
Chapter 11
The One-Dimensional-Turbulence Model

Tarek Echekki, Alan R. Kerstein, and James C. Sutherland

Abstract The one-dimensional turbulence (ODT) model represents an efficient and
novel multiscale approach to couple the processes of reaction, diffusion and turbu-
lent transport. The principal ingredients of the model include a coupled determin-
istic solution for reaction and molecular transport and a stochastic prescription for
turbulent transport. The model may be implemented as stand-alone for simple tur-
bulent flows and admits various forms for the description of spatially developing
and temporally developing flows. It also may be implemented within the context of
a coupled multiscale solution using the ODTLES approach. This chapter outlines
the model formulation, and applications of ODT using stand-alone solutions and
ODTLES.

11.1 Motivation

In his survey of turbulent combustion modeling, Norbert Peters [25] emphasizes the
difficulties that can arise due to the interactions between turbulence and chemistry
over a wide range of length and time scales. Assumptions about inertial-range scal-
ing of the turbulent cascade are not necessarily applicable, and there are few if any
formal or conceptual constructs to which the modeler can turn when these scalings
do not apply. He notes important empirical evidence that gross features of turbu-
lent combustion often conform to inertial-range phenomenology, particularly with
regard to its most important consequence for combustion: the length and time scale
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separation between the dominant large-scale turbulent motions and the small scales
of molecular transport and chemical kinetics in flames. Existing models rely on
this scale separation, with the exception of the linear-eddy model (LEM: see Chap-
ter 10) and one-dimensional turbulence (ODT). To the extentthat scale separation
is not obeyed in turbulent combustion processes, LEM and ODTcan be especially
suitable for modeling these processes.

Peters discusses the role of scale invariance as well as scale separation in the
inertial range. The latter is more general: scale separation is possible in the absence
of scale invariance, but there is no scale invariance without scale separation (see
below). Scale invariance of spectral energy transfer in turbulence, in conjunction
with (and in fact, relying on) the negligible influence of viscous dissipation in the
inertial range (an idealization, but valid in this context), imply that the characteristic
eddy time scaleτ(l) at length scalel obeys the dependenceτ(l)∼ l2/3. This implies
power-law dependences of eddy velocity, energy, and diffusivity, and ultimately,
scale separation between inertial-range and dissipation-range processes.

LEM resolves all advective, diffusive, and chemical lengthand time scales of tur-
bulent combustion, and hence does not rely on scale separation. It represents thermal
expansion by means of dilatation of the 1D domain, but it doesnot model other as-
pects of feedback from combustion to turbulent motions, such as viscosity variations
and turbulence generation by expansion. In particular, theprobability distribution
function (pdf) from which the maps representing turbulent eddies are sampled has a
fixed functional form whose construction is guided by the inertial-range diffusivity
scaling (Chapter 10). To the extent that turbulence-chemistry interactions result in
deviations from this scaling, the fidelity of LEM can be impaired. Other influences,
such as rapid transients caused by initial conditions or time-varying boundary con-
ditions, can also cause significant deviations from inertial-range scalings.

As noted, there is little theoretical guidance on how to model the deviations from
inertial-range scalings that might be caused by these influences or the effects of
these deviations on combustion dynamics. Within the 1D stochastic approach based
on the triplet-map representation of turbulent eddies (seeChapter 10), incorporation
of these influences is therefore approached from an entirelydifferent perspective.

This perspective is introduced by first considering direct numerical simulation
(DNS) of turbulent combustion. In DNS, no theory or guiding principle is needed
to capture combustion-induced deviations from inertial-range scaling because the
underlying equations of motion are solved. Thus, the consequences of turbulence-
chemistry interactions are outcomes of the simulated flow evolution that do not re-
quire prior analysis or modeling. To the extent that the local, time-resolved interac-
tions between turbulent eddy motions and combustion processes can be represented
robustly with the 1D stochastic framework, that framework can likewise capture
their consequences as outcomes of simulated evolution.

A formulation with this capability becomes, in effect, a broadly predictive model
of turbulent flow evolution rather than a model focused, as LEM is focused, on sim-
ulation of mixing and reaction in a parametrically specifiedturbulent environment.
Thus, the quest for a robust turbulent combustion model leads ultimately to recon-
sideration of turbulence modeling more generally. This is the context in which ODT
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was originally formulated. The stages of its development for application to free and
confined shear flows, variable-density flows, buoyant stratified flows, and multi-
phase flows, as well as combustion and other reacting flows, have been documented
in references cited below.

To introduce ODT, a formulation applicable to constant-property flow is outlined.
Algorithmic as well as physical modeling considerations are discussed. Extensions
needed for combustion applications and representative examples are described. Use
of ODT for subgrid modeling in 3D simulations of constant-property flow and of
combustion is discussed, and future prospects are assessed.

11.2 Constant-Property ODT

11.2.1 Model Formulation

ODT is introduced with reference to LEM by formulating LEM ina notation that
carries over directly to ODT. An eddy rate distributionλ (y0, l ; t) is defined by setting
λ (y0, l ; t)dydl equal to the expected number, per unit time, of eddies for which the
lower boundary of the eddy is in[y0,y0 + dy] and the eddy size is in the range
[l , l + dl]. In terms ofΛ and f (l) defined in Chapter 10,λ (y0, l ; t) = Λ f (l). Thus,
the units ofλ are 1/(length2×time) and its integral over eddy sizesl is Λ .

In LEM, λ has no dependence ony0 or t unless one chooses to hard-wire such
dependence intoΛ or f (l), which has been done in some instances, e.g., [13]. ODT
is formulated to incorporate such dependence in a way that reflects the relationship
between the likelihood of an eddy, quantified by the eddy timescaleτ, and the local
flow state. This requires the introduction of a local, instantaneous representation of
the flow state in ODT, causing ODT to be a fundamentally different type of model
than LEM, whose turbulent state is characterized parametrically.

The flow representation in ODT consists of 1D profiles of one ormore veloc-
ity components whose evolution, in the simplest constant-property formulation, is
qualitatively the same as in LEM applied to a constant-density passive scalar. For
example, with one velocity componentu(y, t), time advancement is governed by

∂u
∂ t

= ν
∂ 2u
∂y2 , (11.1)

where ν is the kinematic viscosity. This advancement is punctuatedby ‘eddy
events,’ each of which consists of a triplet map (defined and explained in Chap-
ter 10) applied to theu profile, possibly (depending on the formulation) followed
by another operation that is described shortly. Absent the latter, the evolution ofu is
equivalent to the evolution of a constant-property passivescalar in LEM, except for
the crucial distinction thatλ (y0, l ; t) is now a specified function of the current flow
stateu(y, t). Several formulations of this dependence have been introduced during
the course of ODT development. The formulation discussed here,
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λ =
Cν
l4

√(
uK l
ν

)2

−Z, (11.2)

is a specialization of the formulation described in [17], which has a more detailed
explanation of the motivation and features of ODT than can beprovided here.

