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Evaluating models and their 
reliability

• Validation (testing numerical predictions against 
measured quantities)

• Uncertainty analysis (estimating the possible 
error distribution in numerical estimates)

• Sensitivity analysis (determining the relative 
influence of parameter estimates and their 
uncertainties on the numerical prediction and its 
uncertainty)



Targets
High accuracy
High precision

High accuracy
Low precision

Low accuracy
High precision

Low accuracy
Low precision

Accuracy and precision 
determine model reliability



Model validation to establish credibility

• Face validity (peer review)

• Verification (quality of code & calculations)

• Evaluation of model structure, parameter values

• Testing model predictions against independent 
measurements



Methods of model testing

• Subjective judgement (comparing predictions (P) against 
observations(O): plot P against O values; calculate P/O ratios)

• Statistical methods

-Paired t-test with H0: mean of paired differences = 0

-Interval test:  How many observations fall outside a 

distribution of predictions?

-Regression: Plot O vs. P and calculate slope, intercept 

& correlation coefficient

-Runs test:  Plot (P-O) values against time to test for 

dynamic errors 



Examples of comparing model 
predictions to observed data

131I in milk

90Sr in
milk

131I in milk



Uncertainty Analysis Implies Probabilistic Modeling

If we were “certain” of everything in our calculations, 
there would be no uncertainty.

But we are rarely certain of everything.



Simple (but typical) Risk Model

• Each model input can be either

– Constant

– Variable

Many risk models are simple algebraic 
expressions:

R = A·B/C + D·E/F
for example
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• Kilograms per pound

• Liters per cubic meter

• Days per year 

• Avogadro’s number

• Half-life of Pu

• Release rate

• Maximum ingestion rate

Constants

Unit 
Conversions

Physical 
Properties

Parameters



• Kilograms per pound

• Liters per cubic meter

• Days per year 

• Avogadro’s number

• Half-life of Pu

• Release rate

• Maximum ingestion rate

Constants

Unit 
Conversions

Physical 
Properties

Parameters

Are these 
constants?



• Amount of milk ingested in a day by a child

• Number of days per year spent outside

• Amount of pasture grass consumed by a dairy cow

• Fraction of the diet of a cow that is hay

• Body weight of the individuals in this room

Variables



Variable (V) or Constant (C)?

  Body weight of individuals in this room

  Average body weight of individuals in this room

  Sample average concentration of Pu in soil

  Concentration of Pu in soil at different sampling 

locations in an exposure unit

  95% upper confidence limit for the arithmetic mean 

concentration

  95th percentile concentration

V  /  C



Variable (V) or Constant (C)?

V  /  C

  Body weight of individuals in this room

  Average body weight of individuals in this room

 Sample average concentration of Pu in soil

  Concentration of Pu in soil at different sampling 

locations in an exposure unit

 95% upper confidence limit for the sample arithmetic 

mean concentration

 95th percentile concentration from sampled data



• Variability is an inherent property of a feature; it cannot be 
reduced by collecting more data.

Example: rate of ingestion in cows

• Lack of knowledge; it can be reduced (but rarely eliminated) by 
collecting better data.

Example: rate of ingestion of milk by a specific child in 
1957

Uncertainty



Subjective Versus Objective 
Uncertainty

• Aleatory (Type A) uncertainty is natural 
variability.

• Epistemic (Type B) uncertainty represents lack of 
knowledge or confidence.

• Epistemic uncertainty is sometimes referred to as 
subjective uncertainty, because subjective 
methods are often used to quantify the 
uncertainty – but don’t fall into that habit



Is Imprecision Subjective or 
Objective Uncertainty?

 Precision traditionally has referred to 
the uncertainty (Type B) that arises when 
making a measurement, such as reading a 
level in a graduated cylinder or reading the 
weight on a scale. 

