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2 Course Outline

1. Introduction to Artificial Intelligence and Machine Learning (Ray Byrne)

2. Machine Learning Overview (David Stracuzzi)

3. Machine Learning Approaches and Data Considerations (Warren Davis)

4. Optimization with Application to Machine Learning and Power Systems (JP Watson)

5. Integrating Artificial Intelligence/Machine Learning into Power Systems Applications (Matt
Reno/Logan Blakely)

6. Example: Phase Identification (Matt Reno/Logan Blakely)

7. Future Research Directions and Conclusions
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4  Why is Artificial Intelligence a Hot Topic?

Examples of Successful Artificial Intelligence (AI) Applications:

Self-driving cars, lane
departure detection, etc.

cogito
Conversation optimization

amazon

Southwest
Ra pid Rewa rds

Credit card fraud detection

Customer interaction
optimization (travel, etc.)

amazon alexa

Personal assistants

_
N1/4. )0 H N PAU (

Music Existing client interactions -
recommendations luxury travel concierge

Product recommendations Product recommendations

nest
Thermostat control

1

R.L. Adams, "10 Powerful Examples Of Artificial Intelligence In Use Today," Forbes, www.forbes.com.



5 What is Al? — Federal Perspective

"The term 'artificial intelligence' means the full extent of Federal investments in AI, to include: R&D of core AI techniques

and technologies; AI prototype systems; application and adaptation of AI techniques; architectural and systems support for

AI; and cyberinfrastructure, data sets, and standards for AI"

— Presidential Executive Order

"The research priorities outlined in this AI R&D Strategic Plan focus on areas that industry is unlikely to address on their

own, and thus, areas that are most likely to benefit from Federal investment. These priorities cut across all of AI to include

needs common to the AI sub-fields of perception, automated reasoning/planning, cognitive systems, machine learning,

natural language processing, robotics, and related fields. Because of the breadth of AI, these priorities span the entire field,
rather than only focusing on individual research challenges specific to each sub-domain. To implement the plan, detailed

roadmaps should be developed that address the capability gaps consistent with the plan."

- National AI Research and Development Strategic Plan (pg5)

https://www.whitehouse.gov/presidential-actions/executive-order-maintaining-american-leadership-artificial-intelligence/

https://www.whitehouse.gov/wp-content/uploads/2019/06/National-AI-Research-and-Development-Strategic-Plan-2019-Update-June-2019.pdf



What is Al? — DOE Perspective from the Artificial Intelligence &
6

Technology Office

"Artificial Intelligence has the power to literally change the world we live in by tackling some of the biggest problems facing
humanity — from improving our environment, to advancing our understanding of the cosmos; from increasing cyber security

to improving crop production, . . ."

—Rick Perry

"Artificial Intelligence or AI is a new way of thinking, of discovering, of dreaming. AI reimagines computer programming

to mirror human reasoning. It gives us the power to search through vast datasets to discover new patterns and hidden

correlations to solve deeper mysteries to see future horizons."

— Mindy Overbaugh (DOE)

"It's the process of trying to make computer act intelligent, make them act like humans."
-Kathy Yelick (Berkeley Lab)

'Artificial intelligence is a way to take our ability to reason and put it into a more automated
format in a computing system.

— Conrad James (SNL)

https://www.energy.gov/science-innovation/artificial-intelligence-and-technology-office



7 Families of Al Techniques
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Huang Ling-fang, "Artificial intelligence," 2010 The 2nd International Conference on Computer and Automation Engineering (ICCAE), Singapore, 2010, pp. 575-578.



8  Al versus Machine Learning

Machine learning is considered a subset of artificial intelligence

Artificial Intelligence: a branch of computer science which studies building machines capable of
intelligent behavior

Machine Learning: a computer learns to perform a task, often without explicit instructions, by
studying a training set of examples

Artificial
Intelligence

Machine
Learning i

K. Bakshi and K. Bakshi, "Considerations for artificial intelligence and machine learning: Approaches and use cases," 2018 IEEE
Aerospace Conference, Big Sky, MT, 2018, pp. 1-9.

P. Louridas and C. Ebert, "Machine Learning," in IEEE Software, vol. 33, no. 5, pp. 110-115, Sept.-Oct. 2016.



9  Machine Learning is a Subset of Al
Tables making comparisons are often incorrect ... since machine learning is a subset of AI, everv
machine learning approach has some application to AI

1! .M111! -1111911,MERIPMF-1111
Image segmentation and classification to visually
identify manufacturing flaws

Image segmentation and classification is a key
component in Al applications (e.g., humanoid
robots, etc.)

Linear regression to predict future samples of a
time series (e.g., GDP growth)

Numerous Al applications related to prediction
(e.g., motion of images in a scene for
autonomous navigation and obstacle avoidance)

Natural language (text and voice) processing for
translation (e.g., Google translate) of business
documents

Natural language processing is required for any Al
application that involves language

Pattern recognition applied to credit card fraud
detection

Pattern recognition applied to autonomous
grasping (e.g., pick up the ball not like the
others)

Product recommendations to improve customer
experience and boost online sales

Product recommendations provided by an Al
assistant

In addition, there are many fields of AI that are not application specific and are not related to
machine learning ... examples include research on planning and cognitive architectures



10 I Machine Learning

While there are many machine learning techniques, the basic process flow is the same for all
approaches

Machine learning
process - (truth)
data is the key!

New Data

Training
Data

.
Machine
Learning
Algorithm

Model Prediction



11 I Enabling Technological Advances
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Moore's Law is Alive and Well!

Transistors per Square Millimeter by Year

-Million-fold improvement
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Moore's Law: the number of transistors on
an IC would double every few years.
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-80 bytes/punch card
133 bytes/sec

1951 - 7200 bytes/sec

1980 - 5MB, 0.625MB/sec
1990 - 400MB, 0.7MB/sec
2008 - 750GB, 64MB/sec

today - solid state drive
4TB, 500MB/sec

E. P. DeBenedictis, "It's Time to Redefine Moore's Law Again," in Computer, vol. 50, no. 2, pp. 72-75, Feb. 2017.



12 Enabling Technological Advances (continued)

Low cost, high performance sensors, platforms

GPS

LIDAR (Light Detection
and Ranging)

Image
sensors

UAVs

Graphical Processing Units (GPUs)

-17-71171-1- I-1- 1-1.-!-F-1-1---,
.",!"1-•—.111r.rfrth',16-1r,irtrirtl. to,

-1-

Application Specific Integrated Circuits (ASICs)



13  Enabling Technological Advances (continued)

Truth data for training/validation — there are a large number of datasets available for image
processing, natural language processing, and audio/speech processing
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MNIST - 70,000 handwritten Open Images Dataset - 9 Million annotated images
digits

Fashion-MNIST, 70,000
images
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The Street View House
Numbers (SVHN), 600,000

images

"25 Open Datasets for Deep Learning Every Data Scientist Must Work With",
https://www.analyticsvidhya.com/blog/2018/03/comprehensive-collection-deep-learning-datasets/



14 A Brief History of Al — The Turing Test
Proposed by Alan Touring in 1950

Three players
• A — computing machine

• B — human being

• C — interrogator

All communication is through a textual device
(e.g., keyboard)

Can the interrogator identify the human and
computer?

Turing predicted that a computer could convince
—33% of the judges after 5 minutes of
questioning by the year 2000

June 2014, A chatbot called Eugene Goostman,
which simulates a 13-year-old Ukrainian boy,
convinced 30% of the judges

A - computer

B - human

f4"a, 

AtA
C - interrogator

S. Guccione and G. Tamburrini, "Turing's Test Revisited," Proceedings of the 1988 IEEE International Conference on
Systems, Man, and Cybernetics, Beijing, China, 1988, pp. 38-41.



1 5 1 A Brief History of Al — the Dartmouth Workshop

The term "artificial intelligence" was first coined by John McCarthy, Marvin
Minsky, Nathaniel Rochester, and Claude Shannon in 1956

They proposed a summer workshop on artificial intelligence at Dartmouth
College

Topics included:
• Automatic Computers — "If a machine can do a job, then an automatic calculator can be programmed to

simulate the machine. The speeds and memory capacities of present computers may be sufficient to
simulate many of the higher functions of the human brain, but the major obstacle is not the lack of
machine capacity, but our inability to write programs taking full advantage of what we have."

• How Can a Computer be Programmed to Use a Language — "It may be speculated that a large part of
human thought consists of manipulating words according to rules of reasoning and rules of conjecture.
From this point of view, forming a generalization consists of admitting a new word and some rules whereby
sentences containing it imply and are implied by others. This idea has never been very precisely formulated
nor have examples been worked out."

• Neuron Nets —"How can a set of (hypothetical) neurons be arranged so as to form concepts.
Considerable theoretical and experimental work has been done on this problem ..."