In Eq. 11.2,C andZ are free parameters whose roles are explained shortly, and
for any property profiles(y, t),

sK ≡ 1
l2

∫
s(M(y))K(y)dy (11.3)

definessK . Here,M(y) is defined by the formal mathematical representation of the
triplet map,

s(y) → s(M(y)), (11.4)

which indicates that the value of propertys at M(y) is mapped to locationy. Thus,
M is the operational inverse of the triplet map, which is formally convenient because
M is a single-valued map but the triplet map is triple-valued.The ‘kernel’K(y) ≡
y−M(y) is the map-induced displacement of the point that is mapped to y by the
triplet map.K(y) thus depends on map parametersy0 andl , but this dependence is
suppressed in the condensed notation used here.

To explain the role of the kernel, the more general form of theeddy event in ODT
is introduced. Namely, Eq. 11.4 is generalized to

s(y) → s(M(y))+csK(y), (11.5)

which indicates that the eddy event applies the triplet map to propertys and then
adds the kernel times a coefficientcs to s(y). The kernel addition is applied only
to velocity components and is intended to add or substract kinetic energy with-
out changing the total momentum, which is assured for constant-density flow be-
causeK(y) integrates to zero. This provides a mechanism for energy redistribution
among velocity components when the formulation contains more than one compo-
nent, enabling the model to simulate the tendency of turbulent eddies to drive the
flow toward isotropy. Total energy must be conserved, imposing a constraint on the
values of the coefficientscs. The additional constraints needed to uniquely deter-
mine all the coefficients are obtained by requiring the kernel addition to produce an
energy distribution within the eddy interval[y0,y0 + l ] that is as close to isotropic
as possible. There are other reasonable criteria for determining the coefficients that
might be advantageous in some cases [19]. In applications such as buoyant strati-
fied flows or turbulent advection of immiscible liquids, eddyevents might induce
changes of the gravitational or surface-tension potentialenergy, requiring equal-
and-opposite changes of kinetic energy. Through the kerneloperation, conservation
of total energy in ODT couples flow evolution to dynamically active scalars such
as density in buoyant flows, as demonstrated in ODT studies ofthese flows [5, 15–
17, 20, 35, 36, 38–40].
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By construction, Eq. 11.5 conserves momentum for constant-density flow. For
variable-density flow, a more general treatment is needed. Momentum conservation
is no longer automatic, so extra degrees of freedom are introduced to enforce mo-
mentum conservation, further generalizing the eddy event as follows:

s(y) → s(M(y))+bsJ(y)+csK(y), (11.6)

whereJ(y) ≡ |K(y)| and the additional coefficientsbs are determined by requiring
the eddy event to conserve they-integrated momentum of all velocity components
s. For details, see [1].

Most combustion applications of ODT pre-date this variable-density formula-
tion, and several pre-date the introduction of the kernel formalism in Eqs. 11.2 and
11.5, so they do not include the kinetic-energy and variable-density phenomenology
that can now be incorporated into ODT. The less complete treatment is adequate
for many combustion applications, much as LEM, which is considerably simpler,
is broadly useful for turbulent combustion simulation. Thevariable-density formu-
lation is not discussed further here, but its future use, where appropriate, in ODT
simulations of turbulent combustion is encouraged.

Before proceeding further, the guiding principle that motivates the model con-
structs introduced thus far is explained. Empirical evidence and formal analysis
support the viewpoint that the turbulent cascade tends to belocal in scale space,
meaning that individual eddy motions such as vortex stretching typically shrink flow
features in turbulence by order-one geometrical increments, such that the wide range
of flow scales in turbulence is the cumulative outcome of manyincremental scale
reductions rather than a smaller number more drastic reductions.

Enforcement of this scale-locality principle in ODT is the basis of much of the
model formalism. The triplet map decreases flow scales by no more than a factor
of three. No other measure-preserving map induces less scale reduction. (Measure
preservation assures that applicable conservation laws are obeyed.)

Energy changes during the eddy event are likewise consistent with scale locality.
The kernel used for this purpose must be zero at the eddy endpoints (to prevent
discontinuities) and must integrate to zero, so it must haveat least two extrema.
The functionK(y) consists of three linear segments over size-l/3 spatial intervals.
Thus it introduces structure consistent with the scale reduction by the triplet map.
The map is applied before the kernel because the kernel followed by the map would
introduce structure at scalel/9.

Eddy selection as well as eddy implementation is guided by scale locality, in
this case meaning that size-l motions are driven by size-l influences. Eddy phe-
nomenology (i.e., mixing-length concepts applied to an individual eddy) suggests
that λ should be of order 1/(l2τ), whereτ is the eddy turnover time, or equiva-
lently, V(l)/l3, whereV(l) is the velocity difference between the eddy endpoints.
The latter estimate, with numerical coefficients absorbed in the free parameterC
of Eq. 11.2, was used in the original ODT formulation [15] andmany subsequent
applications. When kernels were introduced, the estimateV(l) ∼ uK was adopted,
which connects eddy selection to energy-based eddy implementation using an ex-
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pression that measures velocity variations over an order-l distance, and hence is
consistent with scale locality. In Eq. 11.2, the expressionfor λ involves a square
root that contains a term proportional tou2

K , hence a kinetic-energy term. In formu-
lations involving multiple velocity components or other energy contributions such
as gravitational potential energy, these contributions are additive under the square
root.

A specific connection betweenuK and eddy energetics is identified through con-
sideration of the possible range of kernel-induced energy changes. Kernel addition
can reduce theu kinetic energy within the eddy to zero only if the spatial profile of
u within the eddy is proportional to the kernel function, so that kernel addition can
makeu identically zero within the eddy. Otherwise, there is a maximum amount of
energy that can be extracted from theu profile by kernel addition that is less than the
totalu kinetic energy within the eddy. This maximum, termed the ‘available energy’
of theu component, is(27/8)ρ lu2

K , whereρ is the density [19]. This connectsuK to
flow energetics in various ways. For example, implementation of the isotropy crite-
rion involves assignment of the coefficientscs so as to equalize component available
energies. In buoyant stratified flows, the available energy is the maximum kinetic en-
ergy that can be extracted in order to compensate for an equal-and-opposite change
of gravitational potential energy. If there is less than theneeded amount of available
energy, then the eddy is energetically prohibited, so itsλ value is set equal to zero.