 With today’s instruments, the 
uncertainty on measurements can include 
both Type A and Type B uncertainty.
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Random Error versus Systematic Error

• Random error is stochastic variability in a 
measurement

• Systematic error, or bias, is a consistent 
difference between the true mean and the 
estimated mean of measurements



Random Error versus Systematic Error

• Random error can be estimated using replicated 
(repeated) measurements

• Systematic error, or bias, can not be estimated 
using replicated (repeated) measurements. It can 
sometimes be identified using other methods, 
e.g. testing instruments against known 
standards



Random Error

Random sampling error gives rise to differences 
between the true parameters of a distribution and 
the values estimated from samples.



Random Error versus Systematic 
Error
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Uncertainty Analysis

• Uncertainty analysis provides a distribution of possible real 
values, or of possible errors in a prediction

• Important for maintaining honesty and gaining credibility

• Model predictions are of little utility if accuracy and uncertainty 
are unknown

• Uncertainty can be quantified from numerous actual 
measurements, or from propagating errors in model inputs and 
assumptions to obtain a distribution of possible output values

• Error propagation techniques:

-analytical

-random sampling from distributions (Monte Carlo)



• If one or more of the model inputs are RANDOM 
VARIABLES, then the model output will be a distribution
of values.

– A “random variable” is a function that maps an event 
into a real number

– For example, consider tossing a coin. The events are 
heads or tails. A random variable, X, can be defined 
to map a head to 1 and a tail to 0.

• Thus, when the risk manager asks "What is the risk?", 
the answer CANNOT be just some isolated number.  
Rather, the answer MUST convey information on the 
nature of the output distribution.

Model Output



Uncertainty Should Encompass 
True Results
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What is a Distribution?

A distribution represents the probabilities of one or 
more random variables occurring

For example, the distribution of the values from the 
roll of 1 die would look like:

1 32 654

Distribution of 
values for 1 die

P
(x

) P(x) = 1/6 
for all x



What is a Distribution?

A distribution represents the probabilities of one or 
more random variables occurring
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Probability Density Function

A PDF represents the probabilities of random variables as a function 
of their values
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Probability Density Function
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Cumulative Distribution Function

A CDF represents the cumulative probabilities of random 
variables as a function of their values

2 43 765 98 10 11 12
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Cumulative Distribution Function

A CDF can also represent the cumulative probabilities of a “continuous” 
random variable as a function of its values
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N = 1000

Mean =     69.7 kg

Stdev =     15.2 kg

Min =     38 kg

Max =   157 kg

95th %ile =     98 kg

Body Weight of Men - Summary Statistics



Cumulative Distribution Function

The CDF is the integral of the PDF
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Cumulative Distribution Function

The CDF is the integral of the PDF
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Complimentary Cumulative Distribution Function

A CCDF represents the cumulative probabilities of being 
greater than some value
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Probability Density Function
A PDF can also represent the cumulative probabilities 
of a “continuous” random variable as a function of its 
values

2.0 4.0 6.0 8.0 10.0

0.2

0.4

0.6

0.8

1

0.0



Distributions Often Used for 
Uncertainty Analysis

Distribution 
type

Most likely

value (mode)

Descriptors of

width

General

shape

Normal Mean (x) Std dev (s)

Lognormal Geometric mean 
(GM)

Geometric std dev 
(GSD)

Triangular Mode Min, max

Truncated 
normal

Mean (x) Std dev +

min, max

Truncated 
lognormal

Geometric mean 
(GM)

GSD +

min, max

Rectangular none Min, max



Joint Distribution
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Marginal Distributions

Conditional variables can be described 
as multivariate distributions



Multivariate Distributions

• Conditional variables can be described as 
multivariate distributions

• There are a limited number of multivariate 
distributions

• All have marginal distributions of same type:

– Normal

– Lognormal
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Two Alternatives

• Analytical Solutions

– Useful in special cases, but often not 
mathematically feasible for complex models

• Monte Carlo Simulation

– Relatively easy to perform with modern programs

– Can usually be implemented, no matter how 
complex the model or the distributions



Example
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Example

C

BA
Y




A = LN(10,3)
B = LN(5,2)
C = LN(10,2)

CDF = Cumulative Distribution Function

Cumulative Frequency Distribution
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Example

