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Neural Network Assisted Analysis of Bimetallic Nanocatalysts Using
X-ray Absorption Near Edge Structure Spectroscopy

Nicholas Marcella,*? Yang Liu,® Janis Timoshenko,? Erjia Guan,® Mathilde Luneau,® Tanya Shirman,¢
Anna M. Plonka,? Jessi E.S. van der Hoeven,*® Joanna Aizenberg,“®¢ Cynthia M. Friend,*® and
Anatoly I. Frenkel* ®f

X-ray absorption spectroscopy is a common method for probing the local structure of nanocatalysts. One portion of the X-
ray absorption spectrum, the X-ray absorption near edge structure (XANES) is a useful alternative to the commonly used
extended X-ray absorption fine structure (EXAFS) for probing three-dimensional geometry around each type of atomic
species, especially in those cases when the EXAFS data quality is limited by harsh reaction conditions and low metal loading.
A methodology for quantitative determination of bimetallic architectures from their XANES spectra is currently lacking. We
have developed a method, based on the artificial neural network, trained on ab-initio site-specific XANES calculations, that
enables accurate and rapid reconstruction of the structural descriptors (partial coordination numbers) from the
experimental XANES data. We demonstrate the utility of this method on the example of a series of PdAu bimetallic
nanoalloys. By validating the neural network-yielded metal-metal coordination numbers based on the XANES analysis by
previous EXAFS characterization, we obtained new results for in situ restructuring of dilute (2.6 at.% Pd in Au) PdAu

nanoparticles, driven by their gas and temperature treatments.

Introduction

In bimetallic alloys, different mixing motifs of atomic species
(homogeneous or heterogeneous, random or non-random in
the case of the former, or various types or segregation in the
case of the latter) are known to strongly influence the
electronic properties of the surface atoms and hence a
material’s catalytic, optical, magnetic, and electronic
properties.®> Furthermore, just as the size and shape® 7 and the
degree of structural order® can change dynamically in reaction
conditions, so can the compositions of nanoparticles®!! in a
complex relationship with other material properties. It is for the
latter reason that, in order to accurately measure those
dynamic changes, measurements should be taken under in situ
conditions.12 Extended X-ray absorption fine structure (EXAFS)
has long been a preferred method for studies of bimetallic
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nanocatalysts due to its ability to monitor structural changes
through the measurements of partial coordination numbers (Ca-
a Cas, Cga and Cgp in an ABix bimetallic material), bond
lengths, and their disorders in a broad range of in situ and
operando conditions.13 However, the accuracy of EXAFS analysis
in metal catalysts has limitations in many cases. For example, at
low weight loadings of the X-ray absorbing atoms and in the
presence of other factors affecting the data quality (such as low
atomic numbers of the absorbing elements, high temperatures,
strongly absorbing reactor walls, supports and/or solvents), the
low signal to noise ratio of EXAFS spectra may hinder their
deciphering by the universally used fitting methods. In addition,
particularly in nanoscale systems such as nanocatalysts, the
interfacial effects (catalyst-adsorbate, catalyst-support) result
in a significant, detectable, asymmetry in bond length
distributions which introduces artifacts in the EXAFS fitting
procedure.'#16 Another section of the X-ray absorption
coefficient spectrum, the X-ray absorption near edge structure
(XANES), has been used, until recently, only qualitatively or
semi-quantitatively for structural refinement of catalyst data
due to the lack of analytical methods for structural
refinement— such as the EXAFS equation that is used for fitting
EXAFS spectra. While a true quantitative fitting procedure has
not yet been realized, several computational approaches were
developed over the last several decades for the quantitative
modeling of the XANES spectra, using the atomic coordinates of
appropriate model structures.l’-1® This approach, however,
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Figure 1. A schematic that represents the application of NN-XANES to an A,B;., bimetallic system. Partial first coordination numbers are extracted from the XANES of
A and B absorbing components. The partial coordination numbers (A-A, A-B, B-B, and B-A) are used to deduce the average nanoparticle structure.

suffers from its model-dependency (“given the structure,
calculate the spectrum”), which limits the available XANES
fitting approaches (e.g. MXAN code and Fitlt)2% 21 to cases
dealing with only a few degrees of freedom.

