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Neural Network Assisted Analysis of Bimetallic Nanocatalysts Using 
X-ray Absorption Near Edge Structure Spectroscopy  
Nicholas Marcella,*a Yang Liu, b  Janis Timoshenko,a Erjia Guan,a Mathilde Luneau,c Tanya Shirman,d,e 

Anna M. Plonka,a Jessi E.S. van der Hoeven,c,d Joanna Aizenberg,c,d,e Cynthia M. Friend,c,d and 
Anatoly I. Frenkel* a,f 

X-ray absorption spectroscopy is a common method for probing the local structure of nanocatalysts. One portion of the X-
ray absorption spectrum, the X-ray absorption near edge structure (XANES) is a useful alternative to the commonly used 
extended X-ray absorption fine structure (EXAFS) for probing three-dimensional geometry around each type of atomic 
species, especially in those cases when the EXAFS data quality is limited by harsh reaction conditions and low metal loading. 
A methodology for quantitative determination of bimetallic architectures from their XANES spectra is currently lacking. We 
have developed a method, based on the artificial neural network, trained on ab-initio site-specific XANES calculations, that 
enables accurate and rapid reconstruction of the structural descriptors (partial coordination numbers) from the 
experimental XANES data. We demonstrate the utility of this method on the example of a series of PdAu bimetallic 
nanoalloys. By validating the neural network-yielded metal-metal coordination numbers based on the XANES analysis by 
previous EXAFS characterization, we obtained new results for in situ restructuring of dilute (2.6 at.% Pd in Au) PdAu 
nanoparticles, driven by their gas and temperature treatments. 

Introduction 
In bimetallic alloys, different mixing motifs of atomic species 
(homogeneous or heterogeneous, random or non-random in 
the case of the former, or various types or segregation in the 
case of the latter) are known to  strongly influence the 
electronic properties of the surface atoms and hence a 
material’s catalytic, optical, magnetic, and electronic 
properties.1-5 Furthermore, just as the size and shape6, 7 and the 
degree of structural order8 can change dynamically in reaction 
conditions, so can the compositions of nanoparticles9-11 in a 
complex relationship with other material properties. It is for the 
latter reason that, in order to accurately measure those 
dynamic changes, measurements should be taken under in situ 
conditions.12 Extended X-ray absorption fine structure (EXAFS) 
has long been a preferred method for studies of bimetallic 

nanocatalysts due to its ability to monitor structural changes 
through the measurements of partial coordination numbers (CA-

A, CA-B, CB-A and CB-B in an AxB1-x bimetallic material), bond 
lengths, and their disorders in a broad range of in situ and 
operando conditions.13 However, the accuracy of EXAFS analysis 
in metal catalysts has limitations in many cases. For example, at 
low weight loadings of the X-ray absorbing atoms and in the 
presence of other factors affecting the data quality (such as low 
atomic numbers of the absorbing elements, high temperatures, 
strongly absorbing reactor walls, supports and/or solvents), the 
low signal to noise ratio of EXAFS spectra may hinder their 
deciphering by the universally used fitting methods. In addition, 
particularly in nanoscale systems such as nanocatalysts, the 
interfacial effects (catalyst-adsorbate, catalyst-support) result 
in a significant, detectable, asymmetry in bond length 
distributions which introduces artifacts in the EXAFS fitting 
procedure.14-16 Another section of the X-ray absorption 
coefficient spectrum, the X-ray absorption near edge structure 
(XANES), has been used, until recently, only qualitatively or 
semi-quantitatively for structural refinement of catalyst data 
due to the lack of analytical methods for structural 
refinement— such as the EXAFS equation that is used for fitting 
EXAFS spectra. While a true quantitative fitting procedure has 
not yet been realized, several computational approaches were 
developed over the last several decades for the quantitative 
modeling of the XANES spectra, using the atomic coordinates of 
appropriate model structures.17-19 This approach, however, 
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suffers from its model-dependency (“given the structure, 
calculate the spectrum”), which limits the available XANES 
fitting approaches (e.g. MXAN code and FitIt)20, 21 to cases 
dealing with only a few degrees of freedom. 

