et al., “All One Needs to Know About Fog Computing and Related Edge

Location Awareness
Mobility Support =
Geo distribution

Distributed, Al-based Controls using Fog Computing
- Create resilient systems in the event of communication loss
Accelerate systems with low latency because processing

Responsie happens physically close to sensors

Interactive
Delay Jitter

- SNL LLDRD — “HEDGES: High-Security Edge Computing for

Smart Sensor Systems”

SN

Generative Adversarial Networks (GAN) for Data
Augmentation to Classify Liver Lesions

Computing Paradigms: A Complete Survey,” J. Syst. Archit., vol. 98, pp. 289-330, Sep. 2019.

Semi-Supervised, Few-Shot Learning, or
Synthetically-Generated Training Data .

'
sl D Classify liver
data — lesions

augmentations CNN

Find the
optimal group i

For increasing
size of
augmentations

Learn with few or no examples of critical events
Generate realistic new data from existing samples

For increasing
size of
augmentations

11 ; ; ; j=(1,..,m
SNL LDRD - Semz—‘y%peryl‘fed B@/&S‘Zﬂﬂ LOW—SbOZ_ M. Frid-Adar, |. Diamant, E. Klang, M. Amitai, J. Goldberger, ajn( H. ()Breenspan, “GAN-based
. . . . . Synthetic Medical Image Augmentation for Increased CNN Performance in Liver Lesion
L earning for Explosive Device Characterization”

Classification,” Neurocomputing, vol. 321, pp. 321-331, 2018




1121 Conclusions

o There are many promising applications of AI/ML in power systems.

o It 1s an exciting time to be at this intersection — new algorithms, large datasets, computing power

o There are many challenging problems yet to be solved with some fascinating future
research directions in ML for:
° Integration of Physics-based Constraints into Al
> Explainable Al and Uncertainty Quantification
° Distributed Al-based Controls using Fog Computing

° Semi-supervised, Few-shot learning, or Synthetically Generated Training Data
O Best results require integration between ML experts and power system experts

o See references included throughout the presentation for further reading.
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