Recently, we have developed two approaches to help improve
the analytical capability of XANES and EXAFS techniques for
metal nanoparticle characterization using machine learning
tools:22 Neural Network (NN) assisted EXAFS analysis (NN-
EXAFS),2224 and Neural Network assisted XANES analysis (NN-
XANES).2> NN-EXAFS can extract the partial radial distribution
functions (RDF) for AA, AB, BA and BB pairs in a AxB1x bimetallic
material, EXAFS
analysis.1> 2629 However, the consequences of harsh reaction

which is not possible by conventional
conditions are quite severe for EXAFS data quality, especially in
dilute alloys containing a few percent of one of the atoms, as
mentioned above. They limit the applicability of this method to
many types of catalytic studies.3© NN-XANES, on another hand,
can, potentially, be a preferred approach in those cases, due to
the presence of intense features in the XANES region that are
much less hampered by the consequences of thermal disorder
and low weight loading, and can be acquired relatively quickly
and with better signal-to-noise ratio than EXAFS data.
Previously, NN-XANES was developed and validated for use with
monometallic Pt,2> 31 Ag,32 33 Cu,32 and CuOy size-selective
cluster catalysts.3* Therefore, NN-XANES was demonstrated to
be a viable alternative to EXAFS for catalytic studies, but it has
never been used for bimetallic nanomaterials.

In the remainder of this article we present a NN-XANES
approach for use with bimetallic systems and demonstrate its
utility on the example of the PdAu nanoalloy, an important
catalytic system for the selective oxidation of methane, CO
oxidation, and selective alkyne hydrogenation reactions.35-40
We will describe the NN approach, present the details of the
neural network training and testing, a demonstration of the
utility of our method for in situ observation of restructuring in
dilute alloy catalysts, followed by the discussion of the results,
and, finally, conclusions.

This journal is © The Royal Society of Chemistry 20xx

Neural Network-Based Approach to XANES Data
Analysis

Here we use the same approach for the creation of a NN
method for the analysis of bimetallic nanocatalysts that was
used in our previously reported method for NN-XANES analysis
in monometallic systems.2> The main idea is to train a NN to
learn the association between the XANES spectrum and the
descriptors of the three-dimensional arrangement of nearest
neighbors to the X-ray absorbing species. For bimetallic
materials, the X-ray absorption edge of each type of atomic
species can be measured, thus providing information on the
first nearest neighbor pairs of four types: A-A, A-B, B-B, and B-
A, through the partial coordination numbers (CNs) of the first
nearest pairs are Ca-a, Ca-s, Cs.aand Cgs. Therefore, our method
for obtaining the CNs relies on two independent, “absorber-
specific”, NNs, each with “pair-specific” outputs, i.e., Ca.a, Cas
for absorber A, and Cg.aand Cg.g for absorber B (Fig. 1).

The first nearest neighbor partial CNs are particularly useful as
they are directly related to the compositional motifs of
bimetallic nanoparticles as well as the particle sizes and
shapes.13.41-44 For example, they can be used to directly extract
the Cowley short range order parameter, for characterizing
either mixing or segregation behaviors of components in the
nanoalloy from the measured CN values.!3 To discover such a
relationship and serve in a predictive capacity, the NN requires
training on large sets of labeled data (for which the relationship
between the structure — i.e. the CNs - and the spectrum is
known). The NN-based method is interpolative in nature,
employing large numbers of learnable parameters (weights and
biases), whose number (and, hence, complexity of the model)
can be increased by increasing the number of NN layers and the
number of nodes per layer. In the case of NN-XANES, which
utilizes fully connected multilayer perceptron (MLP) layers and
convolutional layers, the number of learnable parameters can
quickly reach the order of hundreds of thousands. It is therefore
required that the training data set included hundreds of
thousands of labeled spectra. Because it is very challenging to
obtain a sufficient amount of labeled experimental data for this
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Table 1. Experimental data for the validation or testing of the absorber-specific NNs