Recently, we have developed two approaches to help improve 
the analytical capability of XANES and EXAFS techniques for 
metal nanoparticle characterization using machine learning 
tools:22 Neural Network (NN) assisted EXAFS analysis (NN-
EXAFS),22-24 and Neural Network assisted XANES analysis (NN-
XANES).25 NN-EXAFS can extract the partial radial distribution 
functions (RDF) for AA, AB, BA and BB pairs in a AxB1-x bimetallic 
material, which is not possible by conventional EXAFS 
analysis.15, 26-29 However, the consequences of harsh reaction 
conditions are quite severe for EXAFS data quality, especially in 
dilute alloys containing a few percent of one of the atoms, as 
mentioned above. They limit the applicability of this method to 
many types of catalytic studies.30 NN-XANES, on another hand, 
can, potentially, be a preferred approach in those cases, due to 
the presence of intense features in the XANES region that are 
much less hampered by the consequences of thermal disorder 
and low weight loading, and can be acquired relatively quickly 
and with better signal-to-noise ratio than EXAFS data. 
Previously, NN-XANES was developed and validated for use with 
monometallic Pt,25, 31 Ag,32, 33 Cu,32 and CuOx size-selective 
cluster catalysts.34 Therefore, NN-XANES was demonstrated to 
be a viable alternative to EXAFS for catalytic studies, but it has 
never been used for bimetallic nanomaterials.  

In the remainder of this article we present a NN-XANES 
approach for use with bimetallic systems and demonstrate its 
utility on the example of the PdAu nanoalloy, an important 
catalytic system for the selective oxidation of methane, CO 
oxidation, and selective alkyne hydrogenation reactions.35-40 
We will describe the NN approach, present the details of the 
neural network training and testing, a demonstration of the 
utility of our method for in situ observation of restructuring in 
dilute alloy catalysts,  followed by the discussion of the results, 
and, finally, conclusions. 

Neural Network-Based Approach to XANES Data 
Analysis 
Here we use the same approach for the creation of a NN 
method for the analysis of bimetallic nanocatalysts that was 
used in our previously reported method for NN-XANES analysis 
in monometallic systems.25 The main idea is to train a NN to 
learn the association between the XANES spectrum and the 
descriptors of the three-dimensional arrangement of nearest 
neighbors to the X-ray absorbing species. For bimetallic 
materials, the X-ray absorption edge of each type of atomic 
species can be measured, thus providing information on the 
first nearest neighbor pairs of four types: A-A, A-B, B-B, and B-
A, through the partial coordination numbers (CNs) of the first 
nearest pairs are CA-A, CA-B, CB-A and CB-B. Therefore, our method 
for obtaining the CNs relies on two independent, “absorber-
specific”, NNs, each with “pair-specific” outputs, i.e., CA-A, CA-B 
for absorber A, and CB-A and CB-B for absorber B (Fig. 1). 

The first nearest neighbor partial CNs are particularly useful as 
they are directly related to the compositional motifs of 
bimetallic nanoparticles as well as the particle sizes and 
shapes.13, 41-44 For example, they can be used to directly extract 
the Cowley short range order parameter, for characterizing 
either mixing or segregation behaviors of components in the 
nanoalloy from the measured CN values.13 To discover such a 
relationship and serve in a predictive capacity, the NN requires 
training on large sets of labeled data (for which the relationship 
between the structure – i.e. the CNs -  and the spectrum is 
known). The NN-based method is interpolative in nature, 
employing large numbers of learnable parameters (weights and 
biases), whose number (and, hence, complexity of the model) 
can be increased by increasing the number of NN layers and the 
number of nodes per layer. In the case of NN-XANES, which 
utilizes fully connected multilayer perceptron (MLP) layers and 
convolutional layers, the number of learnable parameters can 
quickly reach the order of hundreds of thousands. It is therefore 
required that the training data set included hundreds of 
thousands of labeled spectra. Because it is very challenging to 
obtain a sufficient amount of labeled experimental data for this 

Figure 1. A schematic that represents the application of NN-XANES to an AxB1-x bimetallic system. Partial first coordination numbers are extracted from the XANES of 
A and B absorbing components. The partial coordination numbers (A-A, A-B, B-B, and B-A) are used to deduce the average nanoparticle structure. 
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Table 1. Experimental data for the validation or testing of the absorber-specific NNs 