The indication of a prohibited eddy is that the quantity in the square root in
Eq. 11.2 is negative. The parameterZ is introduced so that an eddy can be prohibited
even if there is net available energy. As indicated by the normalization ofuK in that
equation,Z in effect sets a threshold Reynolds number for eddy turnover. Nonzero
Z is not always required for good model performance, but in some instances it im-
proves the results sufficiently to justify the introductionof an additional adjustable
parameter. In some instances,Z is assigned a small positive value solely for compu-
tational efficiency. It prevents the implementation of unphysically small eddies that,
if implemented, would have no noticeable effect on results of interest.

C is the main adjustable parameter of ODT. It scales the eddy event rate, and
hence the simulated turbulence intensity, for a given flow configuration. In transient
flows, it controls overall time development, e.g., the spreading rate of free shear
flows.

Just as there can be a need to assign a positiveZ value to suppress small ed-
dies, there can be a need to suppress unphysically large eddies that would otherwise
occur. This need arises primarily in simulations of free shear flows with laminar
co-flows or free streams. Eddies much larger than the width ofthe turbulent region
can have enough available energy to enable their occurrence. (For a planar mixing
layer, the difference between the free-stream velocities can provide enough avail-
able energy irrespective of any turbulence.) Such eddies violate the scale-locality
requirement that the scale of the flow features that provide the available energy for
eddy occurrence should be of the order of the eddy size.

Several large-eddy-suppression procedures have proven useful. One that is found
to work particularly well for jets and jet diffusion flames [7, 27] requires thatτ
(which isl/uK in the formulation described here) must be less than the elapsed flow-
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advancement time times an adjustable coefficient, otherwise the eddy is prohibited.
The introduction of an additional free parameter is found tobe well justified by
the resulting model performance. An alternative that was used to simulate mixing
layers [1] and buoyant fire plumes [31] is the scale-reduction method, in which
the eddy is divided into three equal parts and each of these must be found to have
enough available energy for eddy turnover (based on a smallZ value that negates any
numerical noise contribution; results are insensitive to the chosen value), otherwise
the eddy is prohibited. If not prohibited based on this test,the eddy is processed in
the usual manner.

11.2.2 Numerical Implementation

Based on Eq. 11.3,uK and thusλ depend ony0 andl , and this dependence is time
varying due to the time advancement ofu(y, t). Therefore at each instant there is
a new eddy rate distribution from which individual eddy events are to be sampled.
Computation of, and sampling from, this two-parameter distribution on an ongoing
basis is computationally unaffordable. Therefore, the thinning algorithm [22] for
efficient sampling from nonstationary Poisson processes (which is a generalization
of the von Neumann rejection method) is employed. A fixed eddyrate distribution̂λ
is constructed so as to oversample all eddies, i.e., it exceeds the trueλ value for all
y0, l , andt. When an eddy is sampled from the fixed distribution, the trueλ value for
that eddy based on the flow state at that instant is computed and the eddy is accepted
with probability λ/λ̂ , otherwise rejected. This approach strongly influences many
aspects of algorithm formulation and coding.

ODT has been implemented numerically using both uniform andadaptive meshes.
On a uniform mesh, the triplet map is implemented as a permutation of mesh cells.
On an adaptive mesh, the mathematical definition of the triplet map on the spa-
tial continuum is applied. Properties are assumed constantwithin each cell, so the
continuum triplet map is applied to piecewise constant continuum property profiles.
This involves mapping cell faces, which creates new faces because the map is multi-
valued, and assigning cell property values accordingly.

The uniform-mesh implementation is described in many of thepublications that
have been cited, and a uniform-mesh code and documentation are available for
download [9]. The adaptive-mesh implementation is explained and applied in [31].

11.2.3 Generalizations and Couplings

The adaptive mesh facilitates several generalizations of ODT that are difficult to
implement on a uniform mesh. It allows Lagrangian rather than Eulerian implemen-
tation of advection (in the conventional sense), which is useful for incorporating
thermal expansion and for implementing spatial (streamwise) rather than temporal
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advancement of ODT. Spatial advancement conserves property fluxes rather than
properties. Flux conservation requires an implementationof continuity that involves
dilatations along the 1D domain, which are convenient to implement in a Lagrangian
manner. The numerics of Eulerian spatial advancement are especially challenging
for variable-property flows. This motivated the introduction of an adaptive mesh
to simulate the vertical spatial development of a fire plume [31]. Variable-property
spatial advancement has been implemented on a uniform mesh by performing a
Lagrangian sub-step and then interpolating the displaced mesh back to the fixed
uniform mesh [1].

The adaptive mesh also facilitates ODT implementation in cylindrical geometry,
in which triplet maps must conserver dr rather thandy. In this case, the triplet map
is not readily approximated by permuting the cells of a uniform mesh. An adaptive-
mesh implementation of a cylindrical spatial formulation has been used to simulate
round jet diffusion flames [21]. An earlier cylindrical LEM formulation on a uniform
mesh [14] conserves ensemble averages but is not locally conservative, which is less
desirable but adequate for some purposes.

A spatially advancing ODT realization can be interpreted asa 2D flow snap-
shot. On this basis, a spatially advancing fire-plume simulation [31] has been used
to compute 2D radiation fields, which are then used to specifythe background ra-
diation field for the next simulated realization. This alternation between ODT and
the radiation computation was iterated to statistical convergence to obtain a coupled
flow-radiation solution.

Another physical process that has been coupled to the ODT flowsimulation is
inertial-particle response to turbulent motions (one-waycoupling). This formulation
has been used to simulate wall deposition in channel flow [34].

For some applications, full spatial resolution is unaffordable even in 1D. There-
fore various approaches to subgrid closure in ODT have been developed and applied
[20, 24].

Chapter 10 describes ways in which LEM domains have been coupled to under-
resolved 3D flow simulations to provide mixing and chemistryclosure. ODT has
the capability to provide subgrid momentum closure as well,as demonstrated in
applications to channel flow [33] and homogeneous decaying turbulence [32]. Var-
ious formulations of ODT-based 3D flow simulation have been proposed [17, 18,
23]. Formulations that have been used for combustion simulation are described in
Sect. 11.3.3.

11.2.4 Features of the ODT Representation of Turbulent Flow

The ODT representation of a time-developing Kelvin–Helmholtz instability, illus-
trated in Fig. 11.1, indicates some of the flow features captured by the model. This
illustration is based on the ODT formulation of [19].

