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Chapter 11
The One-Dimensional-Turbulence Model

Tarek Echekki, Alan R. Kerstein, and James C. Sutherland

Abstract The one-dimensional turbulence (ODT) model representdfizieat and
novel multiscale approach to couple the processes of ceadiffusion and turbu-
lent transport. The principal ingredients of the modeluide a coupled determin-
istic solution for reaction and molecular transport andoglsastic prescription for
turbulent transport. The model may be implemented as stk for simple tur-
bulent flows and admits various forms for the description ptslly developing
and temporally developing flows. It also may be implementébimthe context of
a coupled multiscale solution using the ODTLES approaclis Thapter outlines
the model formulation, and applications of ODT using stafahe solutions and
ODTLES.

11.1 Motivation

In his survey of turbulent combustion modeling, NorbergPe{25] emphasizes the
difficulties that can arise due to the interactions betweepulence and chemistry
over a wide range of length and time scales. Assumptionstabenial-range scal-

ing of the turbulent cascade are not necessarily applicabthere are few if any
formal or conceptual constructs to which the modeler camwhen these scalings
do not apply. He notes important empirical evidence thasgffeatures of turbu-
lent combustion often conform to inertial-range phenonhayyg particularly with

regard to its most important consequence for combusti@nlethgth and time scale
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separation between the dominant large-scale turbuleribnsoéand the small scales
of molecular transport and chemical kinetics in flames. fingsmodels rely on
this scale separation, with the exception of the linearyadddel (LEM: see Chap-
ter 10) and one-dimensional turbulence (ODT). To the exteaitscale separation
is not obeyed in turbulent combustion processes, LEM and ©&he especially
suitable for modeling these processes.

Peters discusses the role of scale invariance as well as sephration in the
inertial range. The latter is more general: scale separ&ipossible in the absence
of scale invariance, but there is no scale invariance witlsoale separation (see
below). Scale invariance of spectral energy transfer ibul@nce, in conjunction
with (and in fact, relying on) the negligible influence of aais dissipation in the
inertial range (an idealization, but valid in this contekt)ply that the characteristic
eddy time scale(l) at length scalé obeys the dependencé ) ~ 1%/3. This implies
power-law dependences of eddy velocity, energy, and diffysand ultimately,
scale separation between inertial-range and dissipasioge processes.

LEM resolves all advective, diffusive, and chemical lengtial time scales of tur-
bulent combustion, and hence does not rely on scale separlitiepresents thermal
expansion by means of dilatation of the 1D domain, but it da#snodel other as-
pects of feedback from combustion to turbulent motionsh&sviscosity variations
and turbulence generation by expansion. In particularptio®ability distribution
function (pdf) from which the maps representing turbulefdies are sampled has a
fixed functional form whose construction is guided by thetiaérange diffusivity
scaling (Chapter 10). To the extent that turbulence-chigyniisteractions result in
deviations from this scaling, the fidelity of LEM can be imgal. Other influences,
such as rapid transients caused by initial conditions oe-tarying boundary con-
ditions, can also cause significant deviations from inkeréiage scalings.

As noted, there is little theoretical guidance on how to nhtitedeviations from
inertial-range scalings that might be caused by these imfle or the effects of
these deviations on combustion dynamics. Within the 1Dhstsiic approach based
on the triplet-map representation of turbulent eddies Jespter 10), incorporation
of these influences is therefore approached from an entlifgrent perspective.

This perspective is introduced by first considering diraatnerical simulation
(DNS) of turbulent combustion. In DNS, no theory or guidirminpiple is needed
to capture combustion-induced deviations from inertiadge scaling because the
underlying equations of motion are solved. Thus, the camseces of turbulence-
chemistry interactions are outcomes of the simulated floslugion that do not re-
quire prior analysis or modeling. To the extent that the lldo@e-resolved interac-
tions between turbulent eddy motions and combustion psesesan be represented
robustly with the 1D stochastic framework, that framewodk dikewise capture
their consequences as outcomes of simulated evolution.

A formulation with this capability becomes, in effect, a adty predictive model
of turbulent flow evolution rather than a model focused, ablli&focused, on sim-
ulation of mixing and reaction in a parametrically specifiebulent environment.
Thus, the quest for a robust turbulent combustion modekledttimately to recon-
sideration of turbulence modeling more generally. Thisésdontext in which ODT
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was originally formulated. The stages of its developmengfiplication to free and
confined shear flows, variable-density flows, buoyant $idtiflows, and multi-
phase flows, as well as combustion and other reacting flows, been documented
in references cited below.

To introduce ODT, a formulation applicable to constantgeny flow is outlined.
Algorithmic as well as physical modeling considerations discussed. Extensions
needed for combustion applications and representativeges are described. Use
of ODT for subgrid modeling in 3D simulations of constanojperty flow and of
combustion is discussed, and future prospects are assessed

11.2 Constant-Property ODT

11.2.1 Model Formulation

ODT is introduced with reference to LEM by formulating LEM @&notation that
carries over directly to ODT. An eddy rate distributidfyo, |;t) is defined by setting
A(yo,l;t)dydl equal to the expected number, per unit time, of eddies fochvtiie
lower boundary of the eddy is ifyo,Yo + dy] and the eddy size is in the range
[I,1+dl]. In terms ofA and f(l) defined in Chapter 10\ (yo,l;t) = Af(l). Thus,
the units ofA are 1/(lengthxtime) and its integral over eddy sizkis A.

In LEM, A has no dependence gp or t unless one chooses to hard-wire such
dependence intd or f(I), which has been done in some instances, e.g., [13]. ODT
is formulated to incorporate such dependence in a way tflatte the relationship
between the likelihood of an eddy, quantified by the eddy sader, and the local
flow state. This requires the introduction of a local, ins@eous representation of
the flow state in ODT, causing ODT to be a fundamentally déffertype of model
than LEM, whose turbulent state is characterized paracatdiyi

The flow representation in ODT consists of 1D profiles of onenore veloc-
ity components whose evolution, in the simplest constaopgrty formulation, is
qualitatively the same as in LEM applied to a constant-dgrmssive scalar. For
example, with one velocity componen(y,t), time advancement is governed by

du d%u

where v is the kinematic viscosity. This advancement is punctudtgdeddy
events, each of which consists of a triplet map (defined amplagned in Chap-
ter 10) applied to thel profile, possibly (depending on the formulation) followed
by another operation that is described shortly. Absentdtter| the evolution ofi is
equivalent to the evolution of a constant-property passdatar in LEM, except for
the crucial distinction thak (yo,1;t) is now a specified function of the current flow
stateu(y,t). Several formulations of this dependence have been intextiduring
the course of ODT development. The formulation discussee, he
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Cv uk| 2
A=2 (2) —z 11.2
(%) -z (112)

is a specialization of the formulation described in [17],jethhas a more detailed
explanation of the motivation and features of ODT than caprbgided here.