Ω All data were taken at 25° C,  ψ Pd absorber-specific NN, ћ Au absorber-specific 
NN 

purpose, hence, we follow a previously developed approach25   
and train the networks on synthetic data (i.e., theoretical XANES 
spectra calculated ab-initio using FEFF917 code). The use of NNs 
for local structure predictions from experimental XANES data 
after training on purely theoretical data has been shown to 
work in our previous NN-XANES and NN-EXAFS examples, as 
well as in recent applications of the NN approach to scanning 
transmission electron microscopy (STEM) data and nuclear 
magnetic resonance (NMR) spectroscopy.22, 34, 45-47 Training, for 
these case, is the process by which the cost function is 
minimized by refining the NN weights and biases, where the 
cost function is defined as the mean squared deviation of the 
NN outputs from the corresponding “target” values (i.e. true 
values of CNs that are known for the training data).22  

To optimize NN hyperparameters, such as number of nodes, 
layers, learning rate, regularization parameters and training 
iterations, we consider also the cost function for a validation 
dataset, which is analogous to the cost function for the training 
dataset, but is calculated for examples that are not directly used 
in the optimization of NN weights and biases. In all previous 
works, the validation cost function was calculated using 
theoretical examples that were excluded from the training data 
set. For bimetallic NPs, however, we found that approach to be 
insufficiently accurate, due to systematic differences between 
theoretically simulated XANES spectra and actual experimental 
data. In the new approach described here, we use an 
experimental validation set, which is composed of the data for 
which we have a good knowledge of the corresponding 
sample’s structure via EXAFS. Information regarding the 
experimental data sets are listed in Table 1. We elaborate on 
the data sets, and how they were used for validation and testing 
in the next section.  

Because of our reliance on theoretical training data for NN 
training, the method requires that theoretical spectroscopy 
codes generating such training data provide good qualitative 
agreement between theory and experiment for reference 
materials with known structure, such as bulk standards. In 
previous NN-XANES works with monometallic (Pt, Ag or Cu) 
nanoparticles,25, 32 we assumed that FEFF9 simulation 
parameters, which were optimized to ensure best possible 
match between the theoretical and experimental bulk Pt, Ag 
and Cu spectra, remain optimal also for the simulation of XANES 
spectra in their respective monometallic nanoparticles.  In the 
present work, we similarly began by evaluating the agreement 
between FEFF9 simulation and experimental XANES data for 
bulk Pd and Au. We present the optimal calculated theoretical 
Pd K-edge and Au L3-edge XANES spectra of bulk standards and 
the respective experimental counterparts in Fig. 2. The α, β, γ, 
and δ symbols mark specific features in the bulk Pd XANES (Fig. 
2A), and h, i, j, and k mark features in the Au XANES (Fig. 2B). 
The observed type of agreement between theory and 
experiment (in the energy range up to 67 eV from the Pd K-edge 
and up to 76 eV from the Au L3-edge) appears to be satisfactory 
for our method, as we will show in the validation and testing 
sections. 

We also investigate the capability for FEFF calculations, using 
the optimized parameters, to capture major qualitative trends 
in alloyed NPs such as the size and concentration dependence 
of spectral features. To do this, we look for trends in our 
experimental data sets labeled “peptides” and “RCT-1” in Table 
1, which are data used later in NN validation. The XANES from 
the Pd K-edge and Au L3 edge is plotted in Fig. 3, labeled 
“Experiment”, and described in Table S1, in the ESI,† where 
information obtained from transmission electron microscopy 

 Sample 
characteristics  

Synchrotron 
& Conditions 

Validation (V) 
or Testing (T) 

Dataset Pd  
at.% 

Support or 
Surfactant 

Facility GasΩ Pdψ Auћ 

Peptides 83 R5-Peptide APS  Air V V 
Peptides 67 R5-Peptide APS Air V V 
Peptides 50 R5-Peptide APS Air V V 
Peptides 33 R5-Peptide APS Air V V 
Peptides 25 R5-Peptide APS Air V V 