• Theory of the Size of Calculation — you have to understand the size of the calculation to measure the
efficiency of an algorithm

• Self Improvement — a truly intelligent machine will carry out self-improvement
• Abstractions — machine methods of forming abstractions from sensory and other data
• Randomness and Creativity — conjectured that creative thinking involves some randomness

J. McCarthy, M.L. Minsky, Nathaniel Rochester, and C.E. Shannon, "A proposal for the Dartmouth summer research project
on artificial intelligence", submitted to the Rockefeller Foundation, August 31, 1955.



1 6 A Brief History of Al - Timeline

Al Winter: period of significantly reduced research funding. One
cause was outlandish claims that were impossible to meet.

1950
Alan Turing proposes

"Turing Test"

1958
LISP

developed

L
D 

1956
artmouth
Workshop

L 1965
First Expert
System

2015
Google DeepMind's
AlphaGo beats
human champion

L 1974-80
Al Winter

Funding Cuts

1997
IBM's Deep
Blue defeats

Garry
Kasparov

-2006
Al for image
processing
takes off

2011
IBM's Watson
beats two
legendary
humans at
Jeopardy

1987-931981 2008 2014
First Al Winter Google's speech Chatbot Eugene

Commercial Funding Cuts recognition app Goostman passes
Expert System on iPhone "Turing Test"

SIRI was spun out of the DARPA funded CALO (Cognitive
Assistant that Learns and Organizes) project, 2003-2008.

2011
Siri released with

iPhone 4S



1 7 Research in Machine Learning Applied to Energy Systems
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A. Mosavi, M. Salimi, S. F. Ardabili, T. Rabczuk, S. Shamshirband, and A. R. Varkonyi-Koczy, "State of the Art of Machine

Learning Models in Energy Systems, a Systematic Review," Energies, vol. 12, no. 7, Apr. 2019.



18 1 Limitations of Machine Learning

Performance of a ML algorithm can be very good if the characteristics of the training data match the
observed data

If the characteristics of the data change over time, and this is not captured in the training data, the
performance of the ML algorithm can vary widely

W
Training
data

Characteristics
change



19 I Limitations of Machine Learning

For some problems, there is a known non-machine learning solution that is efficient, elegant, and
robust

Is machine learning the best fit for my problem?

Wow, I applied
machine learning

to solve my
problem! I



20 Course Outline

1. Introduction to Artificial Intelligence and Machine Learning (Ray Byrne)

2. Machine Learning Overview (David Stracuzzi)

3. Machine Learning Approaches and Data Considerations (Warren Davis)

4. Optimization with Application to Machine Learning and Power Systems (JP Watson)

5. Integrating Artificial Intelligence/Machine Learning into Power Systems Applications (Matt
Reno/Logan Blakely)

6. Example: Phase Identification (Matt Reno/Logan Blakely)

7. Future Research Directions and Conclusions



Machine Learning Overview

1

David J. Stracuzzi (djstrac@sandia.gov)

September 9, 2019



22 Artificial Intelligence

"The automation of
activities that we
associate with
human thinking ..."
(Bellman, 1978)

"The art of creating
machines that
perform functions
that require
intelligence when
performed by
people."
(Kurzweil, 1990)

"The study of the
computations that
make it possible to
perceive, reason,
and act."
(Winston, 1992)

Action ec,
/ Execution

Planning Et
Problem Solving

I



23 What is Machine Learning?

Machine Learning coined in 1959 by Arthur Samuel while trying to
use data to improve performance of a checkers playing program.

Samuel, A.L. (1959). Some
studies in machine learning
using the game of checkers.
IBM Journal of Research and
Development.

IBM, 1956



24 What is Machine Learning?

A computer program is said to learn from

experience F with respect to some class of

tasks T and performance measure P

if its performance at tasks in 7, as measured by P,

improves with experience .

Tom Mitchell, Machine Learning, 1997



25 Many Types of Tasks and Methods

Tasks:

Supervised vs Unsupervised

Classification

Clustering

Regre s sion

Anomaly Detection

Time Series Analysis

Policy Learning

Transfer Learning

Methods:

Decision Trees

Rule-Based Methods

Neural N etworks

Inductive Logic

Support Vector Machines

Bayesian Methods

Genetic Algorithms

Statistical Algorithms

Ensembles



26 I Example Problem: Handwriting Recognition

Task (T): Recognizing and classifying handwritten numbers within images

Performance measure (P): Percent of numbers correctly classified

Experience (E): Database of handwritten numbers with given classifications

label 0

!abet 0

label 0

labs& 0

label 1

label 1

label 1

1
label: 1

label 2

label 2

label 2

z
label 2

label 2

3
label 3

3
label 3

label 3

label 3

3
label 3

label 4

ti
label 4

label 4

label 4

label 4

label 5

5
label 5

label 5

label 5

label 5

label 6

label 6

label 6

label 6

6e
label_ 6

label 7

label 7

label 7

label 7

label 7

8
label 8

81
label 8

label 8

label 8

label 8

label 9

label. 9

ot
label 9

? 
label 9

labeL

1

1
Example adapted from Tom Mitchell, Machine Learning, 1997 Data from MNIST database, http://yann.lecun.com/exdb/mnist/



27 How Does Machine Learning Work?

Data / Experience

X = {X1 X21 ..., X In

Model

Y f(x)

Loss Function

E= g(f (xi) - Y1)

Learning Algorithm

if (setti ngs[0]. c om p areTor s")==0)
if (n am e. c om p areTor'') !=0)

name += "_";

name+- etr.getString(settings[1]);
} eLse if (setti ng [0].c om p areTor d'') == 0).1-

ff (n am e. c Gm p areTo("") !=0)
name += "_";

n am e DateLltils.formattetr.getDate(settings[ -I])

3 else if (setting [0]. c Gm p areTor d ) == 011:
if ín am e. c Gm p areTor") !=01

name += "2;

1

Parameterized Model

f (x) = 611x1 + 612x2 + •••

Predictions Et Evaluation

0 6

0.6

07

I OA

0.5

04

I 0.3
0.3

01

0

0 0000 300E-07 1006-06 150.6 200.6 2 50E-C4 5 00E-06 160E46 6.00606 6 50E06 300.6

Amu I probability al exceeding damage at>.



28 I Learning Example : Decision Trees

Task: Determine if Bill will play
tennis given weather observations

Performance Metric: Prediction
accuracy

Experience: Past observations

Outlook

/\4̀);*.) 

Humidity 44,Wind

.. . %.1-%*fa- 1-,_. tzT e:-`,
'''' 

4) o
oL

-- kso.
i

lYes NdIW *es No

Day Outlook Temperature Humidity Wind Play Tennis?

D1 Sunny Hot High Weak No

D2 Sunny Hot High Strong No

D3 Overcast Hot High Weak Yes

D4 Rain Mild High Weak Yes

D5 Rain Cool Normal Weak Yes

D6 Rain Cool Normal Strong No

D7 Overcast Cool Normal Strong Yes

D8 Sunny Mild High Weak No

D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes

D11 Sunny Mild Normal Strong Yes

D12 Overcast Mild High Strong Yes

D13 Overcast Hot Normal Weak Yes

D14 Rain Mild High Strong No

Example from Mitchell, T.M. (1997). Machine Learning.



29 I Learning Example: Data Preprocessing and Feature Engineering

- Many learning algorithms take a set or sequence of vectors as input

o Raw data needs to be encoded in this format

o For many data types, there are existing encoding conventions

Feature engineering uses domain knowledge to create these encodings

Highly manual and time consuming

Quality of learned model often dependent on feature encodings

Example: Play Tennis?

Outlook: {sunny, overcast, rain} or
{sunny, partly cloudy, mostly cloudy, cloudy, drizzle, rain, downpour} or
RGB image from TennisCam

Temperature: {hot, mild, cool} or
{hot, warm, mild, cool, cold} or
{-20F, -19F, ... , 114F, 115F} or
continuous



30 1 Learning Example: Decision Trees

General Approach:

• Split the data based on

information theory (entropy)

• Entropy measures the

distribution of positive and

negative examples in each block

• Greedy search through

attribute (feature) space

Gain = 
Entropy _ Sum of Entropies
all data after split

No, No, No,
Yes, Yes

Yes,W
Yes, Yes

Yes, Yes, No,
Yes, No

r—Tigillr OutlookD1 SunnyD2 SunnyD3 OvercastD4 RainD5 RainD6 RainD7 OvercastD8 SunnyD9 SunnyD10 Rain

a D11 Sunny

ED12 OvercastD13  Overcast

Rain

Temperature Humidity Wind Play Tennis?

Hot

Hot

High

High

Weak

Strong

No

No

Yes

Yes

Yes

No

Yes

No

Yes

Yes

Yes

Yes

Yes

No

Hot High Weak

Mild

Cool

Cool

High

Normal

Normal

Weak

Weak

Strong

Cool Normal Strong

Mild

Cool

High

Normal

Weak

Weak

Mild Normal Weak

Mild Normal Strong

Mild

Hot

High

Normal

Strong

Weak

Strong91111731.1r - miligh

G=0.247 G=0.029 G=0.152 G=0.048



31 I Learning Example: Decision Trees

(Day 15) What will happen on a sunny, cool, humid, windy day?