Descriptive Statistics for Y
Mean 6.236E+000 Skewness 1.625E+000 
Median 5.550E+000 Kurtosis 4.888E+000 
Standard deviation 3.173E+000 Standard error 1.003E-002 
Variance 1.006E+001 Geometric mean 5.556E+000 
Minimum 6.924E-001 Geometric SD 1.618E+000 
Maximum 4.069E+001 N 100000 
N positive values 100000



Example

Percentiles Based on Order Statistics
0.1%: 1.280E+000 25%:4.012E+000 60%:6.275E+000 95%:1.223E+001
1.0%: 1.812E+000 30%:4.318E+000 65%:6.690E+000 97.5%:1.419E+001
2.5%: 2.168E+000 35%:4.625E+000 70%:7.165E+000 99.0%:1.695E+001

5%: 2.514E+000 40%:4.924E+000 75%:7.694E+000 99.9%:2.410E+001
10%: 3.002E+000 45%:5.229E+000 80%:8.347E+000
15%: 3.372E+000 50%:5.551E+000 85%:9.157E+000
20%: 3.699E+000 55%:5.895E+000 90%:1.029E+001



Analytical Methods of Propagation



Variance and Covariance
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Conditional Probability

• The probability of event A occurring, given that 
event B has already occurred

• P(A|B) 

• Read this as “probability of A given B”



Dependence

• If the occurrence of A changes the probability that B occurs 
then A and B are dependent

• Example: A jar contains 4 black balls and 6 white balls. 

• Event A = take 1 ball at random, don’t return to jar: 
P(black)=4/10



Dependence

Event B = take another ball, 

– P(black) = 3/9 if A was black

P(black) = 4/9 if A was white

Sampling Without 
Replacement



Independence

• If the occurrence of A does not change the 
probability that B occurs then A and B are 
independent

• Example: A jar contains 4 black balls and 6 white 
balls. 

Event A = take 1 ball at random, 
return to jar: P(black)=4/10

Event B = take another ball, 
P(black) = 4/10 whether or not 
A was black or white Sampling With 

Replacement



Independence and Dependence

• If A and B are independent then

P(B|A) = P(B)

• If A and B are dependent then

P(B)=P(B|A)P(A)+P(B|not A)P(not A)

Example of jar sampled without replacement,

What is the probability of B being black if you don’t 
know the color of A?

P(B = black) = (3/9)(4/10)+(4/9)(6/10) = 4/10



Sum and Difference of Random 
Variables

• Mean

• Variance of Sum

• Variance of Difference

• If the variables are independent:
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Product of Random Variables

• Mean

• Variance

• If X and Y are independent:

     cov( , )X YE XY X Y
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Quotient of Random Variables

• Mean

• Variance

• If X and Y are independent:
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Example

Descriptive Statistics for Y
Mean 6.236E+000 Skewness 1.625E+000 
Median 5.550E+000 Kurtosis 4.888E+000 
Standard deviation 3.173E+000 Standard error 1.003E-002 
Variance 1.006E+001 Geometric mean 5.556E+000 
Minimum 6.924E-001 Geometric SD 1.618E+000 
Maximum 4.069E+001 N 100000 
N positive values 100000

Analytical Solution
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Analytical Solutions for 
Functions

Function Mean Variance

† based on assumption of normality
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Analytical Solutions for 
Functions

Function Mean Variance
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Monte Carlo Sampling
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Monte Carlo Sampling

Simulated

100.00 131.25 162.50 193.75 225.00

20.00 50.00 80.00
100 130

A B

A + B

70

40 130



Latin Hypercube Sampling

100.00 131.25 162.50 193.75 225.00

20 50 80 100 130

A + B

70

Stratify distributions
using quantiles of
equal probability

Randomly choose quantile
without replacement



Latin Hypercube Sampling

Midpoint sampling

• A variation of LHS sampling uses the midpoint of 
the interval

• This method can introduce bias into the results

• More importantly, with periodic functions like 
Sine the method can fail badly if the period of the 
function falls on the midpoints of the intervals



Correlated Sampling

• Correlations can be introduced into LHS sampled 
data by re-ordering the data

• An algorithm exists which uses the inverse of the 
correlation matrix to modify the data

• Rank order correlations are created within the 
data

• The marginal distributions can be of any shape –
they don’t have to form a true multivariate 
distribution



How Many Simulations?