RCT-1 9 RCT-SiO2 SSRL He T V 
RCT-1 2 RCT-SiO2 SSRL He T V 
RCT-2 9 RCT-SiO2 NSLSII He T - 
RCT-2 4 RCT-SiO2 NSLSII He T - 
RCT-2 25 RCT-SiO2 NSLSII He T - 
RCT-2 25 RCT-SiO2 NSLSII H2 T - 
TiO2 24 TiO2 APS Air - T 
TiO2 15 TiO2 APS Air - T 
TiO2 12 TiO2 APS Air - T 
TiO2 5 TiO2 APS Air - T 
TiO2 4 TiO2 APS Air - T 
TiO2 3 TiO2 APS Air - T 

Figure 2. Experimental and theoretical XANES of bulk Pd and Au at the A) Pd K-edge and 
B) Au L3-edge. The theoretical spectra are calculated with FEFF9 code.  
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(TEM) and compositional measurements are listed.23 Circles 
mark isosbestic points present due to changes in composition 
and size between the NPs. Using the experimental data as a 
reference, we then constructed 7 representative NPs where the 
theoretical XANES were simulated using basic structure models 
constructed based on the size and composition of the 
experimental systems. We approximated each particle as quasi-
spherical with an average lattice constant determined by 
Vegard’s law: 

𝑎𝑎eff = 𝑥𝑥𝑃𝑃𝑃𝑃𝑎𝑎𝑃𝑃𝑃𝑃 + (1 − 𝑥𝑥𝑃𝑃𝑃𝑃)𝑎𝑎𝐴𝐴𝐴𝐴 ,                                                     (1) 

where 𝑎𝑎eff  is the effective lattice constant, 𝑥𝑥𝑃𝑃𝑃𝑃 is the 
concentration of Pd, 𝑎𝑎𝑃𝑃𝑃𝑃 and 𝑎𝑎𝐴𝐴𝐴𝐴 are the lattice constants of Pd 
and Au, respectively. Including a varied lattice constant in the 
training set is important because XANES is sensitive not only to 
the CNs, but to the nearest neighbor distance as well.32 For each 
particle model, the particle-average Pd or Au XANES spectra 
were calculated by averaging contributions independently 
calculated for all absorbing atoms of the same species (Pd or Au) 
in the model. The results of this calculation are shown in Fig. 3, 
labeled “Theory”. While the theory does not reproduce the 
experimental data, evident by the differences in horizontal 
placement of the circles in Fig. 3 between the experiment and 
the theory, we do observe similar isosbestic points in the theory 
as in our experimental reference systems, which demonstrates 
that theory reproduces qualitative trends in compositional and 
size dependences. We will show, in the following sections, by 
validation and testing of the NN, that such a contrast in XANES 
produced by FEFF, due to size and composition dependence, is 
adequate for NN training.   

After testing the feasibility of FEFF9 calculations for NN training, 
we created a set of theoretical training data for which site-
specific XANES calculations at the Au L3 and Pd K edges were 
made using the optimal parameters, listed in Note S1 in the 
ESI.† This dataset is herein referred to as the “site-specific 

training data”. To create the site-specific training data, two 
distinct sets of atomistic models of PdAu NPs were created for 
calculations at the Pd K-edge (18,538 models) and Au L3-edge 
(15,756 models). The total number of atoms, particle 
composition, and effective lattice constant in these models 
were variable, and thus randomly generated to ensure 
maximum training data diversity. The number of atoms in each 
particle model ranges from 10 to 185, the composition - from 1 
to 90 % Pd, and effective lattice constant - from 3.89 to 4.08 Å. 
The geometric templates used to create the models are the 
same as reported in Ref. 25 In addition to the bimetallic NP 
models, 1200 monometallic Pd NPs and 2663 monometallic Au 
NPs, also with number of atoms ranging from 10 to 185 and 
effective lattice constants between 3.89 and 4.08 Å were 
constructed. Furthermore, to ensure that dilute Pd species are 
represented, we included the Pd site calculations (2859 dilute 
Pd sites) made for the 7 PdAu NP models mentioned in the last 
section and shown in Fig. 3. The first partial CNs for each 
absorbing atom were extracted from the atomistic coordinates 
of the 41,016 structure models, resulting in site-specific training 
data in the form of XANES-CNs associations. The extent of the 
diversity of the final site-specific training data set is very 
important for ensuring the NN is able to interpolate well. We 
examine the diversity in Figs. S1-S6 in the ESI. † We can see that 
the local compositions (i.e. composition of the absorbing site) 
varies between 0 and 100% Pd and all possible atoms locations 
are represented. To maximize diversity, and increase the size of 
our training data set, we trained the NNs on linear combinations 
of the site-specific training data. This approach, introduced in 
our previous works,22, 25 mimics the particle-averaging effect in 
experimental XANES data, and takes advantage of the fact that 
particle-average XANES 𝜇𝜇(𝐸𝐸) and coordination numbers 𝐶𝐶𝐴𝐴𝐴𝐴  
and 𝐶𝐶𝐴𝐴𝐴𝐴  are linear combinations of the XANES spectra and 
coordination numbers, respectively, calculated for each 
absorbing site 𝑗𝑗:  𝜇𝜇(𝐸𝐸) = ∑ 𝜇𝜇𝑗𝑗(𝐸𝐸)𝑗𝑗 /𝑁𝑁𝑎𝑎, and 𝐶𝐶𝐴𝐴𝐴𝐴 = ∑ 𝐶𝐶𝐴𝐴𝐴𝐴