Sample Synchrotron Validation (V)

characteristics & Conditions or Testing (T)

Dataset Pd Supportor | Facility | Gas® pdv AuP

at.% Surfactant

Peptides 83 R5-Peptide APS Air \Y \Y
Peptides 67 R5-Peptide APS Air \Y \Y
Peptides 50 R5-Peptide APS Air \Y \Y
Peptides 33 R5-Peptide APS Air \Y \Y
Peptides 25 R5-Peptide APS Air \Y \Y
RCT-1 9 RCT-SiO> SSRL He T Vv
RCT-1 2 RCT-SiO> SSRL He T \
RCT-2 9 RCT-SiO> NSLSII He T -
RCT-2 RCT-SiO> NSLSII He T -
RCT-2 25 RCT-SiO> NSLSII He T -
RCT-2 25 RCT-SiO> NSLSII Ha T -
TiO2 24 TiO2 APS Air - T
TiO2 15 TiO2 APS Air T
TiO2 12 TiO2 APS Air T
TiO2 5 TiO2 APS Air - T
TiO2 4 TiO2 APS Air - T
TiO2 3 TiO2 APS Air - T

Q All data were taken at 25° C, ¥ Pd absorber-specific NN, " Au absorber-specific
NN

purpose, hence, we follow a previously developed approach?®
and train the networks on synthetic data (i.e., theoretical XANES
spectra calculated ab-initio using FEFF917 code). The use of NNs
for local structure predictions from experimental XANES data
after training on purely theoretical data has been shown to
work in our previous NN-XANES and NN-EXAFS examples, as
well as in recent applications of the NN approach to scanning
transmission electron microscopy (STEM) data and nuclear
magnetic resonance (NMR) spectroscopy.2% 34 4547 Training, for
these case, is the process by which the cost function is
minimized by refining the NN weights and biases, where the
cost function is defined as the mean squared deviation of the
NN outputs from the corresponding “target” values (i.e. true
values of CNs that are known for the training data).?2

To optimize NN hyperparameters, such as number of nodes,
layers, learning rate, regularization parameters and training
iterations, we consider also the cost function for a validation
dataset, which is analogous to the cost function for the training
dataset, but is calculated for examples that are not directly used
in the optimization of NN weights and biases. In all previous
works, the validation cost function was calculated using
theoretical examples that were excluded from the training data
set. For bimetallic NPs, however, we found that approach to be
insufficiently accurate, due to systematic differences between
theoretically simulated XANES spectra and actual experimental
data. In the new approach described here, we use an
experimental validation set, which is composed of the data for
which we have a good knowledge of the corresponding
sample’s structure via EXAFS. Information regarding the
experimental data sets are listed in Table 1. We elaborate on
the data sets, and how they were used for validation and testing
in the next section.

This journal is © The Royal Society of Chemistry 20xx
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Figure 2. Experimental and theoretical XANES of bulk Pd and Au at the A) Pd K-edge and
B) Au Ls-edge. The theoretical spectra are calculated with FEFF9 code.

Because of our reliance on theoretical training data for NN
training, the method requires that theoretical spectroscopy
codes generating such training data provide good qualitative
agreement between theory and experiment for reference
materials with known structure, such as bulk standards. In
previous NN-XANES works with monometallic (Pt, Ag or Cu)
nanoparticles,2> 32 that FEFF9 simulation
parameters, which were optimized to ensure best possible
match between the theoretical and experimental bulk Pt, Ag
and Cu spectra, remain optimal also for the simulation of XANES
spectra in their respective monometallic nanoparticles. In the

we assumed

present work, we similarly began by evaluating the agreement
between FEFF9 simulation and experimental XANES data for
bulk Pd and Au. We present the optimal calculated theoretical
Pd K-edge and Au Ls-edge XANES spectra of bulk standards and
the respective experimental counterparts in Fig. 2. The o, B, v,
and 6 symbols mark specific features in the bulk Pd XANES (Fig.
2A), and h, i, j, and k mark features in the Au XANES (Fig. 2B).
The observed type of agreement between theory and
experiment (in the energy range up to 67 eV from the Pd K-edge
and up to 76 eV from the Au L3-edge) appears to be satisfactory
for our method, as we will show in the validation and testing
sections.