Number of Simulations

V
a
ri

a
n

c
e



Are Parameters Constant 
Through Time? 
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Are Parameters Constant 
Through Time?
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Case Study

The model equations
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Case Study

Uncertainties
Factor Distribution Parameters Units
Vdep Constant 1 m/s

Icow Normal Mean = 8, SD = 0.8 kg/d

Tforage Lognormal GM=0.01, GSD=1.31 d/l

Ichild Triangular Min=0, Mode=0.6, Max=1.2 l/d

Kweathering Lognormal GM=7.65E-2, GSD=1.2 d-1

Dforage Triangular Min=0.1, Mode=0.3, Max=0.6 kg/m3

Kdecay Constant 0.086 d-1

Dchild Constant 3.6E-6 Sv/Bq

Srelease Constant 5000 Bq/day

Χ Constant 88 Bq/m3

Q Constant 1000 Bq/day



Case Study

Frequency Chart
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Case Study

Statistics (Sv/y)

Nominal 2.1E-3

Mean 1.62E-3

SD 1.08E-3

GM 1.31E-3

GSD 2.00

2.5 percentile 2.73E-4

97.5 percentile 4.50E-3



Nested Sampling of Aleatory and 
Epistemic Uncertainties

Inner loop

Outer loop

B= Normal( = 0.14,  = 0.02)

A = Lognormal(=B,  = 1.5)

B

A

Y Y0e
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Inner loop

Outer loop

B= Normal( = 10,  = 2)

A = Lognormal(=0.14,  = 1.5)
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Sampling Design- WIPP PA

• Outer loop steps through 100 vectors of 
input parameters per replicate
– 56 parameters are sampled for each 2004 PABC 

vector

• Inner loop simulates 10,000 futures for each 
vector

• Hence, 1,000,000 simulations of 10,000 year 
futures are simulated per replicate

• Three replicates are normally run for a PA



Choosing Distributions

Objective methods: 

• Traditional statistical methods for fitting 
distributions to data

• Analytical methods for determining distribution
Example: Counting error is assumed to be Poisson 

because radioactive decay of atoms is random in 
time

Subjective methods: 

• Expert elicitation, meta-analysis of data, other 
statistical tools for limited data



Cautions When Using Subjective Methods

Subjective methods are frequently used to assign 
distributions to parameters in risk assessment 
models.

It is generally better to assign subjective 
uncertainty than to pretend that a variable has no 
uncertainty



How Well Would You Do As An 
Expert If Asked To Estimate 

Probabilities? Case I

"The prevalence of breast cancer is 1% (in a 
specified population). The probability that a 

mammogram is positive if a woman has breast 
cancer is 79%, and 9.6% if she does not. What is 
the probability that a woman who tests positive 

actually has breast cancer?______%” 
(Gigerenzer 1994). 



Case I: The Answer

The correct answer of about 8% of the women testing 
positive really have cancer might be more easily found by 
using counts of people

Out of 1000 women:

Expected to have cancer: 1000 0.01 = 10

Expected to test positive: 10*0.79 ≈ 8

False positives: 990  0.096 = 95

8 positives with cancer

95 positive without cancer + 8 with cancer
= 7.7 %



Estimating Probabilities: Case II

• "Linda is 31 years old, single, outspoken and very 
bright. She majored in philosophy. As a student, she 
was deeply concerned with issues of discrimination and 
social justice, and also participated in antinuclear 
demonstrations. Which of the these two alternatives is 
more probable?
(a) Linda is a bank teller
(b) Linda is a bank teller and active in the feminist 
movement."