In Eg. 11.2,C andZ are free parameters whose roles are explained shortly, and
for any property profiles(y,t),

=15 [ SME)K)dy (113)

definess. Here,M(y) is defined by the formal mathematical representation of the
triplet map,
s(y) — s(M(y)), (11.4)

which indicates that the value of propegyt M(y) is mapped to locatiog. Thus,
M is the operational inverse of the triplet map, which is foltyneonvenient because
M is a single-valued map but the triplet map is triple-valuBide ‘kernel’ K(y) =
y—M(y) is the map-induced displacement of the point that is mappedby the
triplet map.K(y) thus depends on map parametgrsindl, but this dependence is
suppressed in the condensed notation used here.

To explain the role of the kernel, the more general form oftti@y event in ODT
is introduced. Namely, Eqg. 11.4 is generalized to

s(y) — s(M(y)) +csK(y), (11.5)

which indicates that the eddy event applies the triplet neapropertys and then
adds the kernel times a coefficienitto s(y). The kernel addition is applied only
to velocity components and is intended to add or substramdtiki energy with-
out changing the total momentum, which is assured for cobstansity flow be-
causeK (y) integrates to zero. This provides a mechanism for energgtrémition
among velocity components when the formulation containsentttan one compo-
nent, enabling the model to simulate the tendency of turtiidddies to drive the
flow toward isotropy. Total energy must be conserved, immppsi constraint on the
values of the coefficientss. The additional constraints needed to uniquely deter-
mine all the coefficients are obtained by requiring the Keaddition to produce an
energy distribution within the eddy intervah,yo+ 1] that is as close to isotropic
as possible. There are other reasonable criteria for datigngrthe coefficients that
might be advantageous in some cases [19]. In applicatiocts &8 buoyant strati-
fied flows or turbulent advection of immiscible liquids, edelyents might induce
changes of the gravitational or surface-tension poteetigrgy, requiring equal-
and-opposite changes of kinetic energy. Through the kepalation, conservation
of total energy in ODT couples flow evolution to dynamicallstige scalars such
as density in buoyant flows, as demonstrated in ODT studiésese flows [5, 15—
17,20, 35, 36, 38—40].
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By construction, Eq. 11.5 conserves momentum for constansity flow. For
variable-density flow, a more general treatment is needesin®htum conservation
is no longer automatic, so extra degrees of freedom aredinted to enforce mo-
mentum conservation, further generalizing the eddy evefliows:

s(y) — s(M(y)) +bsJ(y) + csK(y), (11.6)

whereJ(y) = |K(y)| and the additional coefficients are determined by requiring
the eddy event to conserve tiiéntegrated momentum of all velocity components
s. For details, see [1].

Most combustion applications of ODT pre-date this variad#@sity formula-
tion, and several pre-date the introduction of the kernehfdism in Egs. 11.2 and
11.5, so they do not include the kinetic-energy and varidelesity phenomenology
that can now be incorporated into ODT. The less completénreat is adequate
for many combustion applications, much as LEM, which is adersbly simpler,
is broadly useful for turbulent combustion simulation. Magiable-density formu-
lation is not discussed further here, but its future use,revla@propriate, in ODT
simulations of turbulent combustion is encouraged.

Before proceeding further, the guiding principle that watigs the model con-
structs introduced thus far is explained. Empirical evigeand formal analysis
support the viewpoint that the turbulent cascade tends todad in scale space,
meaning that individual eddy motions such as vortex stietctypically shrink flow
features in turbulence by order-one geometrical incrementh that the wide range
of flow scales in turbulence is the cumulative outcome of miacyemental scale
reductions rather than a smaller number more drastic reshsct

Enforcement of this scale-locality principle in ODT is thasis of much of the
model formalism. The triplet map decreases flow scales by ok rthan a factor
of three. No other measure-preserving map induces less ssduiction. (Measure
preservation assures that applicable conservation laavskayed.)

Energy changes during the eddy event are likewise consistidnscale locality.
The kernel used for this purpose must be zero at the eddy enidto prevent
discontinuities) and must integrate to zero, so it must leveast two extrema.
The functionK (y) consists of three linear segments over diZ&spatial intervals.
Thus it introduces structure consistent with the scalectolu by the triplet map.
The map is applied before the kernel because the kernelWietldy the map would
introduce structure at scall¢9.

Eddy selection as well as eddy implementation is guided lajesiocality, in
this case meaning that sitenotions are driven by sizeinfluences. Eddy phe-
nomenology (i.e., mixing-length concepts applied to anviddal eddy) suggests
that A should be of order A121), wherer is the eddy turnover time, or equiva-
lently, V(1)/13, whereV (1) is the velocity difference between the eddy endpoints.
The latter estimate, with numerical coefficients absorlmethé free parametet
of Eq. 11.2, was used in the original ODT formulation [15] andny subsequent
applications. When kernels were introduced, the estiéke ~ ux was adopted,
which connects eddy selection to energy-based eddy impittien using an ex-



254 T. Echekki, A.R. Kerstein and J. C. Sutherland

pression that measures velocity variations over an drdistance, and hence is
consistent with scale locality. In Eq. 11.2, the expresd@mm involves a square
root that contains a term proportionaluﬁ), hence a kinetic-energy term. In formu-
lations involving multiple velocity components or othereegy contributions such
as gravitational potential energy, these contributiomsaatditive under the square
root.

A specific connection betweer and eddy energetics is identified through con-
sideration of the possible range of kernel-induced enehgyges. Kernel addition
can reduce tha kinetic energy within the eddy to zero only if the spatialfdeoof
u within the eddy is proportional to the kernel function, sattkernel addition can
makeu identically zero within the eddy. Otherwise, there is a maxin amount of
energy that can be extracted from thprofile by kernel addition that is less than the
totalu kinetic energy within the eddy. This maximum, termed theltable energy’
of theu component, i$27/8) pluz, wherep is the density [19]. This connect to
flow energetics in various ways. For example, implementaticthe isotropy crite-
rion involves assignment of the coefficientso as to equalize component available
energies. In buoyant stratified flows, the available enextjyd maximum kinetic en-
ergy that can be extracted in order to compensate for an-@quibpposite change
of gravitational potential energy. If there is less thanrieeded amount of available
energy, then the eddy is energetically prohibited, sa it&lue is set equal to zero.