Many design decisions affect performance:

• Training data
(number and quality of examples)

Which variables describe the data

Splitting criterion

Binary versus multivariate splits

What to do with numeric variables

Stopping criterion

J~~~/
CT)>
ol

Humidity .Wind

(0' - %IN

4)

7 1;2.L \kso., gii1..1 ‘ 0e:-,
-%so

Yes No Yes No



32 Decision Tree Hypothesis Space

sunny, cool, high, strongm-
+

+

+

Sunny Overcast

Outlook

Rain

I

I

I

Or)
Z
0
L. i4...1

Note: Original data was in 5 dimensions. Only showing 3 here compressed into 2.

I

I
1

I



33 I Bias-Variance Trade-Off (a)

Always choose the simplest
model that can fit the data.

• Circuits (a), (b), (c) represent same
logical function

Can view gates and connections as
learnable parameters

• All things equal, (a) is a much easier
learning problem and most likely to
generalize well.

Many theoretical constructs attempt to
explicitly manipulate this trade, yet it
remains a vexing problem.

3 3 3 3 3 3 3 0
A A A A A A A A
A B C D E F G H I JK L MN O P

4 layers

15 gates

30 connections

VC < 490

(b)

CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD

A B C D E G H K L MN O

3 layers

19 gates

50 connections

VC < 798

(c)

emeeeeeeeeeeeeeeeeeeeeeeeeemeeeeeeeeemeeeeeeeeeeeeeeeeeeeiseeeee

2 layers
65 gates
320 connections
VC < 5815

•••

T) F F GHT T K T M



34 Learning Example: Image Analysis

Task: Classify pixels as tree, grass, roof, water, concrete, or boat

Performance Metric: Accuracy

Experience: Labeled pixels

RGB Color Height Labels Predictions



35 I Learning Example: Image Analysis

As we develop an application, we need to
ask:

How else might we formulate the problem?

What input variables might provide the most

information?

How good are my labels?

RGB Color Height

• What is the most appropriate knowledge

representation?

• What is the most appropriate performance metric?

• Given the task and the data, what learning

algorithms are likely to perform well?

Labels Predictions with
Color Only (78%)



36 I Evaluation

Training Data

_di.

°Training Data

I Learning
Algorithm

ash
L.

Learning Process

Validation Data

Model
Selection

r—

Test Data
_d

Parameterized
Model

Predictions

What makes evaluation hard?

• Many ways to formulate error and performance metrics

• Highly dependent on the data, task, and goals

• Extrapolation ability is difficult to evaluate

• Hard to determine if/when we are extrapolating

Performance (Loss) Metrics

• Accuracy = (TP + TN)/n

• Precision = TP / (TP+FP)

• Recall (Sensitivity) = TP / (TP+FN)
• F-score = (P*R) / (P+R)
• Confusion Matrices

• Log Loss = 71 Eiiv=1 E7=1yij x log(pi 1)

• ROC Curves: calibrate classification

thresholds
• P-R Curves: similar to ROC; lots of negatives
• Regression metrics:

• Root Mean Squared Error
• Mean Absolute Error

• R2 — variance explanation

All of these can be applied with cross validation,

random resampling, and stratification



37 I Learning Example: Time Series Application

Task: Change detection Performance Metric: No Ground Truth!!
Internal distance metrics only

Want to know, as precisely as possible,
when the signal first arrived Experience: Waveform data,

containing both signal and noise

Model the noise

Optimize fit; Models
meet at change point

Model the signal

i
LI 1

2 4 2 6 2 8 30 32 34



38 Uncertainty

Data / Experience

x = {x1, x2, ..., xn}

ilModel

Y f(x)

Loss Function

E= /+/Ertl.0 g(f (xi) - 171)

Measurement
Errors

Regu larization
Effects

Learning Algorithm

if isettings[0].c om p areTors")=Ai)
if (n am e. c om p areTor !=0)

name.= "_";

name+- etr.getString(settings[1]);
} else if (setti ng [0].c om p areTor d'') == 0}1:

if (n am e. c Gm p areTo("") !=0)
name += "_";

n am e += DateLltils.formattetr.getDate(settings[ 1 ])

else if (setb ng [0]. c Gm p areTor d ) == 0){.
if ín am e. c Gm p areTor") !=01

name += "2;

Model Form
Uncertainty

1

Parameterized Model

f (x) = 01x1+ 02x2 + •••

Inference
Errors

Predictions

—RA etmte mlhoutconsiOang
Lo*. 0414020d 444.406,

04

I 0.3
02

01

0  

0 0000 600E-07 100E-06 150.6 200.6 2 50E-C6 5 00E-06 150E46 400.6 6 50E06 600.6



39 Uncertainty Example: Seismic Onset Detection

800
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400

200
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40 Uncertainty Example: Seismic Onset Detection

Mode of
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Mode of
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41 Domain Knowledge

Data / Experience

x = {x1, x2, ••• xn

Model

Y f(xl 

Loss Function

/+/Etti= 0 g(f (xi) -

• Variable selection
• Representative data

Structural
knowledge

Learning Algorithm
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name+- etr.getString(settings[1]);
} eLse if (setti ng [0].c om p areTor d'') == 0).1-

ff (name.compareTor") !=0)
name += "_";

n am e DateLlti Is.format(etr.getDate(settings[ -I])
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42 Interactions Between Domain Theories and Machine Learning

5:13•arse measurements,
Example: Given spars
network of rainfall
sensors and doppler
radar, compute rainfall
distribution map for
entire region.

Becomes input to
hydrology simulations.

Sandoval
Bernalillo

(Event detection
Example: Given
seismograph network,
identify all onset times
and estimate relative
detection quality.

Becomes input to slowness inverslon.

-vv

3redictive Model
Induction
Example: Given URL
format rules and
known examples of

benign and malicious
links, learn to
distinguish between the
two.

https://www.facebook.com/help/cookiesPref=sitefooter

HostName Path Parameters

4rror correction
Example: Compare mod/sim results to
observations, learn an error term for the
simulation model. Error term may use
observables not included in the model.
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Surrogate models
Example: Given hig
fidelity model and
simulations, predict
physical model outputs
for given conditions.

Use learned model as di
inexpensive proxy for 

[c=:==.
d-ie high-fidelity model.41
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46 Outline

Factors in deciding upon a machine learning approach

• Classes of Machine Learning

• Supervised Learning

• Unsupervised Learning

• Semi-Supervised Learning

• Reinforcement Learning

• Information Representation

n



47 Deciding Upon a Machine Learning Approach

What problem are you trying to solve?
Predict a category

Predict a value

' Group data

' Find anomalies

' Find correlations

Optimize parameters

What data is available?
Numerical

Categorical

Images /Audio /Video

Text
o

• • •



48 I Supervised Learning

Tasks
o Regression (continuous response)
o Classification (discrete response)

- Binary (2 classes)

a Multiclass (>2 classes)

Experience (data)
o Regression: input-output pairs
o Classification: feature-label pairs

Performance measures
o Many different methods

Iris Data (subset)
Sepal
len •th

Sepal
width

Petal
len • th

Petal
width

Species

5.1 3.5 1.4 0.2

4.9 3 1.4 0.2

4.7 3.2 1.3 0.2

4.6 3.1 1.5 0.2

5 3.6 1.4 0.2

7 3.2 4.7 1.4

6.4 3.2 4.5 1.5

6.9 3.1 4.9 1.5

5.5 2.3 4 1.3

6.5 2.8 4.6 1.5

6.3 3.3 6 2.5

5.8 2.7 5.1 1.9

7.1 3 5.9 2.1

6.3 2.9 5.6 1.8

6.5 3 5.8 2.2

setosa

setosa

setosa

setosa

setosa

versicolor

versicolor

versicolor

versicolor

versicolor

virginica

virginica

virginica

virginica

virginica
I r 11 1 i

Features Label

Fisher, 1936. The use of multiple measurements in taxonomic problems. Annals of Eugenics. 7 (2): 179-188.
Anderson, 1936. The species problem in Iris. Annals of the Missouri Botanical Garden. 23 (3): 457-509.



