
Hopefully Interesting Git Topics

5/19/2010 8:45

Brent Perschbacher

Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned 
subsidiary of Lockheed Martin company, for the U.S. Department of Energy’s National Nuclear Security Administration 

under contract DE-AC04-94AL85000.

SAND2010-3902P



Cherry-picking Commits

• What is cherry-picking?

– Cherry-picking allows you to pull over a single commit from 
another branch and apply it to the current branch. This differs 
from a merge in that the merge pulls over all commits since the 
divergence point.

• Why cherry-pick?
– Cherry-picking makes applying changes such as bug fixes to multiple 

branches fast and easy.

• Cherry-picking multiple commits.

– You need to cherry-pick in the proper order. Each commit is a 
state of the files involved so rearranging commits will cause 
conflicts.



How to Cherry-pick

It is as easy as:

git cherry-pick <commit id>

While on the branch you want to cherry-pick to. 
Assuming there are no conflicts the commit will 
be applied to the current branch with the same 
commit message. All that remains is to test and 
push.



• What is merging?

– When to merge.

– How to merge.

• What is rebasing?

• When to use one over the other.

Merging vs. Rebasing



What is Merging?

Merging is a way to get two diverged trees 
combined again.

Merging in git will create an additional commit that 
inherits from two other commits. This Merge 
commit will be the parent of any future commits.



When to Merge

You will want to merge if you have been working 
on a topic branch and are ready to pull your 
changes over to master, or a release branch.

Keep in mind that merging branches will merge all 
commits from the source branch to the target 
branch since the point of divergence.



How to Merge

Merging is fairly simple in git. From the branch you 
want to merge onto (target) simply use:

git merge <source branch>



What is Rebasing?

Rebasing can also be used to combine two diverged trees. 
However, it is more than that.

Rebasing can be used to reorder commits or to change 
commits. Using interactive rebasing you can go back and 
rewrite your history including update the files, add new 
files, change commit messages and/or drop commits 
completely. (these topics are outside the scope of this 
discussion)

Please don’t do that to commits that have been made public 
(pushed to SSG)



Rebasing Similar to a Merge

Rebasing can be used to “merge” two branches in a similar way to 
merge, however rebasing doesn’t create an extra commit. This is 
what “git pull --rebase” does. This can also be used to keep a 
topic branch up to date with master or another branch.

From the branch you want to update type:

git rebase <source branch>

This will roll back your commits since the divergence point, apply 
all the commits from the source branch since the divergence point 
and then re-apply your changes on top of those commits.



Replicating git pull --rebase

An easy example of rebasing against an existing branch is to 
replicate what git pull --rebase does. A pull is basically a 
shortcut for a fetch and a merge, when you use --rebase it 
makes pull a fetch and a rebase. 

Assuming we are on master we would do:

git fetch

git rebase origin/master

Why origin/master? Because the fetch stores all the new 
information in the local copy of origin. Your master is a 
tracking branch of that copy.



How to Handle Conflicts

Conflicts in git aren’t really different than cvs. You 
will get the same conflict markers in your files as 
you did with cvs. And you will need to manually 
fix the issues.

What is different in git is that you will need to tell 
git that you have fixed the issues and potentially 
to continue with what it was doing.



Conflicts from pulling or merging

If you get a conflict from a pull you will need to fix the 
conflicts manually. Once that is done you can tell git that 
you are finished fixing things with:

git add <file names>

git commit

The commit message will be populated with information 
about the conflict. You can edit it as you see fit.

This will create a merge commit.



Conflicts from Rebasing

This includes conflicts from “git pull --rebase”

Fix the conflicts as always then:

git add <file names>

git rebase --continue

There will be no merge commit and the commit message will 
be that of the commit that had the conflicts.



Undoing Commits

How we undo a commit depends on whether or not 
the commit has been made public yet. Both 
situations are pretty simple to handle though.



Undoing Private Commits

Getting rid of a commit that you no longer need is relatively easy. If it is the 
last commit all you need to do is:

git reset --hard HEAD^

This will reset the current branch and working directory to the previous 
commit.

If you want to remove a commit that isn’t the last commit you need to use 
interactive rebasing. 

git rebase -i <commit id before commit in question>

Your editor will pop up and you will be presented with a list of commits with 
“pick” in front of them. All you need to do is find the commit you want to 
get rid of and remove that line. (much more can be done with interactive 
rebasing, but we won’t get into that here)



Undoing Public Commits

Once a commit is public you cannot use the previous tricks 
to undo it. However, it isn’t harder to undo public commits. 
You simply need to revert them.

git revert <commit id>

You will be prompted with your editor with a pre-made 
commit message that you can edit as you see fit. The 
message will already state that it is reverting the given 
commit.



Git vs eg

• What is eg?

• Why use eg?

• Some important differences between eg and git.



What is eg?

eg is a wrapper script written by Elijah Newren to 
make using git easier for people familiar with svn 
and cvs.



Why Use eg?

eg really is just another interface to git. It doesn’t 
replace git and it isn’t weaker than git. What it 
does do is change some of git’s defaults to be 
more intuitive for people familiar with svn/cvs.

There are also some places where eg has different 
keywords that are more intuitive.



Important differences

eg has a couple important differences from git that you should be 
aware of.

eg push by default only pushes the branch you are currently on.

eg commit by default assumes that unstaged files are to be 
committed.

eg clone by default will set up tracking branches for all branches on 
origin.

eg’s help will tell you of any differences between eg and git 