The rendering shows that the width of the active mixing zone grows primarily by
the relatively infrequent occurrence of a large event extending beyond the current
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range of the mixing zone, with some additional contributionby the more numerous
small events. This process is consistent with the dominant role of large engulfing
motions and the secondary role of small-scale nibbling in turbulent entraining flows
under neutral-buoyancy conditions. (The effect of densitystratification on the ODT
representation of turbulent entrainment has been investigated [1, 15].)
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Fig. 11.1: Graphical representation of the sequence of eddyevents during a sim-
ulated ODT realization of a time-developing Kelvin–Helmholtz instability (left
panel) and a time-developing planar wake (right panel) [19]. The Kelvin–Helmholtz
and wake simulations are initialized using step-function and top-hat initial velocity
profiles, respectively. The space and time units in this illustration are arbitrary. In
the plots, each eddy is represented by an error bar whose vertical span corresponds
to the eddy range[y0,y0 + l ], and whose horizontal location corresponds to the time
of eddy occurrence. Reprinted from [19] with permission from the Cambridge Uni-
versity Press.

Bunching of events, especially after the occurrence of a large event, reflects the
interactions between the eddy events and the evolving velocity profile that induce
the model analog of the turbulent cascade. Each eddy event compresses and folds
the velocity profile within the range of the eddy. This increases the local shear and
thus the available energy that determines the frequency of subsequent eddies within
that range. A feedback process is thus induced that promotesthe occurrence of suc-
cessively smaller eddies. Eventually, velocity fluctuation length scales are reduced
sufficiently so that damping of the fluctuations by concurrent viscous transport dom-
inates the production of fluctuations by eddies. Viscous damping thus terminates the
local burst of eddy activity.

A planar-wake simulation is also shown in Fig. 11.1. In the Kelvin–Helmholtz
simulation, vigorous turbulence, indicated by the number and size range of eddies
as the flow evolves, is sustained by the shear imposed on the flow by the free-stream
conditions (far-field velocity difference). The wake, however, evolves in a uniform
background. As the initial velocity perturbation is dispersed by eddies and dissi-
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pated by concurrent viscous evolution, the turbulence intensity decreases, affecting
the eddy frequency and size range and slowing the growth of the turbulent zone.
These qualitative impressions are supported by the quantitative consistency of ODT
simulation statistics with the known similarity scalings for these flows [19].

11.3 Applications of ODT in Combustion

Like its predecessor, LEM (see Chapter 10), the ODT model maybe implemented
either as a stand-alone model or within the context of a 3D solution, such as LES.
The stand-alone ODT model may also serve a similar role to direct numerical sim-
ulations (DNS) for the construction of libraries for turbulence-chemistry interac-
tions [28–30]. ODT stand-alone models are limited in scope to flows with one dom-
inant flow direction, where a boundary-layer like solution may be adopted. Similar
to LEM, the implementation of ODT within the context of more complex flows
may be achieved through the coupling of ODT with a coarse-grained simulation
approach, such as LES [3].

There are many variants of the ODT model in the literature. The modeling ap-
proach is typically explained by combining the discretization, solution algorithm,
and governing equations. In Sect. 11.3.1, we present a unified method by which all
of the approaches in the literature may be derived, along with a brief discussion of
the equations ultimately used by in the various approaches.

Section 11.3.2 then presents a sampling of results from stand-alone ODT simu-
lations of turbulent combustion.

11.3.1 Governing Equations

This section presents a brief discussion of the various forms of the governing equa-
tions presently solved in ODT. A more detailed exposition can be found in [37].

A generic balance equation for an intensive propertyψ in a control volume (CV)
V enclosed by surfaceS can be written as

∫

V(t)

∂ρψ
∂ t

dV+
∫

S(t)
ρψ (vr +vs) ·adS = −

∫

S(t)
ΦΦΦψ ·adS+

∫

V(t)
σψdV, (11.7)

wherevs is the velocity of the surfaceS, v is the mass-averaged velocity,vr = v−vs

is the velocity of the fluid relative to the surface,ρ is the density,ΦΦΦψ is the mass
diffusive flux of ψ, andσψ is the volumetric rate of production ofψ. Table 11.1
defines the termsψ, ΦΦΦψ , andσψ for various quantities. These equations are closed
with an appropriate equation of state relating the local pressure to the composition,
density and temperature.
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Table 11.1: Definition of terms in (11.7) for some common governing equations. Hereτττ is the
stress tensor,g is the gravitational acceleration vector,Yk is the mass fraction of speciesk, jk is
the species diffusive flux vector, andq is the heat flux vector. Other equations may be added as
necessary. This is just a partial representation of commonly solvedequations.

Equation ψ Non-convective Flux,ΦΦΦψ Source Term,σψ

Continuity 1 0 0
Momentum v pI − τττ ρg

Species Yk j k σk

Total Internal
Energy

e0 pv+ τττ ·v−λ∇T +∑n
k=1hkj k ρg·v

Internal Energy e q τττ : ∇u− p∇ ·u
Enthalpy h q ∂ p

∂ t +u ·∇p+ τττ : ∇u

In the following, we present the various forms of the governing equations in use
for ODT. Much of the treatment of the governing equations forODT in the literature
combine the governing equations with the numerical algorithm. The following does
not address numerical solution techniques for the equations; rather, we focus on a
unified approach for arriving at the various forms of the governing equations implied
by present ODT approaches in the literature.

11.3.1.1 Temporally Evolving Lagrangian Formulation

The first ODT formulations employed a temporally evolving formulation in a La-
grangian frame of reference. In this case, we havev = vs so thatvr = 0. Writing
(11.7) in one dimension and using the continuity equation (ψ = 1) to convert it to
the weak form yields

dψ
dt

=
1
ρ

[
−∂Φψ,y

∂y
+σψ

]
. (11.8)

In (11.8), dψ
dt represents the local change ofψ as it moves at velocityvs, − 1

ρ
∂Φψ,y

∂y

is the change inψ due to diffusion, andσψ
ρ is the change inψ due to consump-

tion/production.
Implementations of this approach use moving meshes and finite-volume schemes.

The CV surface positions can be determined by solving (11.8)for ψ = v (the lateral
fluid velocity) and an ODE for position,

dy
dt

= v = vs. (11.9)

Rather than solving (11.8) forψ = v, however, most ODT formulations employing
the temporally evolving Lagrangian formulation instead use a discrete form of the
continuity equation written in Eulerian coordinates,∂ρ

∂ t = − ∂vs
∂y together with the
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assumption of constant pressure and an equation of state to solve for vs for use in
(11.9).