Case II: The Answer

In previous experiments, 80% to 90% of the 
subjects of the experiment answered (b), 
regardless of the fact that (b) is the product of 
the probability of (a) and the probability that 
Linda is active in the feminist movement and 
thus cannot be larger than (a) (Gigerenzer 1994).



What Can Bias Estimates of 
Uncertainty or Risk?

Base rate bias: Illustrated by Case I.

Representativeness bias: Unusual patterns 
in data, such as HHHTTT in a coin toss 
experiment are thought to have lower 
probability than “more random” patterns, 

such as HHTHTT.



What Can Bias Estimates of 
Uncertainty or Risk?

 Motivational bias: People tend to weight their 
estimates of frequency of events by their 
perceived importance.

 Availability bias: People tend to weight their 
estimates of frequency of events by the ease 
with which they can recall previous occurrences 
of the event or with which they can imagine the 
event to occur. 



What Can Bias Estimates of 
Uncertainty or Risk?

Anchoring and adjustment bias: If a "known" frequency of 
an event (the "anchor point") is presented when eliciting 
estimates of frequencies of similar events, people tend to 
use those estimates to help scale their 
responses(Kahneman and Tversky 1973). 

Conjunction fallacy: Illustrative above in Case II, causes 
people judge alternatives by seeking the greatest similarity.



What Can Bias Estimates of 
Uncertainty or Risk?

 Overconfidence bias: Researchers have 
claimed to show that scientists generally 
tend to underestimate the true uncertainties 
when reporting their results (e.g.,Schlyakhter 
1994; Henrion and Fischhoff 1986).



10 Step Elicitation Protocol

1. selection of issues and associated parameters;

2. selection of experts;

3. preparation of background information;

4. training of experts in the elicitation method;

5. presentation of issues, questions, and 
background information to experts;



10 Step Elicitation Protocol

6. analysis of issues, questions and background 
information by experts;

7. discussion of analyses of issues and 
background information by experts;

8. elicitations of judgment from the experts;

9. consolidation (and possibly aggregation) of the 
elicitation results; and

10.review and communication of the elicitations.



Sensitivity Analysis



Sensitivity Analysis
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Local Sensitivity Analysis

One-at-a-time (OAT) methods
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Sometime normalization is done to get comparable 
magnitudes

The partial derivatives at the nominal values:



Local Sensitivity Analysis

One-at-a-time (OAT) methods

A sensitivity index can be used 
to normalize the estimates

The partial derivatives at the nominal values 
are estimated using 2  points:
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Local Sensitivity Analysis

One-at-a-time (OAT) methods





Sensitivity scores adjust the sensitivity index 
by multiplying them by the CV or relative 
range of the response variable.

• Multiply Si by   or 
,max ,mini ix x

x





Local Sensitivity Analysis
Interactions

Full-factorial sampling design

• If there are p parameters each of which 
is assigned l levels then 
simulation must be done (i.e. all 
possible combinations)

• l is usually small (2 or 3) and values 
are set near the point of interest 
(nominal value)

Analysis of Variance can be used to analyze 
resulting data

pn l



Global Sensitivity Analysis

Global Sensitivity Analysis

• Analytical methods

• Regression-based methods

• Analysis of Variance

• Correlation Ratio

• Fourier Amplitude Sensitivity Test



Sensitivity Analysis
Global Sensitivity of a Sum
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Remember the propagation formulas?

The variance of a sum = sum of variances 
(if independent)



Sensitivity Analysis
Global Sensitivity of a Product
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Propagation formula is a bit more complex

For 3 independent variables



Regression Methods

Regression methods are popular because

• They are familiar

• They don’t require any specialized sampling 
design, so they can use the results generated for 
uncertainty analysis

• There are methods for identifying and handling 
non-linearities



Linear Regression

Linear Regression can be used to relate the values 
of one variable (the dependent variable) to 
another (the independent variable)

• For example, the concentration of a radionuclide 
may be a function of soil depth

• Note that the reverse is not true – soil depth is 
not dependent on radionuclide concentration