49 I Examples of Supervised Learning

Linear Regression

Support Vector Machines

oNaïve Bayes

oDecision Trees / Random Forests

Neural Networks

k-Nearest Neighbor

petal width <

petal length > 5

YES NO

versicolor

0.8

0.6

0.4

0.2

support vectors

0.2 0.4 0.6 0.8 1 2

maximum-margin hyperplane

 ► 

,O0
z

z

maximum margin

support vectors



50 Neural Networks

Brain has neurons that communicate with other neurons

through electrical impulses.

o Approximately 100 billion in human brain

Dendrites

Connections strengthen with experience

Neural networks are mathematical models inspired by

the connectionist model of the brain

°
— °

Receptor
/ 4

k— 'Synapse



51 Artificial Neural Networks

Sepal
Length

Sepal
Width

Petal
Length

Petal
Width

Input 1

Input 2

 *1 Input 3

Input 4

32

57

\Of

.43

tanh

tanh

Connection
Weights

Hidden
Layer 1

Node 1

Hidden
Layer 1

Node 2

Hidden
Layer 1

Node 3

Hidden
Layer 1

Hidden
Layer 1

11
tanh x

tan xy

tanh x

tanh x

Hidden
Layer 2

Node 1

Hidden
Layer 2

Node 2

Hidden
Layer 2

Node 3

Hidden
Layer 2

Activation
Functions

taxi' x Setosa

tanh x
Versi-
color

tanh x Virginica

Example feed-forward neural network



52 Advanced Neural Networks

Convolutional/Deep Networks
• Convolutional networks take advantage of local dependencies

• Deep networks capitalize on the power of deeper networks to encode/represent higher level, latent features

• Deep convolutional networks revolutionized the processing of images, sounds, and video

• Applicable to other modalities

Recurrent Neural Networks
• Takes data of varying length

• Useful for temporal and sequential data (e.g., text, signal processing)

Autoencoders / Generative Adversarial Networks
• Autoencoders create compressed representations of the original data

o Useful in anomaly detection, compression, domain feedback

• Variational autoencoders can generate new data

• Generative Adversarial Networks pit two models (usually neural networks) against each other
• Generator creates new samples

o Discriminator learns to tell original samples from generated samples

o Generator and Discriminator co-evolve

o "Battle-testee generator produces high quality new samples



53 I k-Nearest Neighbor

Input: k closest instances (nearest neighbors) in feature space

Output

Regression: average values of k nearest neighbors

Classification: majority class of k nearest neighbors

kNN: example of instance-based learning
• Function only approximated locally
• Computation deferred until prediction

https://www.quora.com/How-is-the-k-nearest-neighbor-algorithm-different-from-k-means-clustering



54 I Unsupervised Learning

Tasks
o Clustering (grouping)

o Dimensionality reduction

o Anomaly detection

o Association

o Generative modeling

Experience (data)
o Instances are unlabeled

Performance measures
o Challenging due to lack of labels/known solutions

o Validation often leverages labeled data sets (labels only used in testing)

Iris Data (red=setosa,green=versicolor,blue=virginica)

Sepal.Length

-

fV

•

• L •

%Ants
.• •

1,11111

4.5 5.5 6.5 7.5

2.0 3.0 4.0

• • • •

• •

•
.•
• % •

..15/8! •
1.4 
• • 
y. •

• *II!

SepaLWldth

• g.'.:•
13.11 •

• • • ••

• ••I•••

• 4r5;83%..*

Petal.Length

1 2 3 4 5 6 7

Fisher, 1936. The use of multiple measurements in taxonomic problems. Annals of Eugenics. 7 (2): 179-188.
Anderson, 1936. The species problem in Iris. Annals of the Missouri Botanical Garden. 23 (3): 457-509.

0.5 1.5  2.5

-

_

Petal.Width



55 I K-means Clustering

Task
Group data instances by distance into K groups

Data instances are points in a multidimensional feature vector space

Standard Algorithm
1. Initialize cluster centroids randomly

2. Iterate until convergence

a) Assign each instance to the cluster whose centroid is "closest"

b) Update the centroids given the current cluster assignments

X
0 0

o
o

•
•

•

0

X ®
0 0

0 
0

Centroids (x) and cluster Assignment of instances
assignments (color) at start of iteration to cluster with closest centroid

cluster centroid =
arithmetic mean of
the points in the
cluster

Update centroids based
on new cluster assignments



56 K-means Clustering

Task

Group data instances by distance into K groups

o Data instances are points in a multidimensional feature vector space

Challenges

) What value to use for K?

O Most often chosen by the user/analyst/subject matter expert

o How to initialize the centroids?

O Random instances as centroids vs. random cluster assignments

O How to compute distances?

O Euclidean distance often used
O Often data- and problem-dependent

o When to stop iterating?
O Assignment stagnation often used
O K-means clustering is equivalent to local minimization



57 I Other Partitional Clustering Methods

K-medoids

K-means like algorithm using medoids (median values of cluster points) instead of means for assignments

Fuzzy K-means

Fuzzy set membership for observations

DBSCAN

density-based clustering with outlier detection and no predetermined number of clusters

Gaussian Mixture Models

K-means like algorithm with Gaussian distribution assumptions & probabilistic assignment

Spectral Clustering

Useful for exploiting affinities (e.g., connections, similarities), in data points, regardless of Cartesian
proximity



58 I Hierarchical Clustering

o
00 ©
Data in 2D Feature Space

Dendrogram

1

2

4

6

Clusters

Clustering Approaches

0 Agglomerative
O Merging from bottom to top

0 Divisive
O Splitting from top to bottom

Metric

Distance between data points

Linkage Criteria

Distance between sets
o Single: minimum
o Complete: maximum
o Average

1
1

I

I

1
Number of clusters I

Choose a level to cut dendrogram 1
Gan, et al., Data Clustering: Theory, Algorithms, and Applications. SIAM, 2007.



59 Semi-Supervised Learning

Tasks

Supervised Learning Tasks

Experience (data)

Small amount of labeled data

0 Mostly unlabeled data

Performance measures

Supervised Learning measures

Training model

Train a model using labeled data

o Use model to predict labels for unlabeled data

o Add (some) unlabeled data and predicted labels to labeled data

O Repeat

Co-training

Multiple classifiers working in tandem

O Requires independence between classifiers

n



60 I Reinforcement Learning

Tasks

o Take the best action based on current state (i.e., information available)

Experience (data)

O Interactions with the environment/system

o State of environment/system

Performance measures

o Maximize reward

O Minimize risk
Agent

State Reward

Environment

Action

Reinforcement Learning: State-of-the-Art. Eds. Wiering and van Otterlo, Springer-Verlag, 2012.



Information Representation is Key to Machine Learning i
61 Success

Aforementioned examples assume that the data is already in the correct form to solve the problem

Knowledge Elicitation
Gaining knowledge from Subject Matter Experts

Feature engineering / Data wrangling
, Getting the data in a form useful for answering the pertinent questions

, Often an iterative process

Feature selection
. Some features may be irrelevant

. Many algorithms are robust to this, but irrelevant features can degrade performance or cause machine learning methods to take
longer than desired

Data properties
. Are the relevant features included?

. Is there enough of the data?

, Is the data drawn from the correct distribution?

1
1

1
i

1

1



62 I Technical References

Tools

Scikit-learn

O https://scikit-learn.org/ 

PyTorch

O https://pytorch.org

Tensorflow

O https://www.tensorflow.org

Data

UCI Machine Learning Repository:

o https://archive.ics.uci.edu/ml/index.php

. Kaggle:

o https://www.kaggle.com/datasets 
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64 
What Do We Mean By "Optimization"?

Linear programming (LP)

arg min c Tx

s.t. Ax

x Qn

Classic example: Linear Assignment Problem (LAP)

arg min 11 ciixii
jeN ieN

s.t. E x, =1 Vj E N
iEN

= 1 Vi E N
jeN

xi] 0 Vi EN,jeN

"Standard" form:

arg min CT x

s.t. Ax = b

x> 0

x Qn

We generally assume that an
algebraic description of the

underlying problem is available

Popular extensions:
• Mixed-integer programming
• Non-linear programming
• Stochastic programming
• Robust optimization



65 I Machine Learning and Optimization (I)
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66 Machine Learning and Optimization (2)

OPTIMIZATION
FOR MACHINE LEARNING

InIE ; = ir • z
op.

f tette tH

SUVRIT SRA

SEBASTIAN NOWOZIN

STEPHEN J. WRIGHT

MIT Press

"The interplay between
optimization and machine
learning is one of the most
important developments in
modern computational
science. Optimization

formulations and methods
are proving to be vital in
designing algorithms to

extract essential knowledge
from huge volumes of data."

ICML l 2019
Thirty-sixth International Conference on
Machine Learning

Year (2019)  -

Help -

My Registrations

Profile -

Contact ICML

Code of Conduct

Future Meetings

Diversity & Inclusion

A word doodle of accepted papers at
@NeurIPSConf -- Learning is more than
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Many talk sessions at major machine
learning conferences would be at
home at optimization conferences
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Journal of Machine Learning Research 7 (2006) 1265-1281 Submitted 7/06 Published 7/06

The Interplay of Optimization and Machine Learning Research

Kristin P. Bennett
Department of Mathematical Sciences
Rensselaer Polytechnic Institute
Troy, NY 12018, USA

Emilio Parrado-Hernfindez

Department of Signal Processing and Communications

University Carlos III de Madrid

Leganes (Madrid), 28911, Spain

Editors: Kristin P. Bennett and Emilio Parrado-Hernández

Abstract

BENNEK RPI .EDU

EMIPAR@TSC.UC3M.ES

The fields of machine learning and mathematical programming are increasingly intertwined. Op-
timization problems lie at the heart of most machine learning approaches. The Special Topic on
Machine Learning and Large Scale Optimization examines this interplay. Machine learning re-
searchers have embraced the advances in mathematical programming allowing new types of models
to be pursued. The special topic includes models using quadratic, linear, second-order cone, semi-
definite, and semi-infinite programs. We observe that the qualities of good optimization algorithms
from the machine learning and optimization perspectives can be quite different. Mathematical pro-
gramming puts a premium on accuracy, speed, and robustness. Since generalization is the bottom
line in machine learning and training is normally done off-line, accuracy and small speed im-
provements are of little concern in machine learning. Machine learning prefers simpler algorithms
that work in reasonable computational time for specific classes of problems. Reducing machine
learning problems to well-explored mathematical programming classes with robust general pur-
pose optimization codes allows machine learning researchers to rapidly develop new techniques.
In turn, machine learning presents new challenges to mathematical programming. The special issue
include papers from two primary themes: novel machine learning models and novel optimization
approaches for existing models. Many papers blend both themes, making small changes in the
underlying core mathematical program that enable the develop of effective new algorithms.

