
Visualization Work Supporting
Data Staging and Code Coupling

Data Staging, In-Transit Processing, 
and Code Coupling in HPC Systems

Friday, July 16, 2010

Kenneth Moreland

Sandia National Laboratories

Release Marking (e.g. Not Approved for Release, SAND XXXX, etc.)

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

under contract DE-AC04-94AL85000.

SAND2010-4573P



Traditional Visualization Workflow

Solver

Disk
Storage

Visualization

Full Mesh



Traditional Visualization Workflow
is Breaking Down

Image from Rob Ross,
Argonne National Laboratory



Traditional In-Situ Visualization

Solver

Disk
Storage

Visualization

Images

Solver

Disk
Storage

Visualization

Full Mesh



Coprocessing

Solver

Disk
Storage

Visualization

Images

Solver

Disk
Storage

Visualization

Full Mesh

Solver

Disk
Storage

Features &
Statistics

Salient Data

Visualization



Coprocessing Library

Solver ParaView 
Server

Coprocessing
APIAdaptor

INITIALIZE()
ADDPIPELINE(in pipeline)

REQUESTDATADESCRIPTION(in time, out fields)
COPROCESS(in vtkDataSet)

FINALIZE()

function
calls

function
calls



Simulation
(CTH, Presto, S3D, etc.)

Services

ParaVie
w 

Services

# Create the reader and set the filename. 

reader = servermanager.sources.Reader(FileNames=path)

view = servermanager.CreateRenderView()

repr = servermanager.CreateRepresentation(reader, view)

reader.UpdatePipeline()

dataInfo = reader.GetDataInformation()

pDinfo = dataInfo.GetPointDataInformation()

arrayInfo = pDInfo.GetArrayInformation("displacement9")

if arrayInfo:

# get the range for the magnitude of displacement9

range = arrayInfo.GetComponentRange(-1)

lut = servermanager.rendering.PVLookupTable()

lut.RGBPoints  = [range[0], 0.0, 0.0, 1.0,

range[1], 1.0, 0.0, 0.0]

lut.VectorMode = "Magnitude" 

repr.LookupTable = lut

repr.ColorArrayName = "displacement9"

repr.ColorAttributeType = "POINT_DATA"

Rendered Images

Polygonal Output
with Field Data

Crater StatisticsFragment Statistics

Script Export

Augmented 
script in 
input deck.

Output 
Processed 
Data



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2000 4000 6000 8000 10000

S
li

c
e

 T
im

e
 (

s
e

c
)

Cores

0

0.5

1

1.5

2

2.5

3

0 2000 4000 6000 8000 10000

W
ri

te
 T

im
e

 (
s

e
c

)

Cores



Risks with Direct Coupling

• Running at Scale

– Most likely some algorithms will scale, others will not.

• Bloat

– Linker can significantly reduce code overhead if
visualizations are known a-priori.

• Python scripting is problematic for a variety of reasons.

– Adapting memory structures is tricky.

• Some algorithms will create their own data anyway.

• Stability (real and perceived)

– Adding any coprocessing increases complexity, which can 
compromise stability.

– What if coprocessing blamed for hero-sized crash?

– What if coprocessing really is at fault?



Loose Coupling via Staged I/O

Solver

Staged I/O 
ServiceFile I/O API

High Speed
Network

Disk
Storage

Staged I/O 
Client

You can do post 
processing here

The coprocessing
library is perfect 
for this.



ParaView Web Services



Titan Web Services