The indication of a prohibited eddy is that the quantity ie gguare root in
Eqg. 11.2is negative. The parameZas introduced so that an eddy can be prohibited
even if there is net available energy. As indicated by thenadization ofuk in that
equationZ in effect sets a threshold Reynolds number for eddy turndN@nzero
Z is not always required for good model performance, but inesoratances it im-
proves the results sufficiently to justify the introductiohan additional adjustable
parameter. In some instanc&ss assigned a small positive value solely for compu-
tational efficiency. It prevents the implementation of uysibally small eddies that,
if implemented, would have no noticeable effect on resuliaterest.

C is the main adjustable parameter of ODT. It scales the eddptenate, and
hence the simulated turbulence intensity, for a given flomfigoiration. In transient
flows, it controls overall time development, e.g., the sgieg rate of free shear
flows.

Just as there can be a need to assign a podtivalue to suppress small ed-
dies, there can be a need to suppress unphysically largesstthdit would otherwise
occur. This need arises primarily in simulations of freeashdows with laminar
co-flows or free streams. Eddies much larger than the widtheofurbulent region
can have enough available energy to enable their occurréfaea planar mixing
layer, the difference between the free-stream velocita@sprovide enough avail-
able energy irrespective of any turbulence.) Such eddigate the scale-locality
requirement that the scale of the flow features that proideavailable energy for
eddy occurrence should be of the order of the eddy size.

Several large-eddy-suppression procedures have proeéul.u@ne that is found
to work particularly well for jets and jet diffusion flames, pi7] requires thatr
(whichisl /uk in the formulation described here) must be less than theethfow-
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advancement time times an adjustable coefficient, otherthis eddy is prohibited.
The introduction of an additional free parameter is foundeowell justified by
the resulting model performance. An alternative that waslue simulate mixing
layers [1] and buoyant fire plumes [31] is the scale-reductitethod, in which
the eddy is divided into three equal parts and each of thest neufound to have
enough available energy for eddy turnover (based on a Zwalue that negates any
numerical noise contribution; results are insensitiveneddhosen value), otherwise
the eddy is prohibited. If not prohibited based on this tdwt,eddy is processed in
the usual manner.

11.2.2 Numerical Implementation

Based on Eq. 11.3) and thusA depend oryp andl, and this dependence is time
varying due to the time advancementugf,t). Therefore at each instant there is
a new eddy rate distribution from which individual eddy egeare to be sampled.
Computation of, and sampling from, this two-parameteritistion on an ongoing
basis is computationally unaffordable. Therefore, tharthng algorithm [22] for
efficient sampling from nonstationary Poisson procességiwis a generalization
of the von Neumann rejection method) is employed. A fixed edtly distributiom

is constructed so as to oversample all eddies, i.e., it elsctine trued value for all
Yo, |, andt. When an eddy is sampled from the fixed distribution, the Arwalue for
that eddy based on the flow state at that instant is computthareddy is accepted
with probability A /A, otherwise rejected. This approach strongly influencesyman
aspects of algorithm formulation and coding.

ODT has been implemented numerically using both uniformeatagptive meshes.
On a uniform mesh, the triplet map is implemented as a petiontaf mesh cells.
On an adaptive mesh, the mathematical definition of theetriplap on the spa-
tial continuum is applied. Properties are assumed consgtiéimin each cell, so the
continuum triplet map is applied to piecewise constantioonin property profiles.
This involves mapping cell faces, which creates new faceaumse the map is multi-
valued, and assigning cell property values accordingly.

The uniform-mesh implementation is described in many ofptiglications that
have been cited, and a uniform-mesh code and documentatoavailable for
download [9]. The adaptive-mesh implementation is exgldiand applied in [31].

11.2.3 Generalizations and Couplings

The adaptive mesh facilitates several generalizations@f @hat are difficult to
implement on a uniform mesh. It allows Lagrangian rathen thalerian implemen-
tation of advection (in the conventional sense), which isfuisfor incorporating
thermal expansion and for implementing spatial (streamiather than temporal
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advancement of ODT. Spatial advancement conserves pydftexes rather than
properties. Flux conservation requires an implementaifaontinuity that involves

dilatations along the 1D domain, which are convenient tdément in a Lagrangian
manner. The numerics of Eulerian spatial advancement aeciadly challenging

for variable-property flows. This motivated the introdoctiof an adaptive mesh
to simulate the vertical spatial development of a fire pluBl.[Variable-property
spatial advancement has been implemented on a uniform meglerfbrming a

Lagrangian sub-step and then interpolating the displaceshnback to the fixed
uniform mesh [1].

The adaptive mesh also facilitates ODT implementation Imdyical geometry,
in which triplet maps must conserver rather thardy. In this case, the triplet map
is not readily approximated by permuting the cells of a umifonesh. An adaptive-
mesh implementation of a cylindrical spatial formulatiasibeen used to simulate
round jet diffusion flames [21]. An earlier cylindrical LEMdmulation on a uniform
mesh [14] conserves ensemble averages but is not localgecaative, which is less
desirable but adequate for some purposes.

A spatially advancing ODT realization can be interpretech&D flow snap-
shot. On this basis, a spatially advancing fire-plume sitiarig31] has been used
to compute 2D radiation fields, which are then used to speb#ybackground ra-
diation field for the next simulated realization. This att&tion between ODT and
the radiation computation was iterated to statistical eog@nce to obtain a coupled
flow-radiation solution.

Another physical process that has been coupled to the ODTdillowlation is
inertial-particle response to turbulent motions (one-waypling). This formulation
has been used to simulate wall deposition in channel flow [34]

For some applications, full spatial resolution is unaftdstd even in 1D. There-
fore various approaches to subgrid closure in ODT have beeglaped and applied
[20, 24].

Chapter 10 describes ways in which LEM domains have beenedtp under-
resolved 3D flow simulations to provide mixing and chemigtiysure. ODT has
the capability to provide subgrid momentum closure as vealldemonstrated in
applications to channel flow [33] and homogeneous decayiriyitence [32]. Var-
ious formulations of ODT-based 3D flow simulation have besyppsed [17, 18,
23]. Formulations that have been used for combustion stiounlare described in
Sect. 11.3.3.

