

Market Simulations for Evaluation of Regulatory Strategies

Dr. John Siirola²

*Dr. David Strip*¹

Dr. Jean-Paul Watson¹

Discrete Math and Complex Systems Dept.¹

Exploratory Simulation Technology Dept.²

Market Complexity

- Markets are complex, chaotic systems
 - May 6 “Flash Crash”
- How do we design and test new regulations?
 - Law of unintended consequences
- Transaction volume
 - CBOT $\sim 10^7$ contracts daily
 - NYSE $\sim 2 \times 10^7$ transactions daily

Why Agent-Based Modeling (ABM)?

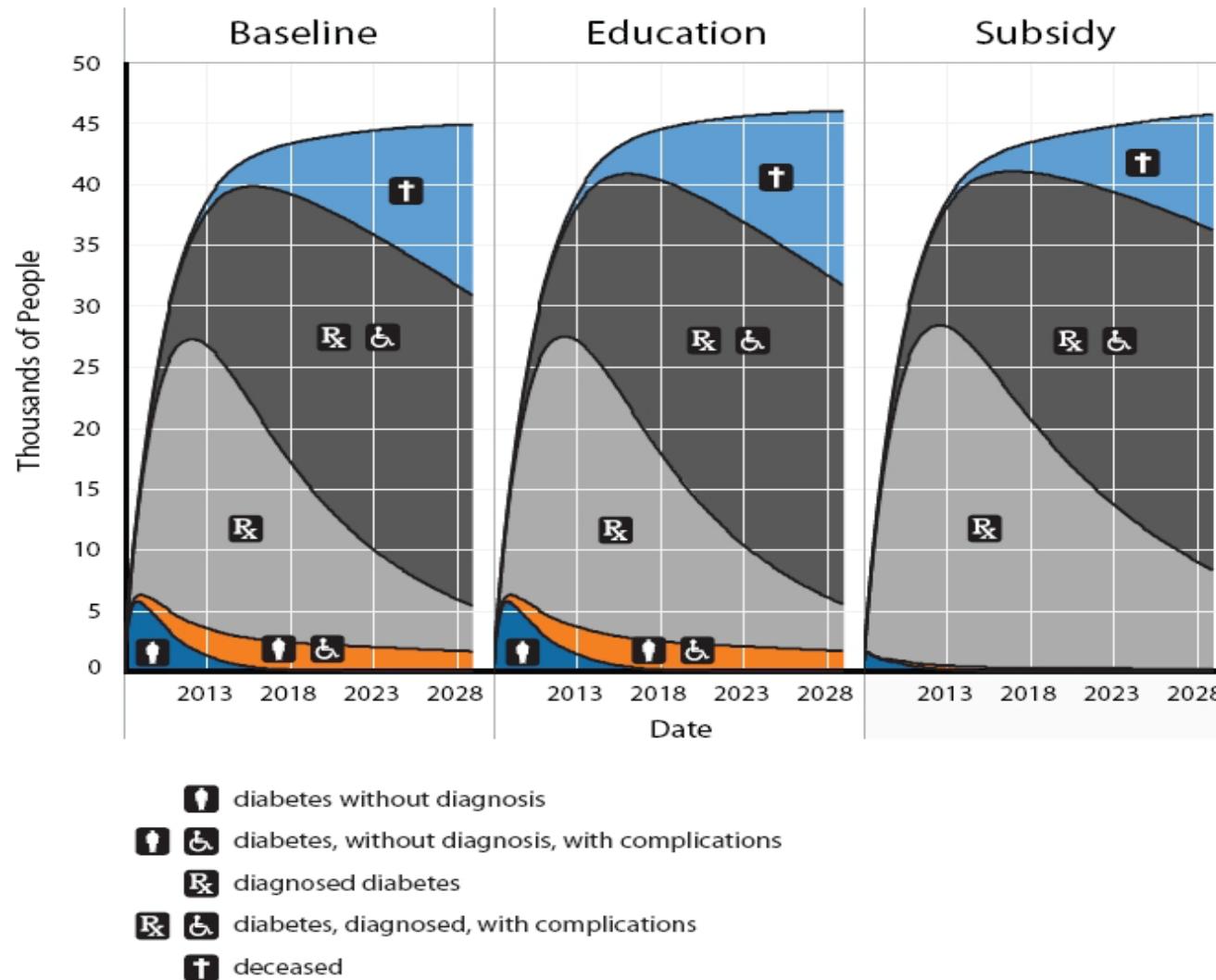
- ABM is intuitively appealing when describing complex systems in which
 - System dynamics are a function of heterogeneous interacting agents
 - Dynamics occur over multiple, possibly long-range time scales
 - Actions and decisions are made locally, with local information
- ABMs capture full distributional information
 - Facilitates identification of extreme or “tail” events
- ABMs capture explicit *and* implicit feedback effects
- In market modeling, ABM provides a natural and easily understood association between simulation elements and market participants