11.3.1.2 Temporally Evolving Eulerian Formulation

Recently, an Eulerian temporally evolving formulation forthe ODT equations was
proposed [26, 27]. In the Eulerian frame of reference, we fix the CV surface posi-
tions so thatvs = 0 andvr = v so that (11.7) becomes, in differential form,

∂ρψ
∂ t

= −∇ ·ρψv−∇ ·ΦΦΦψ +σψ . (11.10)

The one-dimensional differential form of (11.10) is

∂ρψ
∂ t

= −∂ρψv
∂y

− ∂Φψ,y

∂y
+σψ . (11.11)

The velocityv in (11.11) represents the local fluid velocity in they-direction, and
∂ρψ

∂ t represents the local change inρψ at a given point in space and time. Current
approaches using the Eulerian form have solved the compressible form of these
equations [26, 27]. The equations solved are given by (11.10) and Table 11.1, where
ψ = 1 is solved forρ , ψ = v andψ = u are solved for the lateral and streamwise
momentum components,ψ = e0 is solved for the total internal energy,ψ = Yk is
solved for the species mass fractions, and an equation of state is used to relateT, p,
ρ , andYk.

11.3.1.3 Space-Time Mapping

The equations discussed above (both the Lagrangian and Eulerian forms) provide
solutions with(t,y) as independent variables. Frequently, however, we requiresolu-
tions that evolve spatially (e.g., when comparing with datafrom a spatially evolving
jet). This requires a space-time mapping, achieved by solving an ODE for stream-
wise position,

dx
dt

= ū, (11.12)

where ū is a suitably chosen average velocity for advection of the ODT domain
in the streamwise direction. This creates an approximate ‘average’ location of the
line in space. Of course, the line would actually tend to benddue to variations inu.
This is explicitly ignored by adopting an average velocity,ū, that advects the line
downstream. One possible choice for ¯u is

ū(t) = u∞ +

∫ ∞
−∞ ρ (u−u∞)2dy∫ ∞
−∞ ρ (u−u∞)dy

. (11.13)
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An alternative approach to using the approximate space-time mapping (11.12) is
to reformulate the governing equations with(x,y) as independent variables rather
than(t,y). This is considered in the following sections for both the Lagrangian and
Eulerian frames of reference.

11.3.1.4 Spatially Evolving Lagrangian Formulation

The spatially evolving Lagrangian formulation is obtainedfrom (11.7) by choosing
vs ·x = 0 andvs ·y = v. Then assuming steady state, 2D, and writing the differential
equation in weak form (using the continuity equation), (11.7) becomes

dψ
dx

= − 1
ρu

[
∂Φψ,y

∂y
−σψ

]
. (11.14)

In deriving (11.14), we have neglected the streamwise diffusive term,∂Φψ,x
∂x . This

term is neglected primarily for practical algorithmic reasons. However, in applica-
tion to spatially evolving jets, diffusion in the lateral direction will likely dominate
any diffusion in the downstream direction. Nevertheless, this is an assumption in the
spatial ODT formulations.

This approach has been adopted by Ricks et al. [31] to performspatially evolv-
ing simulations of buoyant pool fires including soot transport and radiation (see
Sec. 11.3.2).

11.3.1.5 Spatially-Evolving Eulerian Formulation

The spatially evolving form of the equations for ODT in Eulerian form is obtained
from (11.10) by assuming steady state and variation only inx andy. Then using

the continuity equation to write it in weak form and neglecting ∂Φψ,x
∂x as we did in

(11.14), we find
∂ψ
∂x

= − 1
ρu

[
ρv

∂ψ
∂y

+
∂Φψ,y

∂y
−σψ

]
. (11.15)

11.3.2 Stand-Alone ODT Simulations

As a stand-alone model, ODT has been implemented for the study of jet diffusion
flames [7, 11, 12, 21, 27–30], buoyant fire plumes [31], flame spread [35], and au-
toignition in jet flows [6]. In these studies different modelformulations have been
implemented, which illustrate the versatility of the ODT modeling framework. We
start with the temporally-evolving Lagrangian formulation, which has been adopted
for high-Reynolds number jets, but may be implemented as well for compressible
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turbulent shear layers and wall-bounded flows. We then illustrate the temporally
evolving Eulerian formulation for temporally evolving shear layers [27] and the
temporally evolving Lagrangian formulation for buoyant fire plumes [31]. In all
formulations, a deterministic solution, involving diffusion, reaction and advective
transport operators in the Eulerian formulation, in conjunction with a stochastic im-
plementation of turbulent advection, is implemented.

The temporally evolving Lagrangian formulation is based onthe solution of
equation (11.8) for the streamwise (x) component of momentum along with equa-
tions for energy and species. Figure 11.2 shows temperaturecontours for a wall fire
from [35] from a single (left) and 300 (right) realizations.This was solved using the
temporal formulation with (11.12) to provide an approximate space-time mapping.
Close examination reveals that small scale triplet mappingevents are first observed
at approximate heights of 25 cm and at a distance of approximately 2 cm away from
the wall corresponding to the high values of temperature (and velocity, not shown).
As the flow further accelerates, progressively larger eddy stirring events are shown
to occur causing larger scale macro-mixing and the engulfment of the surrounding
air. This transition of energy from small to large scales of motion is also consis-
tent with recent observations from experiments and LES predictions of large scale
plumes [4].

Fig. 11.2: 2D renderings of temperature corresponding to a single realization (left)
and averaged (right) over 300 realizations of a wall fire. From [4].

Results from a piloted jet flame simulation with extinction and reignition are
shown in Figure 11.3 for the same formulation. The results illustrate how the ODT
model is able to predict extinction and reignition in piloted turbulent non-premixed
flames. Two zones may be identified in the jet flame. The first corresponds to a
region extending approximately fifteen diameters downstream from the inlet that il-
lustrates a transition from piloted burning to extinction.This transition is followed
by a gradual reignition as shown by the increased OH mass fraction. The 2D ren-
dering of stirring events also shows that stirring events are initiated at the interfaces
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between the fuel jet and the pilot flow and the interfaces between the pilot flow
and the co-flow air, and that the size of eddies progressivelyincreases as a function
of downstream distance, emulating the progressive growth of the shear layers. Evi-
dence of the existence of an ’energy cascade’ in the ODT solutions is demonstrated
by the presence of smaller eddies that trail larger eddies, with regions of spatial
intermittency, as these smaller eddies dissipate (see alsoFig. 11.1).
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Fig. 11.3: 2D renderings of OH mass fraction corresponding to a single realization
(left) and averaged (right) over 100 realizations of Sandiapiloted methane-air flame
F. The 1D domain corresponds to the horizontal axis. Its temporal evolution is con-
verted to a downstream distance based on (11.12) and (11.13). Reprinted from [30]
with permission from Taylor and Francis.