This is even before the deep
learning revolution...

"Optimization problems lie at
the heart of most machine
learning problems"
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Stochastic gradient descent (SGD) - a now standard optimization
method - is at the center of the deep learning revolution

4#.

There is still much more that optimization can do for
machine learning, e.g.,
• Rigorous proofs of global optimality
• Basis for adversarial machine learning
• From neural net training to architecture design

Training of deep (autoencoder)
neural networks is a non-linear

optimization problem to minimize
reconstruction errors

But: SGD is a local method for solving a
non-linear optimization model

• A heuristic - not a rigorous,
complete solution method

• Absolutely no guarantee of
optimality

• Nor any indication of how far you
are from a global optimum



69 Most of Power Systems Operations and Planning is
Optimization...

Decision making in power systems looks at processes ranging from very large time constants to
near real-time:

Years, Seasons, Months, Weeks: Resource adequacy, transmission and hydro resource
planning
Days: Hydro-thermal coordination, day-ahead UC of energy and reserves, intra-day UC
Hours: intra-day look-ahead processes, dynamic economic dispatch
Minutes: Economic Dispatch (ED)
Seconds: Automatic Generation Control (AGC)

Years Months Weeks Day Real-time

• Forward Capacity Markets
• Hydro planning

• Hydro-thermal coordination
• DA M energy and resei've
• UC

• ED

Time

Every problem at the five minute and larger time scales is formulated and
solved as an optimization problem



70 ML for Power Systems Optimization:Warm Starting

The time required to solve operations problems such as commitment and dispatch can be
significantly lowered by up to 80% via "warm starting" - use historical data to fit a ML model that

predicts what are likely to be high-quality solutions for a given

Learning to Solve Large-Scale Security-Constrained Unit

Commitment Problems

Älinson S. Xavier1, Fang Qin', and Shabbir Ahmed2

Energy Systems Division, Argomm National Laboratory, Argomse, IL, USA. {rimier ,fqiu}Canl .gov

2 School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA, USA.

sahmedtisye.gatech.edu

Abstract. Security-Constrained Unit Commitment (SCUC) is a fundamental problem in power systems

and electricity markets. In practical settings, SCUC is repeatedly solved via Mixed-Integer Linear

Programming, sometimes multiple times per day, with only minor changes in input data. In this work,

we propose a number of machine learning (ML) techniques to effectively extract information from

previously solved instances in order to significantly improve the computational performance of MIP

solvers when solving similar instances in the future. Based on statistical data, we predict redundant

constraints in the formulation, good initial feasible solutions and affine subspaces where the optimal

solution is likely to lie, leading to significant reduction in problem si.e. Computational results on a

diverse set of realistic and large-scale instances show that, using the proposed techniques, SCUC can

A Distributed Framework for Solving and Benchmarking Security Constrained
Unit Commitment with Warm Start

Publisher: IEEE

4 Author(s)

26
ruil
Text \flews

Abstract

Authors

Keywords

Metrics

Yonghong Chen ; Fengyu Wang ; Yaming Ma ; Yiyun Yao View All Authors

Abstract:

This paper discusses several methods to improve commercial optimization solver performance on day

ahead security constrained unit commitment through warm start and lazy constraint settings. Data analytics

is performed to greatly improve the quality of the initial commitment solution and lazy constraint setting. A

distributed optimization framework is proposed to take advantage of the diversity from prevalent solvers

(GUROBI and CPLEX) and different warm start strategies. A systematic distribution profile based

benchmarking method is also proposed.

Published in: IEEE Transactions on Power Systems ( Early Access )

Related techniques hold even more promise in the context of
stochastic power systems operations problems, which are

significantly more difficult in practice



71 I ML for Power Systems Optimization: Scenario Construction

Historical forecasts and
corresponding actuals are fed into
ML algorithms to characterize error

distributions...

power

Ilt

-"*.emi"

power power

UB UB

0°
e2 CI

• Skeleton points

CDF of errors
applied to forecast

  Quantiles

et .C2 ClitpOillts

UB Upper Bound

.. which are
then used to
construct

probabilistic
scenarios for
operations

Day-Ahead Scenarios for Bulk Load

4,—• Expected load Actual load •—• Scenarios

4000 -

3500-

30
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10 15
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Day-Ahead Scenarios for Bulk Solar

Actua
Forecast

• Scenarios]

'J

Probabilistic scenarios form the basis for stochastic power systems
operations and planning problems - and they are provided by ML
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(Examples of) Machine Learning
for the North American Energy
Resilience Model (NAERM)

Jean-Paul Watson (jwatson@sandia.gov)

September 9, 2019



73 Resilience Quantification: Stochastic Models are Critical

ML is central to developing probabilistic models of threats - which are
critical inputs to resilience analysis

Reduced Expected Financial Consequence

Reduced Risk

Resilience of System after
Improvements

E'(C) E(C) Consequences [$]

Improvements must
cost significantly
less than E-E'

Baseline System
Resilience

QUADRENNIAL TECHNOLOGY REVIEW

AN ASSESSMENT OF ENERGY
TECHNOLOGIES AND RESEARCH
OPPORTUNITIES

S ptem ber 2015

QUADRENNIAL ENERGY REVIEW:

ENERGY TRANSMISSION, STORAGE,

AND DISTRIBUTION INFRASTRUCTURE



74 Resilience Analysis: Probabilistic Outage Scenarios

Historical transmission outage data associated Probabilistic ML models calibrated
with extreme weather events using historical outage data

CO

c\I
O

0 1 2 3 4

Number of Outages per Event (Log Scale)

Real Events

Scenarios

Derecho, June 29, 2012
Spatially distributed failures

Superstorm Sandy, Oct 30, 2012
Spatially concentrated failures

— All Linea
— Scenuio Line Outages

OO

Probabilistic outage scenarios are a pre-requisite for proactive resilience operations and investment strategies..

... and are equally applicable in planning and real-time contexts



75 ML for Accelerating National-Scale Grid Computation

Future El Case (ERGIS, from NREL)

Vokage (kV)
--- DC Line

765
500

  345 
 230-287
  100-161

-11K generators in entire system
• Includes two very large ISOs

• Difficult to solve in isolation, let alone in a
coordinated manner

• Major challenges for solving core operations
simulations such as commitment and dispatch

Significant technology development efforts
required to execute ERGIS cases in tractable

run times

Time Domain Partitioning of

Electricity Production Cost

Simulations

Clayton Barrows, Marissa Hummon,
Wesley Jones, and Elaine Hale

ML methods for accelerating
commitment and dispatch 

optimization model solves can 
potentially yield order-of-magnitude

reductions in run times 



76 I ML-Based Grid Situational Awareness and Control

Significant emerging efforts in the realm of ML for
proactive power grid operations via deep ML

From Grid Eye to Grid Mind
-A Data-driven Autonomous Grid Dispatch Robot Based on PMU Measurements

Di Shi, Ruisheng Diao, Jiajun Duan, Bei Zhang, Zhe Yu, Zhiwei Wang, Xiao Lu*,

Haifeng Li*, Chunlei Xu*, Yar

GEIRI North America (GEIRINA
*State Grid Jiangsu Electric Power (

April 15-17, 21

@ NASPI April Work G

L2RPN Challenge
- Learning to Run a Power Network throu,

Di Shi

Team: Tu Lan, Jiajun Duan, Bei Zhang, Zhiwei

Zhang, Ruisheng Diao, Yan Zan

AI & System Analytics

GEIRI North America (GEIRINA)

@PSERC Summer Workshop

July 16, 2019

•

GEIRI North America

ftiggif G
Prepare for e
smart gnat research Inehlute helps The power gnd run more eeoently and rehably

Research Areas

Global Energy Interconnection Research Institute North America (GEIRI North Graph Computing & Grid Al & System Analytics

Amenca or GEIRINAI. previously named as SGRI North Amenca inc., is a Modernization
subsidiary of GEIRI Beijing which is an institute focusing on the research and

development of cutting-edge technologies 1IX a smarter electric power grid.