We also investigate the capability for FEFF calculations, using
the optimized parameters, to capture major qualitative trends
in alloyed NPs such as the size and concentration dependence
of spectral features. To do this, we look for trends in our
experimental data sets labeled “peptides” and “RCT-1" in Table
1, which are data used later in NN validation. The XANES from
the Pd K-edge and Au L; edge is plotted in Fig. 3, labeled
“Experiment”, and described in Table S1, in the ESI,¥ where
information obtained from transmission electron microscopy
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Figure 3. Experimental and theoretical XANES of peptides and RCT-1 data sets at the A) Pd K-edge and B) Au Ls-edge. The theoretical spectra (for 83, 67, 50, 33, 25, 9,
and 2 at. % Pd) are calculated with FEFF9 code. The theoretical data in A and B were shifted vertically for clarity. Several connected circles are guides to the eye,

illustrating similar trends between the theoretical and experimental spectra.

(TEM) and compositional measurements are listed.23 Circles
mark isosbestic points present due to changes in composition
and size between the NPs. Using the experimental data as a
reference, we then constructed 7 representative NPs where the
theoretical XANES were simulated using basic structure models
constructed based on the size and composition of the
experimental systems. We approximated each particle as quasi-
spherical with an average lattice constant determined by
Vegard’s law:

)

where a. s is the effective lattice constant, xp; is the
concentration of Pd, ap,; and ay, are the lattice constants of Pd
and Au, respectively. Including a varied lattice constant in the
training set is important because XANES is sensitive not only to
the CNs, but to the nearest neighbor distance as well.32 For each
particle model, the particle-average Pd or Au XANES spectra
were calculated by averaging contributions independently
calculated for all absorbing atoms of the same species (Pd or Au)
in the model. The results of this calculation are shown in Fig. 3,
labeled “Theory”. While the theory does not reproduce the
experimental data, evident by the differences in horizontal
placement of the circles in Fig. 3 between the experiment and
the theory, we do observe similar isosbestic points in the theory
as in our experimental reference systems, which demonstrates
that theory reproduces qualitative trends in compositional and
size dependences. We will show, in the following sections, by
validation and testing of the NN, that such a contrast in XANES
produced by FEFF, due to size and composition dependence, is
adequate for NN training.

Qeff = Xpa@pq + (1 — Xpa)Auy »

After testing the feasibility of FEFF9 calculations for NN training,
we created a set of theoretical training data for which site-
specific XANES calculations at the Au L3 and Pd K edges were
made using the optimal parameters, listed in Note S1 in the
ESI.t This dataset is herein referred to as the “site-specific

This journal is © The Royal Society of Chemistry 20xx

training data”. To create the site-specific training data, two
distinct sets of atomistic models of PdAu NPs were created for
calculations at the Pd K-edge (18,538 models) and Au Ls-edge
(15,756 models). The total number of atoms, particle
composition, and effective lattice constant in these models
were variable, and thus randomly generated to ensure
maximum training data diversity. The number of atoms in each
particle model ranges from 10 to 185, the composition - from 1
to 90 % Pd, and effective lattice constant - from 3.89 to 4.08 A.
The geometric templates used to create the models are the
same as reported in Ref. 25 In addition to the bimetallic NP
models, 1200 monometallic Pd NPs and 2663 monometallic Au
NPs, also with number of atoms ranging from 10 to 185 and
effective lattice constants between 3.89 and 4.08 A were
constructed. Furthermore, to ensure that dilute Pd species are
represented, we included the Pd site calculations (2859 dilute
Pd sites) made for the 7 PdAu NP models mentioned in the last
section and shown in Fig. 3. The first partial CNs for each
absorbing atom were extracted from the atomistic coordinates
of the 41,016 structure models, resulting in site-specific training
data in the form of XANES-CNs associations. The extent of the
diversity of the final site-specific training data set is very
important for ensuring the NN is able to interpolate well. We
examine the diversity in Figs. S1-S6 in the ESI. T We can see that
the local compositions (i.e. composition of the absorbing site)
varies between 0 and 100% Pd and all possible atoms locations
are represented. To maximize diversity, and increase the size of
our training data set, we trained the NNs on linear combinations
of the site-specific training data. This approach, introduced in
our previous works,22 25 mimics the particle-averaging effect in
experimental XANES data, and takes advantage of the fact that
particle-average XANES u(E) and coordination numbers Cyy
and Cyp are linear combinations of the XANES spectra and
coordination numbers, respectively, calculated for each
absorbing site j: u(E) =X ;u;(E) /Ng, and Cy, =ZjC£A /Ng,