The formulation proposed by Punati et al. [26, 27] solves theEulerian form of
the governing equations described in Sec. 11.3.1. Specifically, (11.10) is solved with
ψ =

(
ρ ρv ρu ρe0 ρYi

)
, whereu is the streamwise velocity andv is the velocity

component in the direction of the the ODT line orientation. See Table 11.1 for defi-
nitions of the diffusive fluxes in these equations. These equations are solved together
with the ideal gas equation of state, detailed CO/H2 oxidation kinetics, and mixture-
averaged transport to make direct comparison with DNS data of a planar, temporally
evolving CO/H2-air nonpremixed jet [10]. The DNS dataset includes extinction and
reignition, with the onset of extinction at a characteristic jet time of τ ≈ 20 and
reignition occurring at aroundτ ≈ 30. This calculation allowed direct comparison
between the ODT and DNS data. Initial conditions were extracted directly from the
DNS data, and all treatment of diffusion, thermodynamics, and chemical kinetics
was equivalent.
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Figure 11.4 shows the average and RMS velocity and mixture fraction profiles
for the ODT and DNS simulations. The spreading rate is well captured by ODT.
The RMS profiles are captured reasonably, but the ODT under-represents the mag-
nitude of the RMS fluctuations. Similar trends hold for all species (including minor
species), with the exception that extinction is over-predicted by the ODT simula-
tions.

Figure 11.5 shows the evolution of the probability density functions conditioned
on lean and rich mixture fractions for the temperature and scalar dissipation rate.
The temperature PDF illustrates that the ODT predicts an earlier onset of extinction
than the DNS. Specifically, atτ = 6 there is already evidence of extinction in the
ODT data. However, the extinction-reignition process is captured relatively well
despite these differences.
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Fig. 11.4: Evolution of the streamwise velocity (top) and mixture fraction (bottom)
showing the mean (left) and RMS (right) for the ODT (lines) and DNS (circles)
data. Results are shown for characteristic jet times fromτ = 6 toτ = 40. From [27].

The data shown in Figs. 11.4 and 11.5 were obtained from 400 ODT realizations,
and each realization required approximately two CPU hours.In contrast, the DNS
calculations (which were three-dimensional) required several million CPU hours.
Although ODT cannot capture uniquely multidimensional effects that DNS can, it
does represent many of the physical processes present in true three-dimensional
turbulent flow at a fraction of the cost of DNS, and thus servesas a very useful tool
in combustion modeling.

Ricks et al. [31] simulated a buoyant fire plume using ODT by solving (11.14)
(the spatially evolving form of the governing equations in Lagrangian form) as out-
lined in Sect. 11.3.1, including transport equations for solid-phase soot particles as
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Fig. 11.5: Conditional pdf of temperature (left) and scalardissipation rate (right).
Results are shown for lean and rich mixture fractions and three different times dur-
ing the jet evolution. DNS data is shown dot-dash lines and ODT data is shown with
solid lines. From [27].

well as gas-phase transport equations. However, Ricks et al. [31] adopt a simplified
approach for the representation of the gas phase species using the flamelet assump-
tion and transporting the gas phase mixture fraction. In this formulation, the two
independent variables correspond to the lateral (along theODT domain) coordinate,
y, and the streamwise spatial coordinate,x. The 1D nature of the solution enables the
implementation of a host of models for soot evolution (including soot oxidation by
OH), and transport (including thermal diffusion), radiation and gas phase chemistry
on large-scale computational domains.

Figure 11.6 shows 2D renderings of the temperature corresponding to two sep-
arate realizations of the ODT simulation of a fire plume by Ricks et al. [31]. The
ODT domain is aligned with the horizontal direction (x); a marching algorithm is
implemented to evolve the ODT solution in the vertical (y) direction on a computa-
tional domain of 2 m× 3 m. The necking just above the base of the flame is due to
the spatial form of the continuity enforcement, which induces inward lateral flow in
order to compensate for the buoyancy-induced increase in the streamwise mass flux.
Additional statistics on soot evolution and radiation effects may be found in [31].

11.3.3 Hybrid ODTLES

Similarly to LEM, ODT may be coupled to a 3D coarse-grained simulation ap-
proach, such as LES, for chemistry and mixing closure. Moreover, there are differ-
ent strategies for LES and ODT coupling based on Eulerian andLagrangian for-
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Fig. 11.6: 2D renderings of temperature (in K) corresponding to two separate real-
izations of a buoyant fire plume simulation. Reprinted from [31] with permission
from Taylor and Francis.

mulations. In both formulations, ODT domains or elements are embedded in 3D
solutions to resolve subfilter-scale momentum and scalar statistics. In the Eulerian
formulation, ODT elements are fixed in space. Advective transport contributions
in this formulation are represented by both large-scale transport resolved by LES
and subfilter-scale transport represented by ODT stirring events. The simplest La-
grangian formulation may be implemented by attaching ODT solutions along the
normal to the flame brush. In this formulation, the ODT elements are advected along
with this brush. Similar strategies have been successfullyadopted with LEM as dis-
cussed in Chapter 10.

In contrast to LEM, the coupling of LES with ODT may present a number of
additional advantages:

• ODT has the capability to provide closure for momentum. However, one may
choose to provide closure for scalars only and allow for a standard model for
momentum closure (as discussed below).

• In ODT, the coupling of momentum and scalars is implemented on the fine time
and length scales of ODT solutions; this coupling is very crucial near physical
boundaries (e.g. walls) where both scalar and momentum boundary conditions
may be implemented.

• Historically, large-scale transport with LES-LEM has beenimplemented using
‘splicing’ events, which extract segments from a LEM solution in one LES grid
and transfers them to another LEM solution in a neighboring LES cell. The LES-
ODT formulation of Cao and Echekki [3] proposes an alternative representation
for large-scale transport based on ODT domains extending beyond a single LES
cell.



11 One-Dimensional Turbulence 267

The ODTLES model formulation is illustrated using the Eulerian formulation by
Cao and Echekki [3]. The ODTLES formulation is based on two simulations that
are implemented in the same computational domain. The first is a 3D LES for mass
and momentum transport. The second is based on fine-grained simulations imple-
mented on an ensemble of 1D ODT elements, which are embedded in the LES
domain. Here, we describe a formulation in which ODT elements are distributed in
a 3D Cartesian lattice as shown in Fig. 11.7 where the LES is solved on a structured
Cartesian grid as well. However, a more complex layout may beadopted. More-
over, the formulation is used primarily for reactive scalars closure. For momentum
closure, a ‘standard’ LES closure model for subgrid stresses may be adopted.

Fig. 11.7: Layout of ODT elements on a Cartesian grid in LES. Adapted from [3].