𝑗𝑗
𝑗𝑗 /𝑁𝑁𝑎𝑎, 
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𝐶𝐶𝐴𝐴𝐴𝐴 = ∑ 𝐶𝐶𝐴𝐴𝐴𝐴
𝑗𝑗

𝑗𝑗 /𝑁𝑁𝑎𝑎. Therefore, using a relatively small set of 
XANES-CNs pairs obtained for individual sites, we can generate 
large, diverse, numbers of labeled examples for the NN training 
set. For NN training, we use linear combinations of 3 XANES-CNs 
pairs from the pool of site-specific calculations. In that way, 
approximately 1.3 x 1012 possible synthetic training examples 
can be generated.  In the next section, we described how the 
training data function was used to minimize the validation cost 
function and how additional testing data were used to test the 
neural network models. 

Neural Network Training and Validation 
Here we used an experimental validation set, and subsequent 
validation cost function, to optimize the Pd and Au absorber-
specific neural networks. The experimental data selected for 
the validation set came from previously published EXAFS fitting 
and NN-EXAFS analysis.23 We examined R5-peptide-templated 
(peptide) NPs with nominal Pd concentrations of 25, 33, 50, 67, 
and 83 at. % Pd with NP sizes from 3 to 4 nm, as determined by 
TEM 48, as well as dilute Pd in Au NPs with Pd concentration of 
2 and 9 at. % Pd, with sizes between 5-6 nm, synthesized using 
sequential reduction method, and incorporated into raspberry 
colloid-templated (RCT) porous SiO2  using a previously 
published procedure.37, 49, 50  These two data sets are referred 
to as the “peptide” and “RCT-1” data sets respectively in Table 
1, both of which contain Pd K-edge and Au L3-edge 
measurements for each sample. XANES spectra for the Pd K-
edge and Au L3 edge of both peptide and RCT-1 data sets are 
shown in Fig. 3.  

Before training, the data were pre-processed (aligned, 
interpolated, normalized) as described in Note S2 in the ESI.† 

For both the Pd and Au absorber-specific NNs, we use an early 
stopping training method based on the cost functions shown in 
Fig. S7 in the ESI.† This method ensures that the NN model, 
trained on purely theoretical data, is able to generalize to 
experimental data. We found that a simple convolutional neural 
network (CNN) architecture provides the lowest validation loss, 
where the peptide data was the validation set for the Pd NN, 
and the peptide and the RCT-1 data were the validation set for 
the Au NN. To ensure the stability of the models, predictions 
from 10 independently trained NNs were compared in terms of 
the median absolute deviation. The results of are presented in 
Fig S8, in the ESI.† We see that, for both Pd and Au absorber-
specific NNs, the median absolute deviation in CN predictions is 
very low, characterizing the prediction of the median CNs as 
very stable. Technical details of training are also included in 
Note S2 in the ESI.†  The layers used in the final Pd K-edge CNN 
are listed in Table S2 and the layers used in the final Au K-edge 
CNN are listed in Table S3, both located in the ESI.† We also 
present the entire NN architecture, as implemented in 
Mathematica 12,51 in Figs S9 and S10 in the ESI.† 

The resulting absorber-specific NN predictions on the 
experimental validation sets (described in Table 1.) are shown 
in Fig. 4 with the error bars of the absolute predictions 
determined by our method described in Note S3 in the ESI.† At 
the validation cost minima, the coordination number values and 
relative trends obtained by using NN-XANES agree with those 
obtained by conventional EXAFS fitting and NN-EXAFS (Fig. 4). 
While the agreement is good, an additional testing phase was 
completed, as described in the next section, in which NN 
predictions were made on data that were not included in the 
validation cost function. 