Linear Regression

Assumption of Simple Linear Regression

• The relationship between X and Y is modeled by a 
straight line

• The independent variable (X) is measured without 
error

• For each value of X the Y value is sampled from a 
normal distribution

• The normal Y distributions are equal to each other



Y-Values Normally Distributed

Y



Linear Regression

Y aX b   

Assumption of Simple Linear Regression
• The relationship between X and Y is modeled by a 

straight line
• The independent variable (X) is measured without 

error
• For each value of X the Y value is sampled from a 

normal distribution
• The normal Y distributions are equal to each other
• The Y values are independent of each other
• The errors in Y are additive



Simple Linear Regression
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Simple Linear Regression
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Simple Linear Regression
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Simple Linear Regression

Is the relationship significant?

• Compute the F-value and test it

– Regression and analysis of variance use the same 
“model”

• Compute the correlation coefficient, r, and test it 
for significance

• Compute the coefficient of determination, r2

– Shows proportion of variation in Y accounted for 
by X



Simple Linear Regression

Is the relationship significant?

• Compute the F-value and test it

– Regression and AOV use the same “model”

• Compute the correlation coefficient, r, and test 
that

• Compute the coefficient of determination, r2

– Shows proportion of variation in Y accounted for 
by X

Statistical Significance



Simple Linear Regression

Is the relationship significant?

• Compute the F-value and test it

– Regression and AOV use the same “model”

• Compute the correlation coefficient, r, and test 
that

• Compute the coefficient of determination, r2

– Shows proportion of variation in Y accounted for 
by X

Practical Significance



Simple Linear Regression

regression MS Sum of Squares Regression/DF Regression

residual MS Sum of Squares Residual/DF Residual
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The Coefficient of Determination
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The coefficient of determination gives the proportion of 
the variance in the data accounted for by the linear 
model



Significance Falls as the Slope Approaches 0
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Check the Residuals
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Patterns in the residuals can indicate 
that the model is inadequate
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Check the Residuals

0

+1

-1

Patterns in the residuals can indicate 
that the model is inadequate



Runs test

0

+1

-1

A “Runs test” can be used to see if a pattern 
of high and low values is significant.

Run 1

Run 2

Run 3

• Error should be 
random above 
and below

• Runs indicate 
linear model is 
missing dynamics



Runs test

0

+1

-1

A “Runs test” can be used to see if a pattern 
of high and low values is significant.

Run 1

Run 2

Run 3

• Count the runs 
of positive and 
negative values

• Check against 
tabulated values 
for significance



Signs test

0

+1

-1

A “Signs test” can be also used to see if a 
pattern in the residuals is significant. 

• Assign + if the 
change from 1 
point to the next 
is positive, - if 
negative

• Check counts 
against 
tabulated values 
for significance
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Runs test

0

+1

-1

Can you guess what distribution is used to 
figure out the probabilities of runs or signs?

Run 1

Run 2

Run 3



What do you do if the data are not linear?
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What do you do if the data are not linear?

Try some transforms

Log(Y)

Log(X)

Etc.

Y



What do you do if the data are not linear?
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What do you do if the data are not linear?

Rank Regression

• Replace the values with their “rank”

• The rank is the position in the sorted list 
of values



Ranking Linearizes Non-Linear but Monotonic Data
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Error in the Independent (X) Variable

Sometimes the independent variable is

• Known to contribute to the variability in Y

• Cannot be measured without error

Regression assumes there is no error in X.

So what is the impact of the error?



Error in the Independent (X) Variable

If the error is “classical” error then the mean is 
“biased toward 0”.

• Classical error occurs if the measurement of X is 
subject to random error

W = X + e

• “Biased toward 0” means that the slope is 
estimated to be more horizontal than the 
response curve really is.



Classical Error in X
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Berkson Error

Suppose X cannot be measured directly, but must 
be inferred from Y. For example:

• Badge dose is proportional to exposure but is 
inferred from optical density

• Temperature is not measured but is inferred from 
the setting on a heater

In this case the error in X has no impact on the 
slope of the regression line



Correlation

What if there is no dependency, only a 
relationship?