The ODT governing equations are solved on each individual ODT element. The
temporal and spatial resolution requirements in ODT are similar to those needed for
direct numerical simulations. The coordinate system on which the governing equa-
tions are based is a Cartesian coordinate system with one component along the ODT
domain,x1, and two additional orthogonal components,x2 andx3. The spatial coor-
dinate,x1, replaces the ODT domain coordinate,y, in previous discussions. When
laid out on a Cartesian lattice, the directionx1 represents the axis that is aligned
with the ODT element; while the other coordinatesx2 andx3 represent the remain-
ing axes. The velocity field is split into a filtered (resolvedin LES) component and
a residual component:

ui = ũi +u∗i (11.16)

whereũi is the filtered velocity in theith direction. The contribution of transport due
to this velocity component is denoted as large-scale transport. The second term on
the right-hand side,u∗i , is the residual term of the velocity field in theith direction.
This latter term is modeled using the stochastic turbulent stirring events in ODT.
The contribution of transport due to this velocity component is denoted as subfilter-
scale transport. The variable-density governing equations on each ODT element of
momentum, temperature, and species mass fractions are:

• Momentum



268 T. Echekki, A.R. Kerstein and J. C. Sutherland

∂ui

∂ t
= +

[
1
ρ

∂τi1

∂x1

]
+

{
− 1

ρ
∂ p
∂xi

− ũ j
∂ui

∂x j
+

1
ρ

(
∂τi2

∂x2
+

∂τi3

∂x3

)}
(11.17)

• Temperature

∂T
∂ t

=

[
− 1

ρcp

(
∂q1

∂x1
+

N

∑
k=1

hkωk

)]
−
{

ũ j
∂T
∂x j

+
1

ρcp

(
∂q2

∂x2
+

∂q3

∂x3

)}

(11.18)
• Species(k = 1, . . . ,N)

∂Yk

∂ t
=

[
1
ρ

(
−∂ jk1

∂x1
+ωk

)]
−
{

ũ j
∂Yk

∂x j
+

1
ρ

(
∂ jk2

∂x2
+

∂ jk3

∂x3

)}
(11.19)

In equations (11.17)-(11.19), the indexj represents the sum over all three directions
of the advective terms. The diffusive fluxes,jk1, jk2 and jk3 correspond to mass
diffusion fluxes of thek species in thex1, x2 andx3 directions, respectively. They
may be expressed asρVk1, ρVk2 andρVk3, whereVki is the mass diffusion velocity of
speciesk in theith direction.q1, q2, andq3 correspond to the components of the heat
flux vector in thex1, x2 andx3 directions, respectively. These components represent
the contributions of heat conduction, heat transport by mass diffusion, the Dufour
effect and radiative heat transport. The ODT governing equations feature contribu-
tions which are resolved on the ODT domain (terms inside brackets ‘[ ]’). These are
the same source and transport terms present in the stand-alone ODT equations. The
resolved contributions include (1) molecular transport with gradients along the 1D
elements, (2) chemical and heat source terms, and (3) the subfilter-scale momentum
and scalar transport; this latter term is represented by theODT stochastic stirring
events discussed in Sect. 11.2.1 and implemented on a range of length scales. Other
contributions require gradients along the normal components to the ODT domain
(terms inside brackets ‘{}’). The unresolved contributions include: (1) large-scale
transport (advective transport based on the filtered velocity components), (2) molec-
ular diffusion with gradients alongx2 andx3, and (3) the pressure gradient terms in
the momentum equations.

The coupling of LES and ODT solutions is implemented both temporally and
spatially. The ODT integration treats reaction-diffusion, subfilter-scale transport
(stirring events) and filtered-advection as parallel events that are integrated with
their own time steps, and which are fractions of the LES time step. During the tem-
poral integration of the two solutions, statistics are transmitted from one solution
scheme to another. For ODT, the LES velocity field ˜u is evaluated from the LES
solution of the momentum equations and interpolated onto the ODT elements’ finer
grids. For LES, a number of variables may be filtered from ODT solutions, including
closure for the mass density,ρ . In what follows strategies adopted for the integration
of the various terms in the ODT equations are briefly discussed:
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11.3.3.1 Molecular Processes

Molecular processes in the ODT governing equations include(1) reaction, (2) dif-
fusion along the ODT elements’ directions, and (3) diffusion along the directions
normal to the ODT elements. The integration of the first two contributions is similar
to their implementation in the stand-alone ODT formulation. The third contribution
must be modeled. The treatment of the unresolved terms may beimplemented either
deterministically or stochastically. In the Cao and Echekki [3] work, the representa-
tion of non-resolved diffusive contributions is achieved deterministically by scaling
the resolved diffusive transport terms by a factor to represent the filtered contribu-
tion of mass transport from the unresolved transport. For example, if there is no
preferred gradient, such as in the presence of a flame brush, afactor of 3 is adopted.

11.3.3.2 Representation of subfilter-scale stresses and scalar fluxes

The stochastic contributions represent 3D subfilter-scaleadvective transport of mo-
mentum and scalars (i.e. subfilter-scale stresses and scalar fluxes) resulting from the
residual velocity components. For momentum additional contributions may be at-
tributed to pressure scrambling [19]. The stochastic termsare implemented through
discrete triplet map events, which are implemented concurrently with other pro-
cesses within ODT. The rules for stirring events are identical to those applied in
stand-alone ODT. The range of length scales for the selectededdies is prescribed
prior to the simulation based on a choice ofLmin and Lmax, which represent the
smallest and largest eddies allowed. The value ofLmin plays a similar role to the
Kolmogorov length scale, and corresponds to length scales where viscous dissipa-
tion is predominant and stirring events are less likely to occur. The value ofLmaxde-
termines the cut-off length scale beyond which turbulent advective transport is rep-
resented using the filtered advective terms. These parameters are additional model
parameters toC andZ prescribed earlier for the ODT-implementation. The cumula-
tive contribution from stirring events over time represents the subfilter-scale stresses
and fluxes.

11.3.3.3 Large-Scale Transport

The large-scale transport of momentum and scalars in ODT is represented by the
operators ˜u j

∂ui
∂x j

, ũ j
∂T
∂x j

andũ j
∂Yk
∂x j

in the ODT governing equations. The implemen-

tation of large-scale transport represents a fundamental challenge for the following
reasons: 1) Advective transport is a 3D process; thus, at least two directions are not
resolved on the ODT time scale or on the ODT 1D elements, 2) Non-linear contribu-
tions from advection processes pose important constraintson scalar boundedness. In
the Cao and Echekki [3] formulation, advective fluxes are constructed at ‘nodes’ that
represent the intersection in space of three or more ODT elements. At these nodes,
the solutions of the velocity and scalar equations are updated; then, ODT solutions
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between these nodes are updated through single-component advection along the cor-
responding ODT element. In a Cartesian lattice of ODT elements, these nodes rep-
resent the intersection of three orthogonal 1D elements. Below, we describe the im-
plementation based on this Cartesian lattice configuration. The large-scale transport
process is implemented as a separate process concurrently with reaction-diffusion
and stirring in two steps: 1) node advection, and 2) inter-node relaxation.