11.2.4 Features of the ODT Representation of Turbulent Flow

The ODT representation of a time-developing Kelvin—Helttthmstability, illus-
trated in Fig. 11.1, indicates some of the flow features ¢aptby the model. This
illustration is based on the ODT formulation of [19].

The rendering shows that the width of the active mixing zamsvg primarily by
the relatively infrequent occurrence of a large event editembeyond the current
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range of the mixing zone, with some additional contributiyrthe more numerous
small events. This process is consistent with the domiraetaf large engulfing
motions and the secondary role of small-scale nibblingribulent entraining flows
under neutral-buoyancy conditions. (The effect of denstitgtification on the ODT
representation of turbulent entrainment has been inastig1, 15].)
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Fig. 11.1: Graphical representation of the sequence of estdpts during a sim-
ulated ODT realization of a time-developing Kelvin—Helrthoinstability (left
panel) and a time-developing planar wake (right panel).[TB¢ Kelvin—-Helmholtz
and wake simulations are initialized using step-functiod top-hat initial velocity
profiles, respectively. The space and time units in thisttltion are arbitrary. In
the plots, each eddy is represented by an error bar whoseatesppan corresponds
to the eddy rang®/p, Yo + 1], and whose horizontal location corresponds to the time
of eddy occurrence. Reprinted from [19] with permissiomirthe Cambridge Uni-
versity Press.

Bunching of events, especially after the occurrence ofgelavent, reflects the
interactions between the eddy events and the evolving itglpmfile that induce
the model analog of the turbulent cascade. Each eddy evemiresses and folds
the velocity profile within the range of the eddy. This in@es the local shear and
thus the available energy that determines the frequenaylsfexjuent eddies within
that range. A feedback process is thus induced that prortteexccurrence of suc-
cessively smaller eddies. Eventually, velocity fluctuatiength scales are reduced
sufficiently so that damping of the fluctuations by concurkéscous transport dom-
inates the production of fluctuations by eddies. Viscousplagthus terminates the
local burst of eddy activity.

A planar-wake simulation is also shown in Fig. 11.1. In thévife-Helmholtz
simulation, vigorous turbulence, indicated by the numbet size range of eddies
as the flow evolves, is sustained by the shear imposed on théylthe free-stream
conditions (far-field velocity difference). The wake, hawg evolves in a uniform
background. As the initial velocity perturbation is dispeat by eddies and dissi-
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pated by concurrent viscous evolution, the turbulencensitg decreases, affecting
the eddy frequency and size range and slowing the growtheofutbulent zone.

These qualitative impressions are supported by the gatiméitconsistency of ODT

simulation statistics with the known similarity scalings these flows [19].

11.3 Applications of ODT in Combustion

Like its predecessor, LEM (see Chapter 10), the ODT model neaiynplemented
either as a stand-alone model or within the context of a 3Dt&wl, such as LES.
The stand-alone ODT model may also serve a similar role grtlitumerical sim-
ulations (DNS) for the construction of libraries for turbnte-chemistry interac-
tions [28—-30]. ODT stand-alone models are limited in scogftotvs with one dom-
inant flow direction, where a boundary-layer like solutioayrbe adopted. Similar
to LEM, the implementation of ODT within the context of moreneplex flows
may be achieved through the coupling of ODT with a coars@gdasimulation
approach, such as LES [3].

There are many variants of the ODT model in the literatures fifodeling ap-
proach is typically explained by combining the discreii@at solution algorithm,
and governing equations. In Sect. 11.3.1, we present a dimifezhod by which all
of the approaches in the literature may be derived, alonly avitrief discussion of
the equations ultimately used by in the various approaches.

Section 11.3.2 then presents a sampling of results frondstbone ODT simu-
lations of turbulent combustion.

11.3.1 Governing Equations

This section presents a brief discussion of the various $ahthe governing equa-
tions presently solved in ODT. A more detailed exposition ba found in [37].

A generic balance equation for an intensive properiy a control volume (CV)
V enclosed by surfac® can be written as

/ Mdv+/ pw(vr+vs)-ad5:—/ ¢w~adS+/ opdv, (11.7)
vty Ot S(t) S(t) V(1)

wherevs is the velocity of the surfac®, v is the mass-averaged velocity,= v — vg

is the velocity of the fluid relative to the surfage,is the density® is the mass
diffusive flux of ¢, and gy is the volumetric rate of production @f. Table 11.1
defines the termgy, @, andoy, for various quantities. These equations are closed
with an appropriate equation of state relating the locadguee to the composition,
density and temperature.
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Table 11.1: Definition of terms in (11.7) for some common governing equatiorse is the
stress tensoy is the gravitational acceleration vectdf, is the mass fraction of speci&sjy is

the species diffusive flux vector, amgis the heat flux vector. Other equations may be added as
necessary. This is just a partial representation of commonly selyedtions.

Equation Y Non-convective Flux@,  Source Termgy
Continuity 1 0 0
Momentum v pl —1 Jo]s}

Species Yk P Ok

Totglnztge;nal & pv+T-v—AOT+37  hy, Pg-V
Internal Energy e q T:0u—p0O-u
Enthalpy h q %Jru-Dp—H':Du

In the following, we present the various forms of the govegnéquations in use
for ODT. Much of the treatment of the governing equation<d&T in the literature
combine the governing equations with the numerical algoritThe following does
not address numerical solution techniques for the equsti@ther, we focus on a
unified approach for arriving at the various forms of the goireg equations implied
by present ODT approaches in the literature.

11.3.1.1 Temporally Evolving Lagrangian Formulation

The first ODT formulations employed a temporally evolvingnfalation in a La-
grangian frame of reference. In this case, we havevs so thatv, = 0. Writing
(12.7) in one dimension and using the continuity equatipn=1) to convert it to
the weak form yields

— == |-——"+40y]|- 11.8
& p [ dy + 0y (11.8)
In (11.8), %‘" represents the local change fas it moves at velocitys, f% ‘?(x*y

is the change iny due to diffusion, an% is the change iny due to consump-
tion/production.

Implementations of this approach use moving meshes aneHinlume schemes.
The CV surface positions can be determined by solving (¥@r8p = v (the lateral
fluid velocity) and an ODE for position,

d
&y V= (11.9)

Rather than solving (11.8) fap = v, however, most ODT formulations employing
the temporally evolving Lagrangian formulation instead asdiscrete form of the

continuity equation written in Eulerian coordinaté;% = —‘;—‘gf together with the
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assumption of constant pressure and an equation of statévefer vs for use in
(11.9).