Look for correlations in the data



Correlation

What if there is no dependency, only a 
relationship?

• Look for correlations in the data

• Similar assumptions to Regression but the X 
values can have variability
– The X values at each Y must be normally 

distributed 

The correlation coefficient, r, is used to test for 
significance



Rank-Correlation

• Often used in Sensitivity Analysis of Models

• Useful for assigning a relative order of 
importance

• Always inspect the scatter plots

– Means little if curve is not monotonic



Regression Methods

Rank regression is popular because it handles 
many non-linear responses without having to 
search for transformations



Partial Regression Methods

Partial regression or partial rank regression is also 
popular because it removes the linear effects of 
the other variables (model parameters) when 
fitting each model parameter



Simple or Rank Regression?

Large differences between the ordering of model 
parameters using simple and rank regression can 
indicate non-linear responses are present



Using UCalc to do Uncertainty and 
Sensitivity Analyses



The problem:  Calculate the dose rate to a deer after 
feeding for 100 days on 137Cs-contaminated 
vegetation and do an uncertainty analysis of the result

Quantity Symbol Most likely

value

Distribution

type

Std Dev

or GSD

Min

value

Max 

value

Feeding

rate

R 1.2 kg/d normal Std dev 

= 0.2

Concentr. 

in veg.

CV 10 Bq/kg lognormal GSD =1.5

Absorbed 
fraction

A 0.4 triangular 0.3 0.6

Loss rate

constant

K 0.058 d-1 triangular 0.043 0.077

Muscle

mass

M 28 kg truncated 

normal

Std. dev 

= 4

16 45

Dose 
factor

DF 8.2E-9 Gy/d

per Bq/kg

lognormal GSD = 1.2

Parameter values assumed:



The Deer Model

1 1 1

1 1 1 1

Rate of change in deer inventory

 kg-d  Bq-kg  d  Bq

Concentration in deer

 Bq/kg  Bq /  kg

Dose rate
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Algebraic solution (deterministic) using
the most probable single-values
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UCalc screen for deer model



UCalc screen for deer model with units 
checking



UCalc solution-deterministic

Now, the question becomes:  What is the uncertainty of 
this prediction?

2.42E-8 
Gy/d



Input data for the model (UCalc report)

Expressions
d/dt Q = R[kg-Day^-1]*CV[Bq-kg^-1]*A-k[Day^-1]*q[Bq] 0 [Units = Bq] 
Expression CM = Q/M[kg] 0 [Units = Bq-kg^-1] 
Expression DR = CM*DF[Gy-day^-1-Bq^-1-kg] 0 [Units = Gy-day^-1] 

Model Parameters 
R 1.2 kg - Day^-1 
CV 10 Bq - kg^-1 
A .4  
k .058 Day^-1 
M 28 kg 
DF .0000000082 Gy - day^-1 - Bq^-1 - kg 
Number of Inner Realizations: 1 
Number of Outer Realizations: 
Time Step for Saving Results: 1 
Time Step for Sampling Time-Varying Parameters: 1 
Name of Independent Variable: Time 
Starting Value of Independent Variable: 0 
Ending Value of Independent Variable: 100 
Unit of Time: Days 
Random number seed: 31415 



UCalc output with 50 realizations



Frequency histogram for dose rate at time = 
100 days (500 runs)



Cumulative distribution for dose rate at time 
= 100 d (500 runs)



Numerical descriptors of the dose rate 
output distribution



UCalc results on the sensitivity analysis 
through statistical regressions



Pie chart showing how variance is 
partitioned among the input parameters
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Dose rate vs. K, the least influential 
parameter, based on rank regression



Dose rate vs. CV, the most influential 
parameter, based on rank regression



Slides below here are extras – to be 
used if questions arise



Sensitivity of Total Release to Effective 
Shear Strength
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Latin Hypercube Sampling

• Latin Hypercube Sampling is used for parameters

– Compared to simple random sampling, LHS 
reduces the number of vectors required to estimate 
means, variances, etc.