J. Name., 2013, 00, 1-3 | 4



Cap =3 C/{B /N,. Therefore, using a relatively small set of
XANES-CNs pairs obtained for individual sites, we can generate
large, diverse, numbers of labeled examples for the NN training
set. For NN training, we use linear combinations of 3 XANES-CNs
pairs from the pool of site-specific calculations. In that way,
approximately 1.3 x 102 possible synthetic training examples
can be generated. In the next section, we described how the
training data function was used to minimize the validation cost
function and how additional testing data were used to test the
neural network models.

Neural Network Training and Validation

Here we used an experimental validation set, and subsequent
validation cost function, to optimize the Pd and Au absorber-
specific neural networks. The experimental data selected for
the validation set came from previously published EXAFS fitting
and NN-EXAFS analysis.2? We examined R5-peptide-templated
(peptide) NPs with nominal Pd concentrations of 25, 33, 50, 67,
and 83 at. % Pd with NP sizes from 3 to 4 nm, as determined by
TEM 48, as well as dilute Pd in Au NPs with Pd concentration of
2 and 9 at. % Pd, with sizes between 5-6 nm, synthesized using
sequential reduction method, and incorporated into raspberry
colloid-templated (RCT) porous SiO, using a previously
published procedure.3”. 4950 These two data sets are referred
to as the “peptide” and “RCT-1” data sets respectively in Table
1, both of which contain Pd K-edge and Au Ls-edge
measurements for each sample. XANES spectra for the Pd K-
edge and Au L3 edge of both peptide and RCT-1 data sets are
shown in Fig. 3.

Before training, the data were pre-processed (aligned,
interpolated, normalized) as described in Note S2 in the ESI.T

1o A) Pd K-edge ”T

T

C, NN-XANES

6-
-
Pd-Pd Pd-Au
L Peptide (validation) e e
RCT-1 (test) o o
. RCT-2 (test) a a
0 6 12

C, EXAFS

For both the Pd and Au absorber-specific NNs, we use an early
stopping training method based on the cost functions shown in
Fig. S7 in the ESI.T This method ensures that the NN model,
trained on purely theoretical data, is able to generalize to
experimental data. We found that a simple convolutional neural
network (CNN) architecture provides the lowest validation loss,
where the peptide data was the validation set for the Pd NN,
and the peptide and the RCT-1 data were the validation set for
the Au NN. To ensure the stability of the models, predictions
from 10 independently trained NNs were compared in terms of
the median absolute deviation. The results of are presented in
Fig S8, in the ESI.T We see that, for both Pd and Au absorber-
specific NNs, the median absolute deviation in CN predictions is
very low, characterizing the prediction of the median CNs as
very stable. Technical details of training are also included in
Note S2 in the ESI.T The layers used in the final Pd K-edge CNN
are listed in Table S2 and the layers used in the final Au K-edge
CNN are listed in Table S3, both located in the ESI.t We also
present the entire NN architecture, as implemented in
Mathematica 12,51 in Figs S9 and S10 in the ESI.T

The resulting absorber-specific NN predictions on the
experimental validation sets (described in Table 1.) are shown
in Fig. 4 with the error bars of the absolute predictions
determined by our method described in Note S3 in the ESI.T At
the validation cost minima, the coordination number values and
relative trends obtained by using NN-XANES agree with those
obtained by conventional EXAFS fitting and NN-EXAFS (Fig. 4).
While the agreement is good, an additional testing phase was
completed, as described in the next section, in which NN
predictions were made on data that were not included in the
validation cost function.