11.3.1.2 Temporally Evolving Eulerian Formulation

Recently, an Eulerian temporally evolving formulation fbe ODT equations was
proposed [26, 27]. In the Eulerian frame of reference, wehH& €V surface posi-
tions so thavs = 0 andv, = v so that (11.7) becomes, in differential form,

opy _

s = —0-pyv—0-®y +0y. (11.10)

The one-dimensional differential form of (11.10) is

dpy  dpyv IdDyy
= ay dy +0y. (11.11)

The velocityv in (11.11) represents the local fluid velocity in thelirection, and
%’—t‘” represents the local changegy at a given point in space and time. Current
approaches using the Eulerian form have solved the conmbpledsrm of these
equations [26, 27]. The equations solved are given by (JRA0 Table 11.1, where
W = 1 is solved forp, ¢ = v and @ = u are solved for the lateral and streamwise
momentum componentg) = gy is solved for the total internal energy, = Yk is
solved for the species mass fractions, and an equationtefistased to relat&, p,

P, andY.

11.3.1.3 Space-Time Mapping

The equations discussed above (both the Lagrangian andduferms) provide
solutions with(t,y) as independent variables. Frequently, however, we regaite
tions that evolve spatially (e.g., when comparing with deden a spatially evolving
jet). This requires a space-time mapping, achieved by sglan ODE for stream-
wise position, J

X

=0 (11.12)

whereu is a suitably chosen average velocity for advection of theT@Dmain
in the streamwise direction. This creates an approximaterége’ location of the
line in space. Of course, the line would actually tend to baue to variations in.
This is explicitly ignored by adopting an average velocitythat advects the line
downstream. One possible choice tos

ffmp(u_ u°°)2dy

[20p (U—Uo)dy (11.13)

u(t) = Un +
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An alternative approach to using the approximate space-ti@pping (11.12) is
to reformulate the governing equations withy) as independent variables rather
than(t,y). This is considered in the following sections for both thgtzagian and
Eulerian frames of reference.

11.3.1.4 Spatially Evolving Lagrangian Formulation

The spatially evolving Lagrangian formulation is obtairfezm (11.7) by choosing
Vs-X = 0 andvs-y = v. Then assuming steady state, 2D, and writing the diffeaénti
equation in weak form (using the continuity equation), {}becomes

dg 1 [0Dy,
¥ {dy gyl (11.14)

In deriving (11.14), we have neglected the streamwise dﬁmterm,afﬁ"x. This
term is neglected primarily for practical algorithmic rems. However, in applica-
tion to spatially evolving jets, diffusion in the laterakection will likely dominate
any diffusion in the downstream direction. Nevertheldsis,is an assumption in the
spatial ODT formulations.

This approach has been adopted by Ricks et al. [31] to perépatially evolv-
ing simulations of buoyant pool fires including soot trans@md radiation (see
Sec. 11.3.2).

11.3.1.5 Spatially-Evolving Eulerian Formulation

The spatially evolving form of the equations for ODT in Eigerform is obtained

from (11.10) by assuming steady state and variation onby amdy. Then using
the continuity equation to write it in weak form and neglagt%ﬁX as we did in

(11.14), we find
0 1 7 0P

= oulPay T oy (11.15)

11.3.2 Stand-Alone ODT Simulations

As a stand-alone model, ODT has been implemented for the sifujgt diffusion
flames [7,11,12,21, 27-30], buoyant fire plumes [31], flanreagh [35], and au-
toignition in jet flows [6]. In these studies different modetmulations have been
implemented, which illustrate the versatility of the ODT adeding framework. We
start with the temporally-evolving Lagrangian formulatjevhich has been adopted
for high-Reynolds number jets, but may be implemented asfaetompressible
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turbulent shear layers and wall-bounded flows. We thentilites the temporally
evolving Eulerian formulation for temporally evolving sirelayers [27] and the
temporally evolving Lagrangian formulation for buoyangfiplumes [31]. In all

formulations, a deterministic solution, involving difios, reaction and advective
transport operators in the Eulerian formulation, in copjion with a stochastic im-
plementation of turbulent advection, is implemented.

The temporally evolving Lagrangian formulation is basedti@ solution of
equation (11.8) for the streamwisg component of momentum along with equa-
tions for energy and species. Figure 11.2 shows temperebmteurs for a wall fire
from [35] from a single (left) and 300 (right) realizatiofiis was solved using the
temporal formulation with (11.12) to provide an approximapace-time mapping.
Close examination reveals that small scale triplet mappusmts are first observed
at approximate heights of 25 cm and at a distance of appraglynacm away from
the wall corresponding to the high values of temperaturd gahocity, not shown).
As the flow further accelerates, progressively larger edidyrg) events are shown
to occur causing larger scale macro-mixing and the engulfrokthe surrounding
air. This transition of energy from small to large scales dition is also consis-
tent with recent observations from experiments and LESigtieds of large scale
plumes [4].
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Fig. 11.2: 2D renderings of temperature corresponding faglesrealization (left)
and averaged (right) over 300 realizations of a wall firenk-{4].

Results from a piloted jet flame simulation with extinctiomdareignition are
shown in Figure 11.3 for the same formulation. The resulistitate how the ODT
model is able to predict extinction and reignition in pildteirbulent non-premixed
flames. Two zones may be identified in the jet flame. The firstesponds to a
region extending approximately fifteen diameters dowastrérom the inlet that il-
lustrates a transition from piloted burning to extinctidiis transition is followed
by a gradual reignition as shown by the increased OH massdmnadhe 2D ren-
dering of stirring events also shows that stirring evengsigitiated at the interfaces



11 One-Dimensional Turbulence 263

between the fuel jet and the pilot flow and the interfaces betwthe pilot flow
and the co-flow air, and that the size of eddies progressiuehgases as a function
of downstream distance, emulating the progressive groitheoshear layers. Evi-
dence of the existence of an 'energy cascade’ in the ODTisakits demonstrated
by the presence of smaller eddies that trail larger eddidéb, iegions of spatial
intermittency, as these smaller eddies dissipate (sed-asd1.1).
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Fig. 11.3: 2D renderings of OH mass fraction corresponding single realization
(left) and averaged (right) over 100 realizations of Sapid@ed methane-air flame
F. The 1D domain corresponds to the horizontal axis. Its teaigvolution is con-
verted to a downstream distance based on (11.12) and (1Ré&gjinted from [30]
with permission from Taylor and Francis.