Figure 4. The XANES-derived vs. EXAFS derived first partial coordination numbers with respect to A) the Pd K-edge and B) the Au L3 edge. Coordination numbers A-A are in black 
and A-B are in red. In A) filled in circles are the peptide templated data (validation set), open circles are the RCT-1 data (test set), and triangles are the RCT-2 data (test set). In B) 
filled in circles are the peptide templated data (validation set, open circles are the RCT-1 data (validation set), and stars are the TiO2 supported data (test set).
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Neural Network Testing 
Testing the trained NN with data that were not included in the 
validation cost function is a common way to benchmark the NN 
before it is applied to unknown systems. For that purpose, we 
used XANES spectra for several, previously characterized PdAu 
NPs (4 nm NPs with 4, 15, and 24 at. % Pd as well as 6 nm NPs 
with 3, 5, and 12 at. % Pd), all of which were synthesized using 
a seed-mediated colloidal synthesis method and deposited on 
TiO2. This dataset, herein referred to as the “TiO2” supported NP 
dataset, consisted of spectra collected at beamline 12-BM-B, 
Advanced Photon Source (APS), and their analysis reported in 
Ref. 23 We also use another dataset, referred to as “RCT-2”, of 
Pd K-edge spectra recently measured at beamline ISS (8-ID), 
National Synchrotron Light Source II (NSLS-II), of 5-6 nm PdAu 
NPs with Pd concentrations of 4, 9, and 25 at. % Pd were 
synthesized using a sequential reduction method, and 
incorporated into RCT SiO2 using a previously published 
procedure.37, 49, 50 The measurements of the 4% and 9% samples 
were taken in situ under He, while the 25% sample was 
measured under He and H2. The Pd K-edge data collected for 
the 25% Pd RCT-2 NPs and its analysis results were  reported in 
Ref.52, while the details of XAS data collection and NN-EXAFS 
analysis of the rest of the RCT-2 data are included in Note S4, 
located in the ESI.† The RCT-1 and RCT-2 datasets were used to 
test the Pd absorber-specific NN, while the TiO2 supported data 
were used to test the Au absorber-specific NN. While both the 
Pd-K edge and Au L3 edge spectra were collected for the TiO2 
supported dataset, we only use this data to test the Au 
absorber-specific NN. The Pd-K edge data collected at beamline 
12-BM-B appears to have lower energy resolution compared to 
the rest of the Pd K-edge data that makes NN predictions via 
XANES unstable for this dataset, see Figs. S11 and S12 in the ESI. 
† Predictions made on the test data sets are plotted vs. EXAFS 
derived partial coordination numbers in Fig. 4. In all cases, the 
NN XANES predictions agree with the CN values, and trends, 
derived from EXAFS analyses. The results are tabulated in Table 
S4 in the ESI.† 

Application of the NN-XANES for Detection of 
Surface Restructuring in Dilute Alloys   
Here we demonstrate the utility of our approach for studying 
gas and temperature treatment effects on component 
restructuring in dilute (2.6 at. %Pd) PdAu/RCT catalyst 
(Pd2.6Au97.4/RCT), for which conventional EXAFS analysis for the 
Pd K-edge could not yield conclusive results on Pd-Pd and Pd-
Au coordination numbers. As were the other dilute Pd (in Au) 
catalysts in the RCT-1 and RCT-2 data sets, Pd2.6Au97.4/RCT was 
synthesized using sequential reduction method, and 
incorporated into raspberry colloid-templated (RCT) porous 
SiO2 matrix using a previously published procedure.37, 49, 50 In 
our recently published work on the 4 at. % Pd PdAu/RCT 
catalyst53 and work on the 25 at. %Pd PdAu/RCT catalyst52 we 
obtained that Pd species redistribute within Au host in response 
to high temperature hydrogen treatment. The in situ XANES 
data (Fig. 5) were collected at room temperature under He flow 