1 B) Au L;-edge

w

C, NN-XANES

+ Au-Au Au-Pd

Pept1de (validation) e e
, RCT-1 (validation) o ©
u;L«L TiO; support (test)
0o 6 12
C, EXAFS

*

Figure 4. The XANES-derived vs. EXAFS derived first partial coordination numbers with respect to A) the Pd K-edge and B) the Au L; edge. Coordination numbers A-A are in black
and A-B are in red. In A) filled in circles are the peptide templated data (validation set), open circles are the RCT-1 data (test set), and triangles are the RCT-2 data (test set). In B)
filled in circles are the peptide templated data (validation set, open circles are the RCT-1 data (validation set), and stars are the TiO, supported data (test set).

This journal is © The Royal Society of Chemistry 20xx
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Neural Network Testing

Testing the trained NN with data that were not included in the
validation cost function is a common way to benchmark the NN
before it is applied to unknown systems. For that purpose, we
used XANES spectra for several, previously characterized PdAu
NPs (4 nm NPs with 4, 15, and 24 at. % Pd as well as 6 nm NPs
with 3, 5, and 12 at. % Pd), all of which were synthesized using
a seed-mediated colloidal synthesis method and deposited on
TiO,. This dataset, herein referred to as the “TiO;” supported NP
dataset, consisted of spectra collected at beamline 12-BM-B,
Advanced Photon Source (APS), and their analysis reported in
Ref. 23 We also use another dataset, referred to as “RCT-2”, of
Pd K-edge spectra recently measured at beamline ISS (8-1D),
National Synchrotron Light Source Il (NSLS-II), of 5-6 nm PdAu
NPs with Pd concentrations of 4, 9, and 25 at. % Pd were
synthesized using a sequential reduction method, and
incorporated into RCT SiO; using a previously published
procedure.37.49.50 The measurements of the 4% and 9% samples
were taken in situ under He, while the 25% sample was
measured under He and H,. The Pd K-edge data collected for
the 25% Pd RCT-2 NPs and its analysis results were reported in
Ref.52, while the details of XAS data collection and NN-EXAFS
analysis of the rest of the RCT-2 data are included in Note S4,
located in the ESI.T The RCT-1 and RCT-2 datasets were used to
test the Pd absorber-specific NN, while the TiO, supported data
were used to test the Au absorber-specific NN. While both the
Pd-K edge and Au Ls edge spectra were collected for the TiO;
supported dataset, we only use this data to test the Au
absorber-specific NN. The Pd-K edge data collected at beamline
12-BM-B appears to have lower energy resolution compared to
the rest of the Pd K-edge data that makes NN predictions via
XANES unstable for this dataset, see Figs. S11 and S12 in the ESI.
T Predictions made on the test data sets are plotted vs. EXAFS
derived partial coordination numbers in Fig. 4. In all cases, the
NN XANES predictions agree with the CN values, and trends,
derived from EXAFS analyses. The results are tabulated in Table
S4 in the ESI.T

Application of the NN-XANES for Detection of
Surface Restructuring in Dilute Alloys

Here we demonstrate the utility of our approach for studying
gas and temperature treatment effects on component
restructuring in dilute (2.6 at. %Pd) PdAu/RCT catalyst
(Pd2.6Aug7.4/RCT), for which conventional EXAFS analysis for the
Pd K-edge could not yield conclusive results on Pd-Pd and Pd-
Au coordination numbers. As were the other dilute Pd (in Au)
catalysts in the RCT-1 and RCT-2 data sets, Pd2.6Aus7.4/RCT was
synthesized using sequential method, and
incorporated into raspberry colloid-templated (RCT) porous

reduction

SiO, matrix using a previously published procedure.3?, 49 50 |n
our recently published work on the 4 at. % Pd PdAu/RCT
catalyst>3 and work on the 25 at. %Pd PdAu/RCT catalyst>2 we
obtained that Pd species redistribute within Au host in response
to high temperature hydrogen treatment. The in situ XANES
data (Fig. 5) were collected at room temperature under He flow

