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Traditional Visualization Workflow
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Traditional Visualization Workflow
is Breaking Down
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Traditional In-Situ Visualization
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Coprocessing
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Coprocessing Library

Solver ParaView 
Server

Coprocessing
APIAdaptor

INITIALIZE()
ADDPIPELINE(in pipeline)

REQUESTDATADESCRIPTION(in time, out fields)
COPROCESS(in vtkDataSet)

FINALIZE()

function
calls

function
calls



Simulation
(CTH, Presto, S3D, etc.)

Services

ParaVie
w 

Services

# Create the reader and set the filename. 

reader = servermanager.sources.Reader(FileNames=path)

view = servermanager.CreateRenderView()

repr = servermanager.CreateRepresentation(reader, view)

reader.UpdatePipeline()

dataInfo = reader.GetDataInformation()

pDinfo = dataInfo.GetPointDataInformation()

arrayInfo = pDInfo.GetArrayInformation("displacement9")

if arrayInfo:

# get the range for the magnitude of displacement9

range = arrayInfo.GetComponentRange(-1)

lut = servermanager.rendering.PVLookupTable()

lut.RGBPoints  = [range[0], 0.0, 0.0, 1.0,

range[1], 1.0, 0.0, 0.0]

lut.VectorMode = "Magnitude" 

repr.LookupTable = lut

repr.ColorArrayName = "displacement9"

repr.ColorAttributeType = "POINT_DATA"

Rendered Images

Polygonal Output
with Field Data

Crater StatisticsFragment Statistics

Script Export

Augmented 
script in 
input deck.

Output 
Processed 
Data
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Risks with Direct Coupling

• Running at Scale

– Most likely some algorithms will scale, others will not.

• Bloat

– Linker can significantly reduce code overhead if
visualizations are known a-priori.

• Python scripting is problematic for a variety of reasons.

– Adapting memory structures is tricky.

• Some algorithms will create their own data anyway.

• Stability (real and perceived)

– Adding any coprocessing increases complexity, which can 
compromise stability.

– What if coprocessing blamed for hero-sized crash?

– What if coprocessing really is at fault?



Loose Coupling via Staged I/O
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You can do post 
processing here

The coprocessing
library is perfect 
for this.



ParaView Web Services



Titan Web Services