after an initial calcination at 400° C in 20% O2/He balance for 1 
hour (the O2 treatment), and then collected at room 
temperature under He after calcination at 400 C in 100% H2 for 
30 minutes (the H2 treatment). More experimental details are 
in Note S5 in the ESI.†  Visual examination of the Pd K-edge 
XANES data indicates that the local composition around Pd 
changes between different regimes. For example, energy shifts 
between the edge positions of the spectra, corresponding to 
different treatments, and the spectrum of Pd foil reference, 
reflects the changes in Pd alloying with Au. The larger is the shift 
towards lower energy, the greater is expected to be the degree 
of alloying between Pd and Au, consistent with the dissolution 
of surface Pd into the bulk, expected under H2 treatment.52, 53  
 
Quantitative NN-XANES analysis was performed using the Pd 
and Au absorber-specific NNs. The result of the analysis is 
presented in Table 2. We see that, after the H2 treatment,  the 
first partial coordination numbers for Au-Au pairs are similar to 
those obtained after initial O2 treatment, as expected for the 
majority component of the dilute alloy. In contrast, the first 
coordination numbers for Pd-Pd pairs decrease after the H2 
treatment from 0.17 to 0.10, consistent with partial dissolution 
of Pd from sites closer to the surface into the bulk as 
demonstrated in recent work for larger Pd concentrations.53 To 
determine if this change in coordination number is significant, 
and not due to stochastic differences in NN training, we take the 
median absolute deviation of predictions made with 10 
independently trained NNs. All 10 NN models predict a decrease 
in the Pd-Pd coordination number after the H2 treatment, with 
a median decrease of 0.070 and median absolute deviation of 
0.001.   

Figure 5. Pd K-edge XANES spectra of the Pd2.6Au97.4/RCT catalyst after O2 and H2 
treatments and bulk Pd reference foil. The XANES data were collected at room 
temperature under He.   
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Table 2. NN-XANES analysis of Pd2.6Au97.4/RCT from the Pd K-edge and Au L3-edge. 

Sample 
Treatment 

Ω 

N ћ  

Au-Au 

N ћ  

Au-Pd 

N   

Au-M 

N ψ  

Pd-Pd 

N ψ 

Pd-Au 

N 

Pd-M 

Pd2.6Au97.4 

20% O2/He 

@ 400 C, 

 1hr  

10.13 0.2 10.33 0.17 11.72 11.89 

Pd2.6Au97.4 
100% H2 @ 

400 C, 

30 mins 

10.16 0.17 10.33 0.10 11.84 11.94 

Ω All data were taken at 25° C under He,  ψ Pd absorber-specific NN, ћ Au absorber-
specific NN 

Discussion  
In this work, we showed that it is possible to extract the partial 
coordination numbers from the XANES spectrum of bimetallic 
alloys using absorber-specific neural networks. This opens the 
door for various applications. Most significantly, the structural 
characterization of bimetallic nanoalloys in general, and 
nanocatalysts in particular, via XANES is now possible in 
materials in which EXAFS analysis is limited by signal quality. For 
example, structural changes detected in harsh reaction 
conditions, particularly in dilute Pd in Au catalysts, can now be 
understood with similar level of detail (i.e., the partial 
coordination numbers and, hence, restructuring of the catalyst 
components that may occur under in situ conditions, can be 
extracted). We provided an example of this capability, by 
showing that in-situ XANES measurements can detect (and 
neural network-assisted analysis can correctly recognize) the 
consequences of Pd restructuring under varying conditions. The 
neural network-assisted data analysis method we report 
provides structural parameters with sufficient accuracy for 
modeling in only seconds, therefore enabling new applications 
of XANES at the beamline, such as the real-time monitoring of 
NP deactivation or high throughput sample characterization. 
The PdAu absorber-specific networks that we constructed can 
be immediately applied to the analysis of XANES in novel PdAu 
systems or used to analyze previously collected data for which 
structural characterization was not originally considered, or not 
possible by conventional EXAFS, due to, e.g., harsh reaction 
conditions, but for which XANES data are of sufficiently good 
quality. 