This journal is © The Royal Society of Chemistry 20xx
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Figure 5. Pd K-edge XANES spectra of the Pd,eAug;4/RCT catalyst after O, and H,
treatments and bulk Pd reference foil. The XANES data were collected at room
temperature under He.

after an initial calcination at 400° C in 20% O,/He balance for 1
hour (the O, treatment), and then collected at room
temperature under He after calcination at 400 C in 100% H, for
30 minutes (the H, treatment). More experimental details are
in Note S5 in the ESI.T Visual examination of the Pd K-edge
XANES data indicates that the local composition around Pd
changes between different regimes. For example, energy shifts
between the edge positions of the spectra, corresponding to
different treatments, and the spectrum of Pd foil reference,
reflects the changes in Pd alloying with Au. The larger is the shift
towards lower energy, the greater is expected to be the degree
of alloying between Pd and Au, consistent with the dissolution
of surface Pd into the bulk, expected under H, treatment.52 53

Quantitative NN-XANES analysis was performed using the Pd
and Au absorber-specific NNs. The result of the analysis is
presented in Table 2. We see that, after the H, treatment, the
first partial coordination numbers for Au-Au pairs are similar to
those obtained after initial O, treatment, as expected for the
majority component of the dilute alloy. In contrast, the first
coordination numbers for Pd-Pd pairs decrease after the H,
treatment from 0.17 to 0.10, consistent with partial dissolution
of Pd from sites closer to the surface into the bulk as
demonstrated in recent work for larger Pd concentrations.>3 To
determine if this change in coordination number is significant,
and not due to stochastic differences in NN training, we take the
median absolute deviation of predictions made with 10
independently trained NNs. All 10 NN models predict a decrease
in the Pd-Pd coordination number after the H; treatment, with
a median decrease of 0.070 and median absolute deviation of
0.001.
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Table 2. NN-XANES analysis of Pd, ¢Augs.4/RCT from the Pd K-edge and Au Ls-edge.

Treatment NP NP N NY NY N
Sample a
Au-Au Au-Pd Au-M Pd-Pd Pd-Au Pd-M
20% 02/He
Pd;6Aug74 @ 400C, 10.13 0.2 10.33 0.17 11.72 11.89
1hr
100% H2 @
Pd; 6Aug7.4 400C, 10.16 0.17 10.33 0.10 11.84 11.94
30 mins

QAll data were taken at 25° C under He, ¥ Pd absorber-specific NN, " Au absorber-
specific NN

Discussion

In this work, we showed that it is possible to extract the partial
coordination numbers from the XANES spectrum of bimetallic
alloys using absorber-specific neural networks. This opens the
door for various applications. Most significantly, the structural
in general,
nanocatalysts in particular, via XANES is now possible in

characterization of bimetallic nanoalloys and
materials in which EXAFS analysis is limited by signal quality. For
example, structural
conditions, particularly in dilute Pd in Au catalysts, can now be
understood with similar of detail (i.e., the partial
coordination numbers and, hence, restructuring of the catalyst

changes detected in harsh reaction

level

components that may occur under in situ conditions, can be
extracted). We provided an example of this capability, by
showing that in-situ XANES measurements can detect (and
neural network-assisted analysis can correctly recognize) the
consequences of Pd restructuring under varying conditions. The
neural network-assisted data analysis method we report
provides structural parameters with sufficient accuracy for
modeling in only seconds, therefore enabling new applications
of XANES at the beamline, such as the real-time monitoring of
NP deactivation or high throughput sample characterization.
The PdAu absorber-specific networks that we constructed can
be immediately applied to the analysis of XANES in novel PdAu
systems or used to analyze previously collected data for which
structural characterization was not originally considered, or not
possible by conventional EXAFS, due to, e.g., harsh reaction
conditions, but for which XANES data are of sufficiently good
quality.