GEIRI Beijing is affiliated to State Grid Corporation of China ISGCC) which is Advanced Computing & Data Smart Chips
the largast electric utility company in the world and was ranked 2nd on 2016

Fortune Global 500. 
Intelligence

Key question is whether such methods can be extended from reliability to resilience contexts,
and beyond minute-scale look-ahead

OO
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78 Power System Applications of Artificial Intelligence

Power Systems is a perfect application for Artificial Intelligence due to the complex systems and large
amounts of data. This is made possible recently due to:
Advances in computing power for real-time learning and decision making

Additions of new sensing equipment such as smart meters and PMU

New Artificial Intelligence algorithms to handle large datasets, transferable learning, and physics-based algorithms

These slides will go through several different examples of AI challenges, AI successes in Power Systems,
and future research directions, with references throughout.

The key topics are:
1, Integrating Physics-Based Constraints into AI

2. Access to Training Data for AI

3. AI for Controls and Protection Applications

Hach topic includes:
Overview — AI challenges, problem statement, and current areas where AI has been successful

2. Example Project — Specific example using AI to solve this challenge

3 Future - Ongoing challenges, current research, and continuing problems phrased as questions

4. References



79  Physics-Based Constraints in Al

Many AI/ML methods do not incorporate known physical constraints and equations.

o Given that we know many of the relationships in power systems (Ohms law, power flow equations, etc.), it is

advantageous to use the known physics equations.

o Challenges Integrating Physics-Based Constraints into AI

o Much recent work in AI uses raw data input (image pixels, etc.) and
ignores physics-based constraints

• AI/ML so far has not been designed to incorporate this type of
known information

o Areas such as power systems have large quantities of physics-based
constraints and AI should be able to use that knowledge without
starting from scratch

o Successful Integrations of Physics-Based Constraints into AI

O AI for calibrating distribution system models (phase identification,
topology parameter estimation, etc.)
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A. Karpatne et al., "Theory-guided Data Science: A New Paradigm for

Scientific Discovery from Data," IEEE Trans. Knowl. Data Eng., vol. 29, no.

10, pp. 2318-2331, 2017.



80 Physics-Based Constraints in Al — Example

Use measured data to estimate distribution system parameter and state

Ingest data from AMI, SCADA, pPMU, etc. and use data analytics and machine learning methods to estimate
system parameters (phase, meter-transformer pairing, line lengths, etc.) and do state estimation

Meter to Transformer
Pairing

Parameter Estimation

Phase Identification

Behind-the-meter PV
Parameter Estimation

Sandia 
National 

"Physics-Based Data-Driven Grid Modeling to

Laboratories Accelerate Accurate PV Integration"

iro I II e:*
.J /—Wr

VADER

"Visualization and Analytics of Distributed
Energy Resources (VADER)"



81 Al for Resilient Response

Grid Resilience and Intelligence Platform (GRIP) aggregates data, anticipates
disruptions, validates control options, and reduces recovery time from extreme events

Data Platform Layer

r* I A
4.0 r"\%0,

VADER 

Open Source
Platform
Codebase

Application Layer

GRIP

Open Source
Platform
Codebase (1a) NRECA

OM F

r ! A
41.P11=1,910%..

Extremum Virtual Existing and
seeking
(Control)

islanding
(Control)

developing
tools from X
and Google
(Analytics) ,

4►
Analytics for
situational
awareness,
anticipation,

absorption and
recovery.
(Analytics)

https://gmlc.doe.gov/sites/defaulthiles/resources/1.5.01_GRIP_Fact%20Sheet_8-30-18.pdf



82  Physics-Based Constraints in Al

Ongoing Challenges and Current Research Areas
o How do we effectively leverage recent developments in AI while still incorporating physics-based system knowledge?

0 Integration of physics-based constraints in training algorithms (like backpropagation) to train faster by limiting relationships between weights.

o What physics-based constraints can be effectively added to AI? Physics-based equations versus (possibly) incorrect topology
information?

o Can physics-based constraints help with error bounding and uncertainty quantification?

Successful integration of physical motion constraints into deep learning for robotic arm control
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0 0
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  ReLu Network n Linear Network n Physics Transformations
M. Lutter, C. Ritter, and J. Peters, "Deep Lagrangian Networks: Using Physics as Model Prior for Deep Learnine Int. Conf. Learn. Represent. ICLR, 2019.
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84  Access to Training Data for Al

Much of the recent success of AI is driven by access to large quantities of high-quality data. This is

often difficult to obtain for real-world applications

Challenges with Training Data Availability and Quality for AI

Many real-world applications have either unlabeled data, incompletely
labeled data, or few to no examples of critical event types

o How do you get labeled data for the AI to use? Manual entry?

o Some events (rare resiliency events, cyber attacks, etc.) have never occurred

How does bad data or mislabeled data impact the training and learning
algorithms?

Causes of Outages Worldwide
Cyber Attack

1.43%
Supply Shortage

Vandalism

Malfunctions
(misc)

o Successful Applications of AI with Limited Access to Training
Data

- Semi-supervised learning or transfer learning that uses some previous data
Natural

and training to apply to a new application Disasters

• Detection of incipient failures of devices like transformers

• Power system protection, including fault classification and location

11;u::11

Equipment
Fai lure

(internal cause)

Z. Bie, Y. Lin, G. Li, and Li Furong, "Battling the Extreme: A Study on the

Power System Resilience7 Proc. IEEE, vol. 105, no. 7, pp. 1253-1266.



85 I Access to Training Data for Al — Example

Neural Networks for Fault Identification and Fault Location

o Simulated using the IEEE 34-node feeder

o Separate networks for Fault Section Identification and
Fault Location

o How do we obtain training data to make this application
viable?

Training and Testing Dataset

No. Fault type Size of training dataset Size of test dataset

1 Single phase-to-ground 500 100
2 Two phase 400 100
3 Two phase-to-ground 400 100
4 Three phase 150 30

Methodology successfully identifies and locates

faults within this distribution test feeder

3 ph. 8z. zero
sequence currents

Distribution

Netw ork
11111111

DWT

Decomposition
1111111.

Feature

Extraction

WEE
lEPU

ANN Models

A. C. Adewole, R. Tzoneva, and S. Behardien, "Distribution Network Fault Section Identification and Fault
Location Using Wavelet Entropy and Neural Networks," Appl. Soft Comput., vol. 46, pp. 296-306, 2016.

H Fault Section

Identification

—III Fault Location



86 I Access to Training Data for Al

Ongoing Challenges and Current Research Areas
o How do we obtain the necessary data to train AI on these types of tasks?

o Is it possible to achieve excellent results by altering the algorithm design to use the available data?

o Can realistic data be generated for these tasks?

o Is AI/ML the correct tool to apply to this area?

Generated images enhance the accuracy
of the original classifier and human
experts concur the generated images

are excellent examples

Generative Adversarial Networks (GAN) for Data
Augmentation to Classify Liver Lesions

Generate Classic I
data

augmentations 1

)

For increasing
size of
augmentations
i=(1,...,n)

Classify liver
lesions

CNN

IFind the
optimal group i

Domino' _,_ ryi

Generate -'- 'spoil

Synthetic data

augmentations 1

Classify liver
lesions
CNN

Foe increasing
size of
augmentations

j={1 

M. Frid-Adar, I. Diamant, E. Klang, M. Amitai, J. Goldberger, and H. Greenspan, "GAN-based Synthetic Medical Image

Augmentation for Increased CNN Performance in Liver Lesion Classification," Neu rocomputing, vol. 321, pp. 321-331,2018
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88 Al for Controls Applications

Using AI for real-time controls requires processing large amounts
of data very quickly.

o Challenges with Applying AI for Controls

O Many real-time power system controls applications operate sub-second to
regulate the grid and maintain stability. Applying AI for controls applications
requires processing large amounts of data size and significant computational
effort

AI algorithms are generally black boxes, which creates issues understanding
and explaining the controls structure they have learned. Standard control
theory methods need formula representations for demonstrating stability and
stability margins

O Uncertainty Quantification — How bad could the prediction/action be?

' For controls applications, AI needs to be able to perform online learning,
otherwise it will not be able to adapt to new situations

Successful Applications of AI for Controls

Device control with reinforcement learning (generation, relays, substation)

o Smart Home/Building control with reinforcement learning (HVAC, demand
response, lighting)

O Real-time forecasting with supervised learning (renewable generation, load)

Real-world
action

Black Box
Agent 0

Input Data
(Environment, Rewards)



89 I Al for Controls Applications — Example

Reinforcement learning control of generator output to prevent cascading failures

Simulations:

o N-1 contingency without control (blackout)

o N-1 contingency with RL control

o N-1-1 contingency with RL control

Reinforcement learning algorithm

successfully learns to avert

blackout conditions in both the

N-1 and N-1-1 conditions tested

r

1(.1 F.:11

c Q-Learning algorithm controls the outputs of three
generators on the IEEE 118-bus test system

o Simulate tripping of an overloaded line

PID AVR

Governor

(Agent/
Contraet/ Prime

Mover

rn

la)

o

SG I
I 

Power Network

Reinforcement
Learning Block

Action '

 1.•Q-Learning  

S. Zarrabian, R. Belkacemi, and A. A. Babalola, "Reinforcement Learning Approach for Congestion Management and

Cascading Failure Prevention with Experimental Application," Electr. Power Syst. Res., vol. 141, pp. 179-190,2016.