We have demonstrated that during and after NN training, 
validation, and subsequent testing with experimental data sets 
from additional systems, which were measured at different 
beamlines, helped us evaluate and improve robustness of NNs 
trained on theoretical data. We believe that these insights will  
be crucial for those using this method to analyze PdAu systems 
and those who will utilize NN-XANES in general for the analysis 
of other bimetallic systems. We confirmed that the trained NNs 
are able to make accurate predictions on metallic PdAu data, at 
the Pd K and Au L3 absorption edges, with different 
compositions, particle sizes, supports, and synthesis methods. 
Due to the intrinsic structural complexity of bimetallic 
materials, there was no guarantee that one general NN model 

(for bulk  PdAu alloys), as opposed to a specific NN model (for a 
given PdAu nanoalloy system, i.e. in some size range and/or 
composition motif), would be sufficient to capture the 
spectrum-structure relationship in a range of NP sizes and 
compositional distributions. Here we see that the general NN 
model performs well in the case of metallic PdAu. We see this 
clearly at the Au L3 edge, where the theoretical-experimental 
agreement is better, and beamline resolution effects are 
relatively forgiving, compared to the Pd K edge (vide infra).  As 
we create more bimetallic models for different systems for 
which our method can be applied, we will be able to determine 
the limits of applicability of our method beyond the several NP 
systems we tested it on. We also see that our training method 
results in NNs that make accurate predictions, even in the face 
of moderate resolution and systematic differences between 
beamlines and, even without explicitly simulating these effects 
in the training data. This is an important feature, especially at 
the Pd-K edge (and other edges at relatively high energy), where 
the energy resolution is known to suffer at some beamlines. The 
most significant example is derived from the Pd9Au91 RCT 
supported sample, which is included in datasets RCT-1 and RCT-
2, where RCT-1 was measured at the BL2-2 beamline of Stanford 
Synchrotron Radiation Lightsource (SSRL) with a Si(220) 
monochromator, and the RCT-2 samples was measured at the 
NSLSII with a Si(111) monochromator. The Pd absorber-specific 
NN predicts Pd-Pd and Pd-Au coordination numbers of 1.0±1.0 
and 10.3±1.3 vs 0.8±0.8 and 10.7±0.9 for the data collected at 
the SSRL and NSLSII, respectively. The predictions are in very 
good agreement with each other despite some spectral 
differences that are caused by the energy resolution difference 
of the beamline monochromators. A comparison of the spectra 
collected at the two beamlines is shown in Fig. S13 in the ESI.† 
We do see a limit, though, in the Pd absorber-specific NN’s 
ability to deal with low-resolution Pd-K edge data, as mentioned 
in the neural network testing section. However, in that case, the 
resolution was much lower than usual, as quantified by an 
amplitude reduction factor of 0.70 for Pd foil that was measured 
at the time of the experiment. At some limit of the resolution, 
the XANES may simply loose interpretable information. On the 
other hand, using specialized beamlines and secondary 
analyzers, it is possible to measure XANES with high energy 
resolution. The high-energy resolution fluorescence detection 
(HERFD) mode of XANES measurement provides a significant 
enhancement to XANES spectra,54, 55 improving its sensitivity to 
the structure. In principle, a combined HERFD-NN-XANES 
approach could be used to not only make superior structural 
predictions, but a HERFD experimental validation set could be 
used in neural network training, resulting in more accurate 
predictions on non-HERFD XANES. Together with other recent 
studies,56 this work further advances the potentiality of 
machine learning approaches and XAFS method for 
characterization of unique structural motifs in bimetallic 
nanoparticles and their transformations under reaction 
conditions.  
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Conclusions 
The NN-XANES method has been developed for the extraction 
of the first partial coordination numbers from the XANES of 
PdAu nanocatalysts. Experimental validation was performed 
with a set of well-defined PdAu NPs with sufficient EXAFS 
quality for providing a priori knowledge, in combination with 
another experimental testing step to benchmark the NN’s 
predictive power over a range of compositions and supports. 
We have demonstrated that this method provides robust 
predictions of first partial coordination numbers that agree with 
those derived by conventional EXAFS fitting and NN-EXAFS 
methods, and we showed that the method can be used to 
investigate restructuring in dilute bimetallic catalysts. One can 
now extend this method to other bimetallic compositions, such 
as dilute catalysts and size-selective clusters. 
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