Sandia and Agent-Based Simulation

- Sandia has extensive experience developing agent-based simulations
 - N-ABLE [NISAC: Eidson, Mackey, Ehlen, et al.]
 - CoreSim [1410: Watson, Strip, Mitchell]
 - EMPaSE [1430: Siirola]
 - Loki [6320: Glass, Beyeler, Quach, Detry, Bynum, et al.]
- Experience includes
 - Modeling expertise required to capture “fuzzy” agent behaviors
 - Development of frameworks to support rapid deployment
 - High-speed simulation to support national-scale analysis
- Two specific examples
 - Policy assessment for diabetes management in Brownsville, Texas
 - Spare parts logistics chain analysis for the Joint Strike Fighter

Diabetes Mellitus: A Prototypical Policy Scenario

- Focus on Diabetes Mellitus (DM) progression in the US/Mexico border population
 - Politically “hot” at both state and national levels
 - DM is epidemic in Mexican-American populations, huge public costs
 - Extensive data set for individuals from Brownsville, TX
- Baseline case
 - Initialize agents based on Brownsville survey statistics
 - Execute simulation over 20 years, track number of agents in each of the various DM states (non-DM, diagnosed-DM, DM-with-complications, etc.)
- A policy of interest: “The Medical Home”
 - Around-the-clock, comprehensive, coordinated, and on-going medical care
 - No agreement over how to best *implement* the medical home concept
 - Some incremental alternatives
 - Subsidies to reduce the cost of doctor visits
 - General access to dieticians and other lifestyle influencers

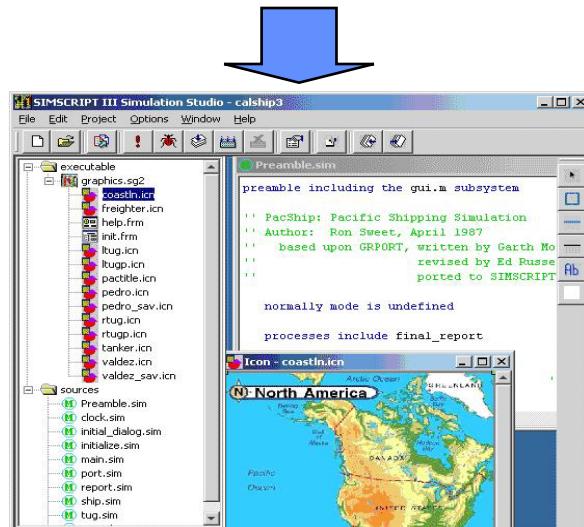


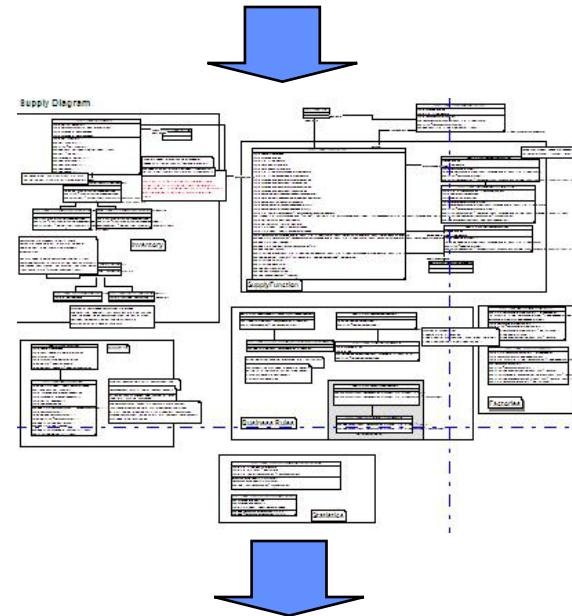
Agent-Based Model Highlights

- Individuals
 - (Pseudo-)static attributes such as height, sex, income, etc.
 - Evolve physiological attributes over time, including weight/BMI, HbA1c, based on factors including activity level and caloric intake
 - Track DM-related state changes through time
 - Initiate and track doctor visits
- Populations
 - Individuals are linked through physical and virtual social networks
 - “Small-world” distributional characteristics
 - Weight gain/loss is influenced by the BMI distribution of friends
 - “Fattiness” as a social phenomenon (JAMA)
 - Medical adherence is influenced by friends and your support network