We have demonstrated that during and after NN training,
validation, and subsequent testing with experimental data sets
from additional systems, which were measured at different
beamlines, helped us evaluate and improve robustness of NNs
trained on theoretical data. We believe that these insights will
be crucial for those using this method to analyze PdAu systems
and those who will utilize NN-XANES in general for the analysis
of other bimetallic systems. We confirmed that the trained NNs
are able to make accurate predictions on metallic PdAu data, at
the Pd K and Au L3 absorption edges, with different
compositions, particle sizes, supports, and synthesis methods.
Due to the complexity of bimetallic
materials, there was no guarantee that one general NN model

intrinsic structural

This journal is © The Royal Society of Chemistry 20xx

(for bulk PdAu alloys), as opposed to a specific NN model (for a
given PdAu nanoalloy system, i.e. in some size range and/or
composition motif),
spectrum-structure relationship in a range of NP sizes and
compositional distributions. Here we see that the general NN
model performs well in the case of metallic PdAu. We see this
clearly at the Au Lz edge, where the theoretical-experimental

would be sufficient to capture the

agreement is better, and beamline resolution effects are
relatively forgiving, compared to the Pd K edge (vide infra). As
we create more bimetallic models for different systems for
which our method can be applied, we will be able to determine
the limits of applicability of our method beyond the several NP
systems we tested it on. We also see that our training method
results in NNs that make accurate predictions, even in the face
of moderate resolution and systematic differences between
beamlines and, even without explicitly simulating these effects
in the training data. This is an important feature, especially at
the Pd-K edge (and other edges at relatively high energy), where
the energy resolution is known to suffer at some beamlines. The
most significant example is derived from the PdygAus; RCT
supported sample, which is included in datasets RCT-1 and RCT-
2, where RCT-1 was measured at the BL2-2 beamline of Stanford
Synchrotron Radiation Lightsource (SSRL) with a Si(220)
monochromator, and the RCT-2 samples was measured at the
NSLSII with a Si(111) monochromator. The Pd absorber-specific
NN predicts Pd-Pd and Pd-Au coordination numbers of 1.0+1.0
and 10.3+1.3 vs 0.8+0.8 and 10.7+0.9 for the data collected at
the SSRL and NSLSII, respectively. The predictions are in very
good agreement with each other despite some spectral
differences that are caused by the energy resolution difference
of the beamline monochromators. A comparison of the spectra
collected at the two beamlines is shown in Fig. S13 in the ESI.T
We do see a limit, though, in the Pd absorber-specific NN’s
ability to deal with low-resolution Pd-K edge data, as mentioned
in the neural network testing section. However, in that case, the
resolution was much lower than usual, as quantified by an
amplitude reduction factor of 0.70 for Pd foil that was measured
at the time of the experiment. At some limit of the resolution,
the XANES may simply loose interpretable information. On the
other hand, using specialized beamlines and secondary
analyzers, it is possible to measure XANES with high energy
resolution. The high-energy resolution fluorescence detection
(HERFD) mode of XANES measurement provides a significant
enhancement to XANES spectra,>* 5> improving its sensitivity to
the structure. In principle, a combined HERFD-NN-XANES
approach could be used to not only make superior structural
predictions, but a HERFD experimental validation set could be
used in neural network training, resulting in more accurate
predictions on non-HERFD XANES. Together with other recent
studies,’® this work further advances the potentiality of
machine learning approaches and XAFS method
characterization of unique structural
nanoparticles and their
conditions.

for
motifs in bimetallic

transformations under reaction
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Conclusions

The NN-XANES method has been developed for the extraction
of the first partial coordination numbers from the XANES of
PdAu nanocatalysts. Experimental validation was performed
with a set of well-defined PdAu NPs with sufficient EXAFS
quality for providing a priori knowledge, in combination with
another experimental testing step to benchmark the NN’s
predictive power over a range of compositions and supports.
We have demonstrated that this method provides robust
predictions of first partial coordination numbers that agree with
those derived by conventional EXAFS fitting and NN-EXAFS
methods, and we showed that the method can be used to
investigate restructuring in dilute bimetallic catalysts. One can
now extend this method to other bimetallic compositions, such
as dilute catalysts and size-selective clusters.
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