The formulation proposed by Punati et al. [26, 27] solvesEhkerian form of
the governing equations described in Sec. 11.3.1. Spdbjfigil.10) is solved with
Y= (p PV pu pegy PY; ) , Whereu is the streamwise velocity andis the velocity
component in the direction of the the ODT line orientatioee Fable 11.1 for defi-
nitions of the diffusive fluxes in these equations. Thesegqguos are solved together
with the ideal gas equation of state, detailed COadkidation kinetics, and mixture-
averaged transport to make direct comparison with DNS datglanar, temporally
evolving CO/H-air nonpremixed jet [10]. The DNS dataset includes exitmcand
reignition, with the onset of extinction at a charactecigét time of T ~ 20 and
reignition occurring at around ~ 30. This calculation allowed direct comparison
between the ODT and DNS data. Initial conditions were exd@directly from the
DNS data, and all treatment of diffusion, thermodynamics] ehemical kinetics
was equivalent.
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Figure 11.4 shows the average and RMS velocity and mixtareiém profiles
for the ODT and DNS simulations. The spreading rate is wettwad by ODT.
The RMS profiles are captured reasonably, but the ODT uregesents the mag-
nitude of the RMS fluctuations. Similar trends hold for akési@s (including minor
species), with the exception that extinction is over-predi by the ODT simula-
tions.

Figure 11.5 shows the evolution of the probability dengitydtions conditioned
on lean and rich mixture fractions for the temperature aradasaissipation rate.
The temperature PDF illustrates that the ODT predicts dieeanset of extinction
than the DNS. Specifically, at= 6 there is already evidence of extinction in the
ODT data. However, the extinction-reignition process iptaeed relatively well
despite these differences.
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Fig. 11.4: Evolution of the streamwise velocity (top) andiuie fraction (bottom)
showing the mean (left) and RMS (right) for the ODT (linespddNS (circles)
data. Results are shown for characteristic jet times frea®6 to T = 40. From [27].

The data shown in Figs. 11.4 and 11.5 were obtained from 400 @8lizations,
and each realization required approximately two CPU hdarsontrast, the DNS
calculations (which were three-dimensional) requirecesgvmillion CPU hours.
Although ODT cannot capture uniquely multidimensionakef that DNS can, it
does represent many of the physical processes presenteirthiree-dimensional
turbulent flow at a fraction of the cost of DNS, and thus seagea very useful tool
in combustion modeling.

Ricks et al. [31] simulated a buoyant fire plume using ODT blyiag (11.14)
(the spatially evolving form of the governing equations egkangian form) as out-
lined in Sect. 11.3.1, including transport equations fdidsphase soot particles as
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Fig. 11.5: Conditional pdf of temperature (left) and scalesipation rate (right).
Results are shown for lean and rich mixture fractions anektlifferent times dur-
ing the jet evolution. DNS data is shown dot-dash lines and @&ta is shown with
solid lines. From [27].

well as gas-phase transport equations. However, Ricks [@ldladopt a simplified
approach for the representation of the gas phase specigsthsiflamelet assump-
tion and transporting the gas phase mixture fraction. Is tbimulation, the two
independent variables correspond to the lateral (alon@€ domain) coordinate,
y, and the streamwise spatial coordinatelhe 1D nature of the solution enables the
implementation of a host of models for soot evolution (idéhg soot oxidation by
OH), and transport (including thermal diffusion), radistiand gas phase chemistry
on large-scale computational domains.

Figure 11.6 shows 2D renderings of the temperature cornesipg to two sep-
arate realizations of the ODT simulation of a fire plume bykRiet al. [31]. The
ODT domain is aligned with the horizontal directiox);(a marching algorithm is
implemented to evolve the ODT solution in the vertiggldirection on a computa-
tional domain of 2 mx 3 m. The necking just above the base of the flame is due to
the spatial form of the continuity enforcement, which ingsimmward lateral flow in
order to compensate for the buoyancy-induced increase isttbamwise mass flux.
Additional statistics on soot evolution and radiation effemay be found in [31].

11.3.3 Hybrid ODTLES

Similarly to LEM, ODT may be coupled to a 3D coarse-grainedusation ap-
proach, such as LES, for chemistry and mixing closure. Maggdhere are differ-
ent strategies for LES and ODT coupling based on EulerianLaggangian for-
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X (m) x(m)

Fig. 11.6: 2D renderings of temperature (in K) correspogdintwo separate real-
izations of a buoyant fire plume simulation. Reprinted fra@][with permission
from Taylor and Francis.

mulations. In both formulations, ODT domains or elements @nbedded in 3D
solutions to resolve subfilter-scale momentum and scaddissts. In the Eulerian
formulation, ODT elements are fixed in space. Advective dpamt contributions
in this formulation are represented by both large-scalespart resolved by LES
and subfilter-scale transport represented by ODT stirnmyes. The simplest La-
grangian formulation may be implemented by attaching ODilteEms along the
normal to the flame brush. In this formulation, the ODT eleta@ne advected along
with this brush. Similar strategies have been successdibpted with LEM as dis-
cussed in Chapter 10.

In contrast to LEM, the coupling of LES with ODT may presentianber of
additional advantages:

e ODT has the capability to provide closure for momentum. H@veone may
choose to provide closure for scalars only and allow for ads#ied model for
momentum closure (as discussed below).

e In ODT, the coupling of momentum and scalars is implementethe fine time
and length scales of ODT solutions; this coupling is veryc@unear physical
boundaries (e.g. walls) where both scalar and momentumdasyrconditions
may be implemented.

e Historically, large-scale transport with LES-LEM has béemplemented using
‘splicing’ events, which extract segments from a LEM salatin one LES grid
and transfers them to another LEM solution in a neighborig§ lcell. The LES-
ODT formulation of Cao and Echekki [3] proposes an alteugatepresentation
for large-scale transport based on ODT domains extendipgrukea single LES
cell.
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The ODTLES model formulation is illustrated using the Ei#larformulation by
Cao and Echekki [3]. The ODTLES formulation is based on twouations that
are implemented in the same computational domain. Thedies8D LES for mass
and momentum transport. The second is based on fine-graimethtons imple-
mented on an ensemble of 1D ODT elements, which are embeddét ILES
domain. Here, we describe a formulation in which ODT elermané distributed in
a 3D Cartesian lattice as shown in Fig. 11.7 where the LESved®n a structured
Cartesian grid as well. However, a more complex layout mapd@pted. More-
over, the formulation is used primarily for reactive scalailosure. For momentum
closure, a ‘standard’ LES closure model for subgrid stressay be adopted.