Evaluating Alternate “Medical Home” Policies

The Lockheed Martin Joint Strike Fighter (JSF)




- Scale of sustainability support system for JSF
 - Thousands of distinct line-replaceable parts (LRUs) per aircraft
 - 3,000+ aircraft over 20 years at 60+ bases on 4 continents
 - 50+ OEMs, 10+ supply depots, 10+ repair depots
 - 50+ year operational lifetime
- The primary use of any weapon systems is peacetime operations
- The primary peacetime objective is to perform a pre-determined schedule of training and operational readiness missions

Accelerating Logistics Simulation Through Domain-Specific Discrete-Event Software Libraries

*Commercial, General-Purpose Library +
High-Level Programming Language*

*Domain-Specific C++ Library +
Careful Algorithmics and Profiling*

MODSIM

*Faster development, low SE expertise,
slow run-times*

CoreSim

*Slower development, high SE expertise,
fast run-times*

Real-world performance: 35 seconds to 70ms (test data set)
> 12 hours to 15 seconds (JSF data set)

Assessment of Regulatory Strategies via Simulation

- A primary simulation use case for CFTC is the identification of system conditions that can yield anomalous or extreme behaviors
 - The May 6 Flash Crash
 - Unexpected instabilities induced by automated trading algorithms
- First-order approaches
 - Systematic exploration of parameter space (LHS / Importance Sampling)
 - Coupling with black-box optimization to reproduce specific behaviors
- Second-order approach
 - Optimization to design specific trading agents that yield extreme events
 - Automated “interdiction”

Market Reconstruction

- By using historical data to drive the simulation, the ABM can be used to reconstruct the state of the market and it's participants
- Allows *post facto* analysis of events
- Allows detailed view of portfolio positions over time, as well as the evolution of other aspects of participants state.

Risk Assessment for Complex Financial Instruments

- CDO, CDS, synthetic CDO, etc., all can have complex structures with hard-to-model correlations, cascading effects, etc.
- Inadequate modeling of complex instruments played a significant role in the financial crisis
- Opportunities
 - Independent assessment of underlying risk
 - Better evaluation of “tail” risk
 - Modeling cascading effects among multiple instruments
 - Targeted modeling of extreme cases
 - Parameter space search
 - Optimization