90 I Al for Controls Applications

Deep Reinforcement Learning for Emergency Scenarios

o AI can improve grid resiliency during extreme events by providing rapid controls such as dynamic generator brake and
under-voltage load shedding

Deep Reinforcement learning

algorithm successfully learns the

dynamic generator brake task as

well as the under-voltage load

shedding task, outperforming

conventional methods

U pdate
config.
when
necessary

11. Prepare study cases and configuration files

2. Initialize the power system simulation
module

3. Create an instance of PowerDynSimEnv
and initiate it initStudyCase(*),

4. Run power systern simulation for one
interaction step nextStepDynSim(*)

Action
applyAction(*)

States getEnvObversations(*) (17

Reward getReward(*) tri*
3

r
a 
5. Conduct RL training in RL module, multiple
lgorithms are available, including Algorithm 1 i

I
NO

one episode finished?

Reset Sim. Env.
reset(*)

NO

YES

ls training finished?

YES

J

6. Test the trained RL model(s) for grid control

Q. Huang, R. Huang, W. Hao, J. Tan, R. Fan, and H. Zhenyu, "Adaptive Power System Emergency Control Using Deep Reinforcement Learning," IEEE Transacation Smart Grid, 2019.



91  Al for Protection Applications

Resilient Protection Using AI-based Relays (proposed approach)

o Algorithm on the relay learns correct settings based on measured values, with a backup to predict values in the case of
communications failure. This will allow the relay to continue to function during resiliency events

AI-based, adaptive relay

dynamically sets relay

parameters and maintains

control during

communication failure

Measured Power  
(on relay) 

]

Measured Irradiance
(through network) 

Irradiance training data

Recurrent
(Neural Network

Trained to predicted solar
irradiance in the case of
communications failure

Predicted
Irradiance

Maps real-time measurements
(or predictions) to relay settings

Feed-forward
Neural Network

Relay Settings

Use measured values under normal conditions and switch to
predicted values during communication failure event



92  Al for Controls and Protection Applications
Ongoing Challenges and Current Research Areas

o How do we add explainability to controls decisions made by AI?
• Non-blackbox AI

Physics-based AI

How do we quantify the uncertainty inherent in AI-based decisions?

o Can the computational burden of AI controls be distributed?
• Edge/Fog Computing

o What happens to AI controls in a loss-of-communication event?
• Non-centralized (distributed) AI controls

e,

Reliable Connectivity
Computing Power
Data Longevity
Data Storage
Reliability
Latency

Location Awareness
Mobility Support
Geo distribution

Responsive
nteractive

Delay Jitter
Devices

A. Yousefpour et al., "All One Needs to Know About Fog Computing and Related Edge
Computing Paradigms: A Complete Survey7 J. Syst. Archit., vol. 98, pp. 289-330, Sep. 2019.



93 I Al for Controls Applications — References

S. Zarrabian, R. Belkacemi, and A. A. Babalola, "Reinforcement Learning Approach for Congestion
Management and Cascading Failure Prevention with Experimental Application," Electr. Power Syst. Res.,
vol. 141, pp. 179-190,2016.

2. M. Glavic, R. Fonteneau, and D. Ernst, "Reinforcement Learning for Electric Power System Decision
and Control: Past Considerations and Perspectives," Sci. Direct, vol. 50, no. 1, pp. 6918-6927, Jul. 2017.

Q. Huang, R. Huang, W. Hao, J. Tan, R. Fan, and H. Zhenyu, 'Adaptive Power System Emergency
Control Using Deep Reinforcement Learning," IEEE Transacation Smart Grid, 2019.

4. D. Ernst, M. Glavic, and L. Wehenkel, "Power Systems Stability Control: Reinforcement Learning
Framework," IEEE Trans. Power Syst., vol. 19, no. 1, Feb. 2004.

A. Mosavi, M. Salimi, S. F. Ardabili, T. Rabczuk, S. Shamshirband, and A. R. Varkonyi-Koczy, "State of
the Art of Machine Learning Models in Energy Systems, a Systematic Review," Energies, vol. 12, no. 7,
Apr. 2019.

6. A. Yousefpour et One Needs to Know About Fog Computing and Related Edge Computing
Paradigms: A Complete Survey,"J. Syst. Archit., vol. 98, pp. 289-330, Sep. 2019.



Example: Phase Identification

-

Matthew Reno (mjreno@sandia.gov)

Logan Blakely (lblakel@sandia.gov)

September 9, 2019

,



95 I Artificial Intelligence for Power System Model Calibration

o To provide more technical insight into AI applied to power systems problems, this section goes through an
example, including the design of the problem, AI workflow, data needs, and some of the technical issues.

Slides include some questions that should be asked in each stage of a project

o Example from "Physics-Based Data-Driven Grid Modeling to Accelerate Accurate PV Integration" Project

Ingest data from AMI, SCADA, uPMU, etc. and use data analytics and machine learning methods to estimate system
parameters (phase, meter-transformer pairing, line lengths, etc.) and do state estimation

We are specifically focusing on the example of phase identification because of the variety of AI/ML solutions

Field Measurements

AMI, SCADA,

PMU, PV,

Physics-Based

Models

C&) 
Novel Algorithms

Data-Driven

Approach

High-Resolution

Accurate
Distribution

System Models

Meter to Transformer
Pairing

Parameter Estimation

Phase Identification

Behind-the-meter PV
Parameter Estimation



96 I Artificial Intelligence for Power System Model Calibration

o Power system models are used in all aspects of utility real-time operations and planning

o But the models can be prone to errors due to manual data entry and decades of changes

o New types of sensors and measurement provide AI the ability to learn the models from Big Data

Phase Identification of the
Electric Distribution System

Much of the U.S. distribution
system is single-phase for
residential customers, so it is
important to track which phase (A,
B, or C) each customer is
connected to.

Physically tracking the cables to
millions of customers in the U.S. is
not feasible

Is the customer
connected to
A, B, or ?



97 Phase Identification Expert Knowledge

Conceptually we understand from experience and the physical design of the system, that customers
connected to the same wire (Phase A, Phase B, or Phase C) probably vary together.

Objective: Use artificial intelligence and big data from grid edge measurements to identify the phase of
each customer

Cust 1 Cust 6 Cust 8

fa
a)
co

aJ

ea o o
4,

o
II II III

Time Time Time

CO
aJ
aa

Cust 3

aa
ca

CuSt 4

a)
aa
ra

Cust 9

CO o o o
II II II

-C
Q.

Time Time Time

al3
fa4-0
o

Cust 2

Lr
Time

a)
b.0

o

Cust 5

Zr

Time

aJ
ca

o

Cust 7

Lr
Time

Tr_

Phase B Connection Question: What
expert knowledge
can be leveraged
in formulating the

problem?



98 Types of Al to Solve Phase Identification Problem

From the previous overview, there are many types of AI/ML that could be used to solve this problem.

Solutions to the Phase Identification Task

Supervised • Learning based on the known
phases of some customers II

Unsupervised

Physics-
constrained

Physical
Model Fitting

I• Clustering of customers with
similar responses

• Using physical characteristics of
the network

"h)
• Learning the best physical model
that represents the system 1

The next slides will go into the details of
each options with some appropriate

references for how that type of Al/ML was
applied to the phase identification problem

1

I

1



99 Supervised Phase Identification

Supervised machine learning can be trained to learn characteristics to identify each customer's phase

o For example, some portion of the customers on the feeder can be physical/y evaluated for their phase, and these customers are
used as the training set with known phases.

o Supervised algorithms for phase identification

• K-Nearest Neighbor
0.95

• Decision Trees
0.9

• Random Forest
ff;

• Adaboost 2 0.05

• Softmax/Perceptron Classifier 0.8

• Neural Networks

• Bayesian NN

• MC Dropout
0.7

- MC Dropour
— 1-Neighbor
— 5-Neighbor5

Trne
- paridurii For4M1

Sottrpitax
Athdruout Tree

— Neural

0-05 0.15 0-25 0-35 0.45 0,55 045 0.75 0.05

Training Portion

IV!

B. Foggo and N. Yu, "A Comprehensive Evaluation of Supervised Machine Learning for the Phase Identification Problem," World Acad. Sci. Eng. Technol. Int. J. Comput. Syst.
Eng., vol. 12, no. 6, 2018.



