

Development of a Security-By-Design Handbook

**51st Annual Meeting of
Institute of Nuclear Materials Management (INMM)
Baltimore, MD
July 15, 2010**

Mark Snell and David Olson
Sandia National Laboratories

Koji Tanuma, Kazuya Ochiai, and Toru Iida
Japan Atomic Energy Agency

SAND2010-XXXXC

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Outline

- Security-By-Design: What is it and Why?
- Project Overview
- Description of Work to Date
 - Principles and Practices
 - Generic Design Process
- Planned Work
- Summary

Security-By-Design – What is it?

- Security-by-design: the system level incorporation of the physical protection system (PPS) into a new nuclear facility resulting in intrinsic security.
 - PPS minimizes the risk of malicious acts resulting in nuclear material theft or sabotage and facility sabotage.
- For existing nuclear facilities, the PPS may be integrated into the facility;
 - Post construction integration may not achieve the efficiency and effectives of system level design.

Project Overview

- Objective
 - Develop a Security-By-Design handbook for future facilities
- Intended users
 - Current physical protection designers
 - The next generation of physical protection designers
 - Facility designers in emerging countries
- Related Goal
 - Develop a Security-By-Design information dissemination plan
- Project is sponsored by National Nuclear Security Agency (NNSA) between Sandia National Laboratories (SNL) and Japan Atomic Energy Agency (JAEA)

Security-By-Design Principles and Practices for the Facility Lifecycle

Systems Principles

- Lifecycle Perspective
- Consider All Operating Conditions

Safety/Domestic Safeguards/Security

- Principle: Balance in design
- Principle: Balance Detection, Delay, Response functions
- Practice: Establish priorities

Regulatory Best Practices

- Lessons-learned
- Adopt commonly-used guides and standards
- Maintain Close, Honest Relationship with CA

CPPNM Fundamental Principles

- Responsibilities (State, Competent Authority(CA), Licensee)
- Base Physical Protection on Threat
- Graded Protection
- Security Culture, Confidentiality
- Quality Assurance, Contingency Plans

Security-By-Design

Systems Engineering Practices

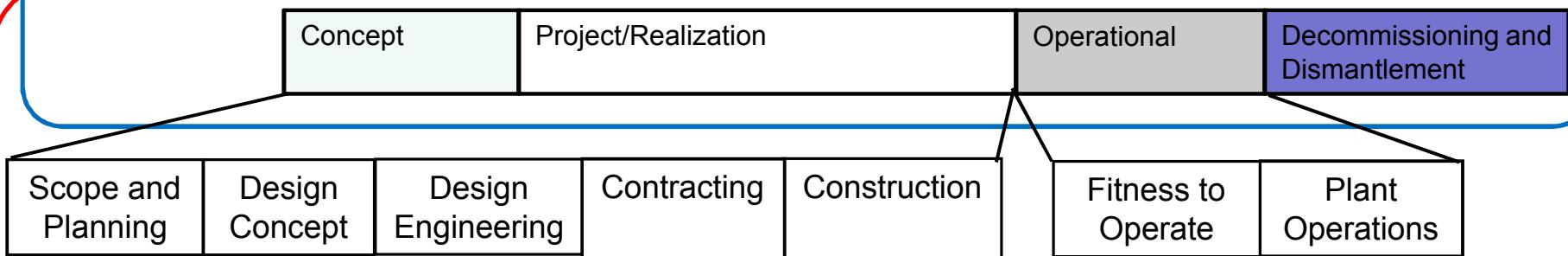
- Concurrent Design
- Project Management
- Use of Trade-off Studies

Security Design Practices

- Defense in Depth
- Measure effectiveness against threat

Entire Lifecycle,
Realization,
Operational

Collection of Insights for Security-By-Design


- **Realization (Design/Build)**
 - Principle: Treat security as a key function during design
 - Principle: CA should balance prescriptive and performance-based security requirements and have mechanisms to relax prescriptive requirements,
 - Practice: Employ Intrinsic Security design methods
- **Operational**
 - Ensure adequate staffing, funding and independence
 - Monitor system performance and test

Entire Lifecycle,
Realization,
Operational

Security-By-Design Lifecycle Phases for the Purposes of the Generic Design Process

Security-By-Design: Major Lifecycle Phases (Principles and Practices Document)

Security-By-Design: Major Lifecycle Phases (Generic Design Process Document)

Notional Lifecycle for New Nuclear Power Plant/Nuclear Facility

Iterative Use of Vulnerability Assessments During Lifecycle

Phase	Value of Assessment	Occurs
Scope	Assures principal design requirements are consistent with mission need	CD-0 Project Authorization
Concept	Choose among competing facility and PPS design approaches	CD-1 Design Selection
Design	Optimize facility and PPS design consistent with S3 priorities	CD-2 Design Approval
Construction	Continuous assurance PPS design achieves security objectives	CD-3 Construction
Acceptance	Performance validation of PPS, operators, and response force for entry into operations	CD-4 Acceptance
Operations	Verification PPS performs as designed and remains consistent with threat	
Decommission & Dismantle	Determine residual PPS requirements post operations	Operational Inspections & Assessments

Planned Work

- Document how the principles and best practices can be best integrated into the design process
- Develop a security-by-design handbook
 - What level of knowledge, examples, details
- Develop a plan for getting security-by-design information out to the intended audience
 - Intended audience
 - Best methods to transfer information

Summary

- We described
 - A variety of Security-by-Design principles and best practices
 - A generic design process that addresses the entire facility lifecycle
- Work is progressing to develop a Security-by-Design handbook