—
k -
|
g g
DT mode ODT elementd lame brush

Fig. 11.7: Layout of ODT elements on a Cartesian grid in LEGapted from [3].

The ODT governing equations are solved on each individual @@ment. The
temporal and spatial resolution requirements in ODT ardaino those needed for
direct numerical simulations. The coordinate system orclvtiie governing equa-
tions are based is a Cartesian coordinate system with onpar@ent along the ODT
domain,xg, and two additional orthogonal componemtsandxs. The spatial coor-
dinate,xs, replaces the ODT domain coordinayejn previous discussions. When
laid out on a Cartesian lattice, the directirnrepresents the axis that is aligned
with the ODT element; while the other coordinaiesandxs represent the remain-
ing axes. The velocity field is split into a filtered (resohiad_ES) component and
a residual component:

u = G+ uf (11.16)

wherelj is the filtered velocity in thé&h direction. The contribution of transport due
to this velocity component is denoted as large-scale t@msphe second term on
the right-hand sidey’, is the residual term of the velocity field in tith direction.
This latter term is modeled using the stochastic turbulénirgy events in ODT.
The contribution of transport due to this velocity compadriemenoted as subfilter-
scale transport. The variable-density governing equattoneach ODT element of
momentum, temperature, and species mass fractions are:

e Momentum
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(7Ui . EﬁTil 71@ B ~_ﬂ E dTiz ﬁTig
ot Jr[p dx1}+{ P O u’dxj+p(0x2+dx3)} (11.17)

e Temperature

oT 1 (dqg N _OT 1 (dqp Jgs
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(11.18)
e Speciegk=1,...,N)

N [1( diu <Ok 1 /djke O

ot {p ( axq erkﬂ {u’ ax; A (dxz + 0x3>} (11.19)
In equations (11.17)-(11.19), the indgrepresents the sum over all three directions
of the advective terms. The diffusive fluxejgy, jk2 and jks correspond to mass
diffusion fluxes of thek species in they, X, andxs directions, respectively. They
may be expressed @¥, pVike andpVis, whereV; is the mass diffusion velocity of
speciek in theith direction.qs, gz, andgs correspond to the components of the heat
flux vector in thexs, xo andxs directions, respectively. These components represent
the contributions of heat conduction, heat transport bysnaféusion, the Dufour
effect and radiative heat transport. The ODT governing tguos feature contribu-
tions which are resolved on the ODT domain (terms insidek&sc[ ]'). These are
the same source and transport terms present in the stanel-@@T equations. The
resolved contributions include (1) molecular transpothvgradients along the 1D
elements, (2) chemical and heat source terms, and (3) tfi#teubcale momentum
and scalar transport; this latter term is represented byOib& stochastic stirring
events discussed in Sect. 11.2.1 and implemented on a rafegeyth scales. Other
contributions require gradients along the normal comptntnthe ODT domain
(terms inside bracketg}’). The unresolved contributions include: (1) large-scale
transport (advective transport based on the filtered viglaoimponents), (2) molec-
ular diffusion with gradients along andxs, and (3) the pressure gradient terms in
the momentum equations.

The coupling of LES and ODT solutions is implemented bothgerally and
spatially. The ODT integration treats reaction-diffusicubfilter-scale transport
(stirring events) and filtered-advection as parallel evghat are integrated with
their own time steps, and which are fractions of the LES titep.<During the tem-
poral integration of the two solutions, statistics are $raiited from one solution
scheme to another. For ODT, the LES velocity fielés evaluated from the LES
solution of the momentum equations and interpolated or@@BDT elements’ finer
grids. For LES, a number of variables may be filtered from OBIlitsons, including
closure for the mass densify, In what follows strategies adopted for the integration
of the various terms in the ODT equations are briefly disalisse
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11.3.3.1 Molecular Processes

Molecular processes in the ODT governing equations inc{@jleeaction, (2) dif-

fusion along the ODT elements’ directions, and (3) diffusadong the directions
normal to the ODT elements. The integration of the first twotdbutions is similar

to their implementation in the stand-alone ODT formulatidhe third contribution

must be modeled. The treatment of the unresolved terms miayddemented either
deterministically or stochastically. In the Cao and Ech¢Bkwork, the representa-
tion of non-resolved diffusive contributions is achievedetministically by scaling
the resolved diffusive transport terms by a factor to regmeshe filtered contribu-
tion of mass transport from the unresolved transport. Farmgle, if there is no
preferred gradient, such as in the presence of a flame bristioa of 3 is adopted.

11.3.3.2 Representation of subfilter-scale stresses andkgs fluxes

The stochastic contributions represent 3D subfilter-sadiective transport of mo-
mentum and scalars (i.e. subfilter-scale stresses and 8oaks) resulting from the
residual velocity components. For momentum additionatridautions may be at-
tributed to pressure scrambling [19]. The stochastic terrasmplemented through
discrete triplet map events, which are implemented coeatisr with other pro-
cesses within ODT. The rules for stirring events are idahtio those applied in
stand-alone ODT. The range of length scales for the selextdiks is prescribed
prior to the simulation based on a choicelgfi, and Linay, Which represent the
smallest and largest eddies allowed. The valu&gf plays a similar role to the
Kolmogorov length scale, and corresponds to length scafesewiscous dissipa-
tion is predominant and stirring events are less likely touncThe value of a5« de-
termines the cut-off length scale beyond which turbuleneative transport is rep-
resented using the filtered advective terms. These paresrate additional model
parameters t€ andZ prescribed earlier for the ODT-implementation. The cumula
tive contribution from stirring events over time represdiie subfilter-scale stresses
and fluxes.

11.3.3.3 Large-Scale Transport

The large-scale transport of momentum and scalars in OD&peesented by the
operatorajj”g—)‘(‘;, ng—; andu”jg—:((‘j‘ in the ODT governing equations. The implemen-
tation of large-scale transport represents a fundamehngdllenge for the following
reasons: 1) Advective transport is a 3D process; thus, st tea directions are not
resolved on the ODT time scale or on the ODT 1D elements, 2}IMear contribu-
tions from advection processes pose important constraimgsalar boundedness. In
the Cao and Echekki [3] formulation, advective fluxes arestmtted at ‘nodes’ that
represent the intersection in space of three or more ODTeazi&anAt these nodes,

the solutions of the velocity and scalar equations are @gllalhen, ODT solutions
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between these nodes are updated through single-compahetian along the cor-
responding ODT element. In a Cartesian lattice of ODT elémehese nodes rep-
resent the intersection of three orthogonal 1D elementevBeve describe the im-
plementation based on this Cartesian lattice configuraliba large-scale transport
process is implemented as a separate process concurrethtlyeaction-diffusion
and stirring in two steps: 1) node advection, and 2) intefen@laxation.