10 I Unsupervised Phase Identification With Clustering0

Use Unsupervised AI to identify similarities between customers with unknown or suspect labels

o AI groups all customers into clusters, based on their voltage timeseries

o After clustering, the phase of the cluster is determined by the majority of customers' phase in the original utility
model

Customer Phase in Original Utility Model

A Phase A ❑ Phase B Q Phase C

Assigned to Phase A Assigned to Phase B Assigned to Phase C

L. Blakely, M. J. Reno, and W. Feng, "Spectral Clustering for Customer Phase Identification Using AMI Voltage Timeseries," Power and Energy Conference at Illinois, 2019.



io I Physics-Constrained Al for Phase Identification1
Certain physical constraints can be included in the AI/ML algorithms.
o For example, customers on the same single-phase transformer must be on the same phase

o This can increase accuracy and speed training, although confidence in the constraints must be high
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2r 3n sli
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When all measurements
are assigned to a cluster

4,  4  4,
phase b phase a phase c
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When convergence is reached

4,  4,  4,
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/ Step 1: collect
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meters and
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1
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customer voltage time
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principal components

Step 3: use constrained
k-means clustering to

group customers

4,
Step 4: identify the
phase connectivity of

each cluster

( Distribution

1 network
connectivity

\ information 

Generate must-
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References:
1) F. Olivier, A. Sutera, P. Geurts, R. Fonteneau, and D. Ernst, "Phase Identification of Smart Meters by Clustering Voltage Measurements," Power Syst. Comput. Conf. PSCC,

2018.
2) W. Wang, N. Yu, B. Foggo, J. Davis, and J. Li, "Phase Identification in Electric Power Distribution Systems by Clustering of Smart Meter Data," in 2016 15th IEEE

International Conference on Machine Learning and Applications (ICMLA), 2016, pp. 259-265



10 Phase Identification with Physical Model Fitting

Known power system models can be applied to the problem to

determine which physical model is better.

o For example, distribution system state estimation can be used to test
different phase connection and see which state estimation from the
models best represent the system measurements.

o In the figure, regression fit is used to determine the phase connections

120

References:
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1) T. A. Short, "Advanced Metering for Phase Identification, Transformer ldentification, and Secondary Modeling," in IEEE Transactions on Smart Grid, 2013.
2) M. H. F. Wen, R. Arghandeh, A. von Meier, K. Poolla and V. O. K. Li, "Phase identification in distribution networks with micro-synchrophasors," 2015 IEEE Power a Energy

Society General Meeting, 2015.



103 Phase Identification Data Decisions

Since AI/ML is data driven, it is very important to consider how the data is handled.

o Phase Identification Algorithms Input Data Decisions

o What type of data is required (voltage, power, PMU, substation, customer information)?

o What is the appropriate time-step resolution for the data?

o Should the data be normalized (or some other transformation) beforehand?

o Are known classification required for training?

o What is the best input representation?

o Data must be partitioned into sets for training versus validation

Data partitioning (sampling) between training, validation, and testing can sometimes drastically effect
results

. Feature extraction/engineering

Mean

3A5

2. Feature relevance

Mean

pl

3. Multiple testing

p

Decision about
selected features

Question: What
kind of data
sources are
available?

Question: How did
you separate the
training and the
testing data?

Scalable filtered feature extraction



104 I Phase Identification Data Issues

Some types of AI algorithms struggle with missing data.

Depending on the type of sensors and communication network, missing data for single
time-steps or long periods can be common.

Time series methods (correlations or RNN require data for every timestep, otherwise the
customer cannot be classified for that period

State or model-based AI algorithms require data from all meters, otherwise that timestep cannot
be used in the algorithm
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105 I Phase Identification Data Issues

Example of feature engineering for phase identification using ensemble spectral clustering

Phase Identification Data Representation Process:

Try raw, unprocessed, measured voltages

2,. Try normalized, measured voltages

There is signOcant improvement with the normalked data versus
unprocessed data

However, peormance was still unsatisfactory

3. Apply expert knowledge to refine data representation

4. Try normalized voltage difference representation

This data representation is critical to achieving success
with this methodology. It is a signfficant improvement over the
other two representations

Other Possible Data Representations for

Phase Identification:
o Fourier (or wavelet) transform

o Statistical features

o Statistical features with pairs of profiles

o Add other data streams

o Power

o Topology information

O PMU data
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Algorithm Selection Considerations:

o Desired outcome

o Characteristics of the data and the amount of data available

o What physical constraints are there and how could those be incorporated into different algorithms?

o Algorithm scalability (O(n) vs O(n2)) and scalability relative to the update rate

Question: Why did
you select that

type of Al for this
problem?

Power-Based
Phase

Identification
1. Method 2

Power-Based
Phase

Identification

1. Method 1

The characteristics of the data
available guides the algorithm

selection

Question: Is it
possible to include

any physical
constraints into

the Al?
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Accuracy Evaluation Considerations

o Determine the appropriate metrics of success for a task

o Confusion matrices can help identify the difference between false positives and
false negatives

O Ensure that the algorithm is not making the model worse by classifying customers on the
wrong phase that were on the right phase originally

o Precision, Sensitivity, Selectivity, and Accuracy

o To evaluate certain AI algorithms and situations, Monte Carlo simulations or
multiple folds are required to obtain a range of accuracy

- For phase identification does it matter which customers are labeled incorrectly in the
model?

. Are there random factors involved (measurement noise in the voltage data)?

o Some algorithms (neural networks, k-means, . . . ) are sensitive to randomly initialized
parameters, potentially resulting in different results each time

Question: What
statistics are you
using to measure

accuracy?

A

B

C

Predicted

A B C

295 6 3

11 289 4

1 8 300

Question: What is
the range of

accuracies seen
from the multiple
folds or Monte

Carlo?
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I Future Research Directions

Many innovations in AI and machine
power systems domain

As improvements and breakthroughs happen
applied to solve power systems problems

Similarly, lessons learned from other domains

➢ Image Processing
➢ Recognition
➢ Captioning

➢ Generation
➢ Style Transfer

➢ Natural Language Processing

>. Translation
➢ Summarization

➢ Generation

➢ Autonomous Vehicles

➢ Game Theory

f—

learning have not yet been applied to the

in other domains, those concepts can be adjusted and

can be used to avoid similar situations

Region Proposal Network

conv layers

rig proposak

I I

11Z%
/1"

region features

context feature
 J

detection
scores

captions

bounding
boxes

region detection network localization and captioning network

X. Liu, Q. Xu, and N. Wang, "A Survey on Deep Neural Network-based Image Captionine Vis.

Com put., vol. 35, no. 3, pp. 445-470, Mar. 2019.
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Theory-guided
Data Science Models

Data Science Models

Low Use of Data High

A. Karpatne et al., "Theory-guided Data Science: A New Paradigm for

Scientific Discovery from Data," IEEE Trans. Knowl. Data Eng., vol. 29, no.

10, pp. 2318-2331, 2017.

Integration of Physics-based Constraints into AI
- Leverage existing knowledge (physical laws, power flow,

etc) in AI-based algorithms
- Achieve more accurate results and faster training

SNL LDRD — "Integrating Physics Knowledge in Multi-S ensor
Machine Learning Models"

Explainable AI and Uncertainty Quantification
Understand why a particular prediction/decision was given
Understand the error bounds on predictions/decisions

SNL LDRD on "Opening the Wack Box': An Experimentally-

Real-world
action

Black Box
Agent

Validated  Hxplainable Machine LearningFramework" input Data
(Environment, Rewards)
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Reliable Connectivity

Computing Power

Data Longevity

Data Storage

Reliability

Latency 46,

Location Awareness

Mobility Support

Geo distribution
Responsive

Interactive

Delay Jitter
Devices

Oc„,

A. Yousefpour et al., "All One Needs to Know About Fog Computing and Related Edge

Computing Paradigms: A Complete Survey," J. Syst. Archit., vol. 98, pp. 289-330, Sep. 2019.

Distributed, AI-based Controls using Fog Computing
- Create resilient systems in the event of communication loss
- Accelerate systems with low latency because processing

happens physically close to sensors

SNL LDRD — ̀ TIHDGHS: High-Securi0 Hdge Computing for
Smart Sensor Systems"

Semi-Supervised, Few-Shot Learning, or

Synthetically-Generated Training Data
Learn with few or no examples of critical events
Generate realistic new data from existing samples

- SNL LDRD — 'Semi-Supervised Bayesian Low-Shot
Learning for  Hxplosive Device Characterkation"

Generative Adversarial Networks (GAN) for Data
Augmentation to Classify Liver Lesions

Generate Classic
data

laugmentations

For increasing

sim of

augmentations

Classify liver
lesions

1."

I Find the

optimal group i

Classify liver
lesions
CNN

For increasing

size of
augmentations

1.(1,

M. Frid-Adar, I. Diamant, E. Klang, M. Amitai, J. Goldberger, and H. Greenspan, "GAN-based

Synthetic Medical Image Augmentation for Increased CNN Performance in Liver Lesion

Classification," Neurocomputing, vol. 321, pp. 321-331, 2018
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There are many promising applications of AI/ML in power systems.
It is an exciting time to be at this intersection — new algorithms, large datasets, computing power

o There are many challenging problems yet to be solved with some fascinating future
research directions in ML for:
Integration of Physics-based Constraints into AI

o Explainable AI and Uncertainty Quantification

o Distributed AI-based Controls using Fog Computing

Best results require integration between ML experts and power system experts

Semi-supervised, Few-shot learning, or Synthetically Generated Training Data

See references included throughout the presentation for further reading.
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