– Extreme values of input parameters are sampled

Simulation Number
1 2 3 4 5 6 7 8 9 10

Variable Quantile Sampled
A 6 3 9 1 2 7 8 5 10 4
B 8 5 2 9 6 4 10 7 1 3
C 2 7 10 8 4 9 6 1 5 3
D 5 9 4 3 8 10 2 7 6 1
E 7 10 2 5 8 9 6 3 1 4



Modeling Intrusion Scenarios
(Aleatory Uncertainty)

CCDFGF generates 10,000 possible futures for 
each vector.

• A future is the cumulative release from one 
possible sequence of events from 0 to 10,000 
years.

• Each future consists of a series of randomly 
occurring drilling intrusions.

• Each set of 10,000 simulations yields one 
CCDF



“Horsetail” Plot

Total Normalized Releases (CRA 2004 PABC)
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Shear Strength Impacts Releases



Sensitivity Analysis Methods(cont.)

• Partial correlation coefficients
– Remove the linear effects of variables already included 

in the model. 

– Used to order the addition of variables to the model.

– Used to rank the importance of a parameter



Case Study

The model equations
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Sensitivity Analysis

Rank correlation (r) and contribution to variance (%Var)
r %Var

Milk consumption rate 0.69 51.9

Forage mass 0.51 27.5

Forage/milk transfer coefficient 0.40 18.8

Avg. daily intake rate 0.14 2.1

Weathering rate 0.12 1.6



Analysis of Variance

Analysis of Variance

• Requires full factorial sampling design 

• Levels of parameters are set across the range of 
the distributions, e.g. at the 1st, 20th, 40th, 60th, 80th

and 99th percentiles.



Sensitivity Analysis
Correlation Ratio
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Used to estimate VCE 
of parameter 1
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Sensitivity Analysis
Correlation Ratio
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Fourier Amplitude Sensitivity Test 
(FAST)

A Fourier series is fit to the model results to 
convert a multidimensional integral over the 
model parameters into a 1-dimensional integral

A Fourier decomposition is used to obtain the 
fractional contributions of the input parameters to 
the total variance of the model prediction



Uncertainty & Sensitivity Analyses

• Global sensitivity analysis can be conducted using 
only results from uncertainty analysis

– No additional simulations required

– Statistical model used to relate outputs to inputs



Propagation of Uncertainty

X+Y X+Y

Many simulationsFew simulations



Classification of Uncertainty

• Epistemic (subjective): Arises from a lack of 
knowledge about parameters assumed to have 
fixed values within the computational 
implementation of a PA.

– Examples: Permeability, Porosity, etc.

• Aleatory (stochastic): Arises because the system 
can potentially behave in many different ways. 
The sequence of future events is not known.

– Example: Timing of future drilling events.



Nested Sampling of Aleatory and 
Epistemic Uncertainties

Inner loop
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B= Normal( = 0.14,  = 0.02)
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Sampling Design

• Outer loop steps through 100 vectors of 
input parameters per replicate
– 56 parameters are sampled for each 2004 PABC 

vector

• Inner loop simulates 10,000 futures for each 
vector

• Hence, 1,000,000 simulations of 10,000 year 
futures are simulated per replicate

• Three replicates are normally run for a PA



Sensitivity to Repository Scale Assumptions
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“Horsetail” Plot of CCDFs (Cumulative 
Complimentary Distribution Functions)

Total Normalized Releases (CRA 2004 PABC)

100 Trials with 10,000 Futures/Trial
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Sensitivity Analysis Methods

• Stepwise linear multiple regression 
– Evaluates the relative importance of the various sampled 

parameters on the estimates of potential releases.

– Constructs a sequence of regression models starting 
with the most influential input parameter. 



Sensitivity Analysis Methods (cont.)

Rank regression
– Replaces the values of the data with their ranks 

Benefits:

– Tends to linearize the response curves 

– Standardizes the variability in the outputs and 
parameters by mapping the data into identical ranges.

– Tends to de-emphasize the impact of “outliers”. 