Node Advectioiis implemented as follows. At the prescribed time step fagda
scale transport, the solution at each node is evaluated basgradients represented
by the 3 ODT elements intersecting at the node. This prosasglemented in two
steps. First, the solution is updated at each node for theantarm and scalars using
the following governing equations:

3(PI_ 09t 097 Gsﬁ(l)a

=—Oj——-0—— —03—— 11.2
ot ‘1 X1 uzdxz 3 0x3 ( 0

In this expression, the dependent variapleorresponds to any one of the variables
in the solution vector. The subscripts, 1, 2 or 3, corresptonithe components of
the velocity vector; while, the superscripts, 1, 2 or 3, espond to the direction of
the ODT domain. Although each node is updated with the sagie-hiand side that
represents contributions from the three directions of Ol2ments, its value at the
end of the update is different because of the valueg' aire different at the start
of the update from the 3 contributing ODT elements. A secdeg svolves the
averaging of these 3 solutions at the nodes as follows:

e+t

3 (11.21)

@
Inter-Node Relaxatioinvolves a relaxation of the solution between the nodes
based on the updated internal boundary conditions at thesndthis relaxation is
accomplished through an integration of the solution at geits between the nodes
using a single-component advective flux according to thevehg relation:

a¢ 409
FTa K0 ax (11.22)

In this expressionk represents a relaxation coefficient, which governs the rate
at which the inter-node solution is updated to reflect chammg¢he nodes. Because
ODTLES is a statistical approach, a range of valuesfanay be adopted to yield
reasonable statistics for the scalars and momentum sautio

Similarly to the approach by Schmidt et al. [32], a correttio the ODT veloc-
ity solution is implemented such that the filtered ODT vepdield matches the
solution from LES.

The above Eulerian formulation was implemented by Cao arieeEd [3] for
the modeling of non-homogeneous ignition in a random meduaction field with
preheated oxidizer and of the same configurations show lieatnbdel represents
adequately turbulent transport through the contributmirsubfilter-scale transport
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and large-scale transport. Important effects of prefékdiffusion as well as tur-
bulence intensity are identified in reactive-scalar cood#l statistics.

Figure 11.8 shows isocontours of filtered reaction progvassble (normalized
temperature) at a prescribed value of 0.5 (for flame traglandifferent times based
on the ODTLES simulations. The figure shows the formationis€réte ignition
kernels at favorable mixture conditions, their growth ameitmerger at later times.
The reaction progress variable is obtained by filtering tiEr@olutions; the size
of the initial nascent kernels is smaller than the LES grid.

Fig. 11.8: Evolution of flame kernel based on filtered reacpoogress variables
during non-homogeneous mixture ignition in isotropic tudmce. The figure shows
the formation of ignition kernels at conditions favoratietie onset of ignition. Ad-
ditional kernels are formed at less favorable conditiomsafdtoignition after more
delay. The kernels eventually grow to interact at lateressamnd merge to form larger
kernels, until the entire mixture is burned. Reprinted fi{@frwith permission from
Taylor and Francis.

Figure 11.9 shows the evolution of the heat-release ratdittonal statistics at
two Lewis numbers, 0.5 and 2, representing the ratio of tkenthal diffusivity to
the species mass diffusivities. The lower Lewis number-helatise rate profiles
exhibit higher peaks initially and then lower peaks evelfyuas the combustion
progresses from fuel-lean conditions to richer conditidifse difference between
the two cases reflects the strong dependence of the heataesta on temperature,
which is affected by the Lewis number. Lower Lewis numbedidate slower diffu-
sion of heat relative to species. Therefore, the initiatfation of the corresponding
kernels favors kernels that shielded from heat loss. Honvélve same mechanism
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may prevent the ignition of the unburned layers next to théion kernels and their

propagation. Cases a and b shown in comparison with DNStitaticorrespond

to two different and coarse LES resolutions (case a is twéceesolved as case b).
The two cases are in very good agreement with the DNS statistid show that the
ODTLES formulation predicts reasonably well the contribos from large-scale

and subfilter-scale transport.

The ODTLES formulation has been extended recently to theysbfi turbulent
premixed flames by Echekki and Park [8]. A Lagrangian forriafahas been im-
plemented more recently by Balasubramanian [2] for theysafda buoyant fire
plume. In this formulation, the ODT elements are attached fdtered mixture
fraction surface with a fixed value corresponding to thecttioimetric value.

11.4 Concluding Remarks

Here and in Chapter 10, a strategy for turbulent combustiodeting has been out-
lined that involves a conceptually and computationally imal representation of
the local unsteady evolution of the coupled processes dadcian, diffusion, and
reaction. ODT, described in this chapter, incorporatespaesentation of the de-
pendences of the occurrence of eddy motions on the mechsutiehdrive these
motions. In addition to capturing important effects of thesteady couplings, this
feature results in a formulation that is, in many respectsgl&contained predic-
tive model of turbulent flow. This is perhaps a natural consege of the effort to
capture the couplings relevant to combustion; for a modelatahis well, it must
capture much of the phenomenology of turbulence.

The main limitation of ODT in this regard is its restrictiom@ne spatial dimen-
sion. It is thus complementary to LES, which captures lacge 3D motions but
does not resolve flame structure and evolution. Coupling@T @ LES has been
described. The successes of the LEMLES formulations fomthe@eling of practical
combustion flows (see Chapter 10) also support the potesft@DTLES as a vi-
able modeling approach for similar problems. More impdijaboth LEMLES and
ODTLES may be viewed as frameworks with which multiphysing anultiphase
problems may be addressed. In addition to the momentum andat scalar equa-
tions for combustion problems, additional transport elgustmay be implemented
within these ODTLES frameworks, including particle traopand multiscale de-
scriptions of radiative transport in participating media.

One focus of current efforts is the coupling of arrays of O@Mains so as to
obtain a self-contained 3D flow simulation (with the smalkesles resolved only in
1D), thus eliminating the need for a distinct coarse-gréie flow solver [17]. This
modeling strategy is termed autonomous microstructurkigga (AME). Another
focus involves Lagrangian implementation of the ODTLESfesvork based on
ODT elements attached to the flame brush.
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