What we are *not* proposing

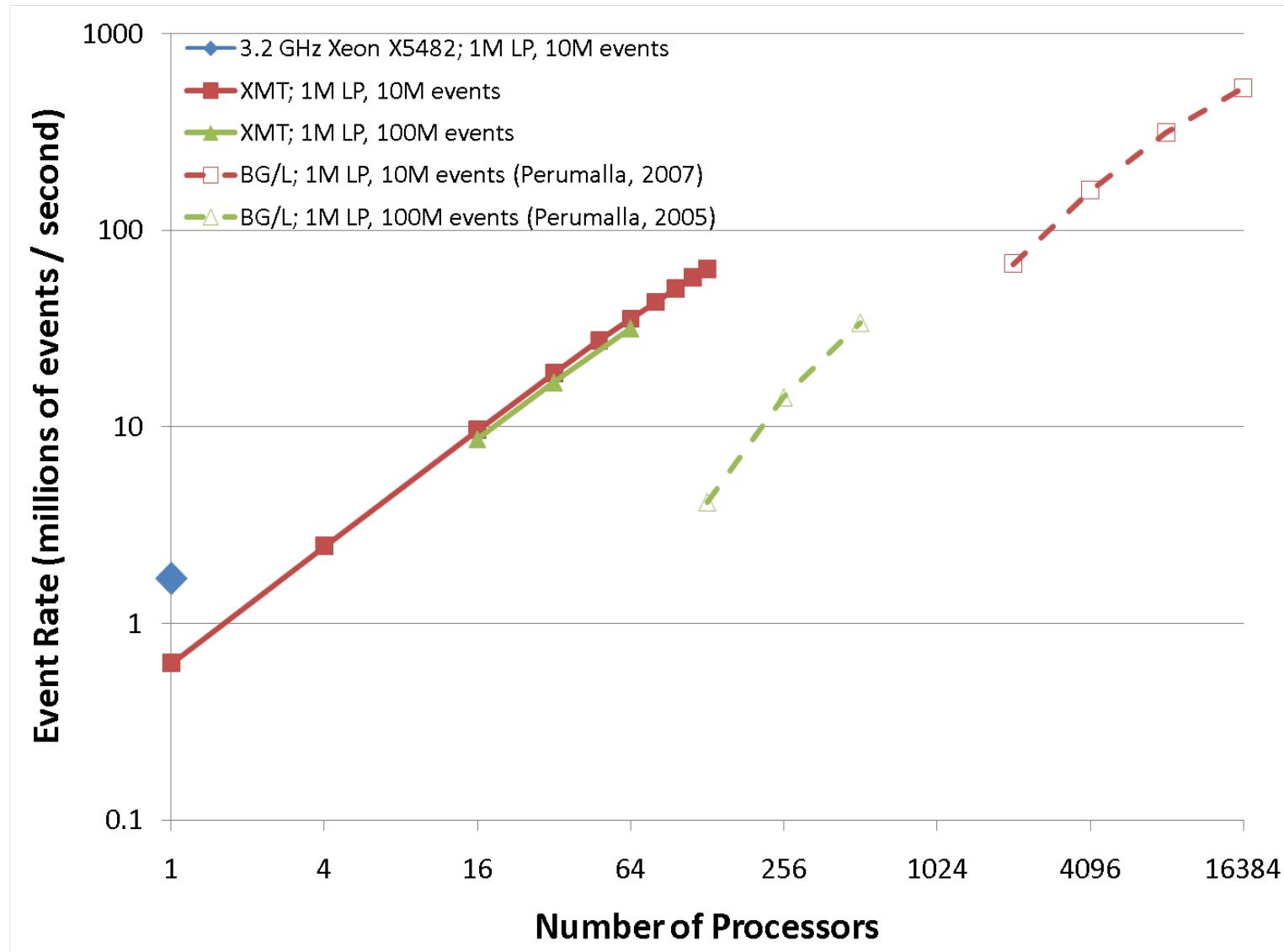
- Forecasting or predicting market movements
- Creating tools for investors to "beat the market"

Research and Implementation Challenges (1)

- Modeling trader behavior
 - Electronic trading algorithms
 - Are analytic representations available?
 - Existing rules limiting range of trading behaviors?
 - How sensitive is the market to the exact algorithm?
 - Human traders
 - How to construct parameterized families of agent models
- Technical approaches
 - Data mining and machine learning
 - Literature and subject matter experts

Research and Implementation Challenges (2)

- Interactions among multiple markets
- Key practical issues
 - Model maintenance
 - User interface
 - Execution platform(s)
 - Client-server?
 - HPC?
- Validation and Verification


Parallel Agent-Based Simulation (PDES)

- Why?
 - Size & Speed
- Notoriously difficult, despite >30-year history
 - “Thin events” (low computation-to-communication ratio)
 - Unstructured communication pattern
 - Fine-grained synchronization requirements: global time
 - *Huge* memory requirements
 - e.g. 300M individuals in a national disease propagation model
 - 1.2 – 14.4 GB just for a directory mapping (individual -> node)

Efficient, scalable PDES engines

Conclusions

- Modeling and Simulation provide powerful tools for analyzing the impact of
 - Existing and alternative regulatory strategies
 - Existing and alternative trading strategies
 - Existing and future investment instruments
- Modeling and simulating markets regulated by the CFTC is challenging but within the scope of other problems we have addressed

Conclusions

- The scale of a realistic commodities market model *may* require advanced computing to make the simulation tractable. Alternatives we have utilized include:
 - efficient single-processor engines (CoreSim)
 - off-the-shelf parallel engines (from RPI, ORNL, WarpIV) on commodity clusters
 - bleeding edge research on specialized hardware (XMT)