Node Advectionis implemented as follows. At the prescribed time step for large-
scale transport, the solution at each node is evaluated based on gradients represented
by the 3 ODT elements intersecting at the node. This process is implemented in two
steps. First, the solution is updated at each node for the momentum and scalars using
the following governing equations:

∂φ l

∂ t
= −ũ1

1
∂φ1

∂x1
− ũ2

2
∂φ2

∂x2
− ũ3

3
∂φ3

∂x3
(11.20)

In this expression, the dependent variableφ corresponds to any one of the variables
in the solution vector. The subscripts, 1, 2 or 3, correspondto the components of
the velocity vector; while, the superscripts, 1, 2 or 3, correspond to the direction of
the ODT domain. Although each node is updated with the same right-hand side that
represents contributions from the three directions of ODT elements, its value at the
end of the update is different because of the values ofφ l are different at the start
of the update from the 3 contributing ODT elements. A second step involves the
averaging of these 3 solutions at the nodes as follows:

φ l =
φ1 +φ2 +φ3

3
(11.21)

Inter-Node Relaxationinvolves a relaxation of the solution between the nodes
based on the updated internal boundary conditions at the nodes. This relaxation is
accomplished through an integration of the solution at gridcells between the nodes
using a single-component advective flux according to the following relation:

∂φ l

∂ t
= −κũl

l
∂φ l

∂xl
(11.22)

In this expression,κ represents a relaxation coefficient, which governs the rate
at which the inter-node solution is updated to reflect changes at the nodes. Because
ODTLES is a statistical approach, a range of values forκ may be adopted to yield
reasonable statistics for the scalars and momentum solutions.

Similarly to the approach by Schmidt et al. [32], a correction to the ODT veloc-
ity solution is implemented such that the filtered ODT velocity field matches the
solution from LES.

The above Eulerian formulation was implemented by Cao and Echekki [3] for
the modeling of non-homogeneous ignition in a random mixture-fraction field with
preheated oxidizer and of the same configurations show that the model represents
adequately turbulent transport through the contributionsof subfilter-scale transport



11 One-Dimensional Turbulence 271

and large-scale transport. Important effects of preferential diffusion as well as tur-
bulence intensity are identified in reactive-scalar conditional statistics.

Figure 11.8 shows isocontours of filtered reaction progressvariable (normalized
temperature) at a prescribed value of 0.5 (for flame tracking) at different times based
on the ODTLES simulations. The figure shows the formation of discrete ignition
kernels at favorable mixture conditions, their growth and their merger at later times.
The reaction progress variable is obtained by filtering the ODT solutions; the size
of the initial nascent kernels is smaller than the LES grid.

t = 0.4

t = 1.6

t = 0.8

t = 2.0

t = 1.2

t = 2.4

Fig. 11.8: Evolution of flame kernel based on filtered reaction progress variables
during non-homogeneous mixture ignition in isotropic turbulence. The figure shows
the formation of ignition kernels at conditions favorable to the onset of ignition. Ad-
ditional kernels are formed at less favorable conditions for autoignition after more
delay. The kernels eventually grow to interact at later stages and merge to form larger
kernels, until the entire mixture is burned. Reprinted from[3] with permission from
Taylor and Francis.

Figure 11.9 shows the evolution of the heat-release rate conditional statistics at
two Lewis numbers, 0.5 and 2, representing the ratio of the thermal diffusivity to
the species mass diffusivities. The lower Lewis number heat-release rate profiles
exhibit higher peaks initially and then lower peaks eventually as the combustion
progresses from fuel-lean conditions to richer conditions. The difference between
the two cases reflects the strong dependence of the heat release rate on temperature,
which is affected by the Lewis number. Lower Lewis numbers indicate slower diffu-
sion of heat relative to species. Therefore, the initial formation of the corresponding
kernels favors kernels that shielded from heat loss. However, the same mechanism
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may prevent the ignition of the unburned layers next to the ignition kernels and their
propagation. Cases a and b shown in comparison with DNS statistics correspond
to two different and coarse LES resolutions (case a is twice as resolved as case b).
The two cases are in very good agreement with the DNS statistics and show that the
ODTLES formulation predicts reasonably well the contributions from large-scale
and subfilter-scale transport.

The ODTLES formulation has been extended recently to the study of turbulent
premixed flames by Echekki and Park [8]. A Lagrangian formulation has been im-
plemented more recently by Balasubramanian [2] for the study of a buoyant fire
plume. In this formulation, the ODT elements are attached toa filtered mixture
fraction surface with a fixed value corresponding to the stoichiometric value.

11.4 Concluding Remarks

Here and in Chapter 10, a strategy for turbulent combustion modeling has been out-
lined that involves a conceptually and computationally minimal representation of
the local unsteady evolution of the coupled processes of advection, diffusion, and
reaction. ODT, described in this chapter, incorporates a representation of the de-
pendences of the occurrence of eddy motions on the mechanisms that drive these
motions. In addition to capturing important effects of the unsteady couplings, this
feature results in a formulation that is, in many respects, aself-contained predic-
tive model of turbulent flow. This is perhaps a natural consequence of the effort to
capture the couplings relevant to combustion; for a model todo this well, it must
capture much of the phenomenology of turbulence.

The main limitation of ODT in this regard is its restriction to one spatial dimen-
sion. It is thus complementary to LES, which captures large-scale 3D motions but
does not resolve flame structure and evolution. Coupling of ODT to LES has been
described. The successes of the LEMLES formulations for themodeling of practical
combustion flows (see Chapter 10) also support the potentialof ODTLES as a vi-
able modeling approach for similar problems. More importantly, both LEMLES and
ODTLES may be viewed as frameworks with which multiphysics and multiphase
problems may be addressed. In addition to the momentum and standard scalar equa-
tions for combustion problems, additional transport equations may be implemented
within these ODTLES frameworks, including particle transport and multiscale de-
scriptions of radiative transport in participating media.

One focus of current efforts is the coupling of arrays of ODT domains so as to
obtain a self-contained 3D flow simulation (with the smallest scales resolved only in
1D), thus eliminating the need for a distinct coarse-grained 3D flow solver [17]. This
modeling strategy is termed autonomous microstructure evolution (AME). Another
focus involves Lagrangian implementation of the ODTLES framework based on
ODT elements attached to the flame brush.
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Fig. 11.9: Evolution of the conditional means of the heat release rate conditions
during the ignition of a non-homogeneous mixture of fuel andpreheat oxidizer at
Le = 0.5 and 2.0. Reprinted from [3] with permission from Taylor and Francis.
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