Sandia
National
Laboratories

Exceptional

service
in the
national

interest

SAND2013- 10537P

Kitten Lightweight Kernel
Overview

December 11, 2013

Kevin Pedretti

Scalable System Software
Sandia National Laboratories
ktpedre@sandia.gov

7%, U.S. DEPARTMENT OF V/ VY A | ‘\Q,'\qg
ENERGY /IVA A
% ‘National Nuclear Security Administration
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Sandia Massively Parallel Systems = @&,

2004

1999

Red Storm

* Prototype Cray XT
* Custom interconnect
* Purpose built RAS
* Highly balanced and
o scalable

Cplant » Catamount
« Commodity-based lightweight kernel

« Production MPP supercomputer
Paragon « Hundreds of users * Hundreds of users
* Tens of users * Red & Black * Enhanced simulation
* First periods partitions capacity
= processing MPP * Improved * Linux-based OS
nCUBE2 « World record interconnect licensed for
« Sandia’s first large performance * High-fidelity coupled commercialization
MPP * Routine 3D 3-D physics * ~2000 nodes
* Achieved Gflops simulations e Pumal/Cougar
performance on « SUNMOS lightweight lightweight kernel

applications kernel
I —————————————

What is a Lightweight Kernel? (LWK) @JE.

= |t's one component in the overall
machine operating system Service
. . . Nod
= Relies on full-service OS/Linux rur?ni?msg Compute Nodes

functionality elsewhere in system Full OS
(Linux)

running LWK

= Allocates hardware resources to
applications, app knows best
= Sometimes called a “Compute Node OS”
= A bit of a misnomer, more like an application runtime
= Derives from partition model: specialize HW/SW for compute nodes,
service nodes, login nodes, I/0 nodes, etc.
= To afirst order, goal is to deliver maximum hardware
performance to scalable HPC applications
= Trade functionality for performance
= Extends beyond MPI (threads, OpenMP, SHMEM, UPC, ...)

= Non-problems [a%= | VE FREE OR DIE =

What’s the Problem with Linux?) .

~
Large developer community, rapid development
= Supports pretty much all hardware / devices Ll N U X

HPC Vendors ta rget it’ test it' improve it @D /U is a Registered Trademark of Linus Torvalds (D

= Arguably problems

HPC is not main focus, mostly afterthought in core community
Large codebase, lots to comprehend to make changes
Rapid pace of development, difficult to get HPC changes accepted

Problems

Resource management policies designed for overprovisioning,
general-purpose functionality
Memory pinning, large pages, page cache, swapping, OOM killer, etc.

Performance variability, lack of QoS guarantees
Poor match for some hardware (BlueGene, embedded hw)
Assumes certain hardware characteristics (cache coherency, homogeneous)

Sandia
m National
Laboratories

Lightweight Kernel Timeline

% {3

2002 2008
Catamount Kitten Hobbes

2002 | . 2007

Virtuoso Palacios
2004 2007 2012
BG/L CNK " BG/P CNK “BG/QCNK ~~ FusedOS
2007
Cray Compute

Green = Open Source Node Linux

Red = Closed Source

= Kitten and CNK similar in concept = Palacios and Xen are both hypervisors
= Both support Linux APl subset and ABI = Palacios designed to be embeddable in a host OS,
compatibility Kitten or Linux
= Kitten targets x86 (ARM port underway), = Palacios is designed for HPC, low overhead,
CNK targets PowerPC predictable performance
= Kitten leverages Linux source code, = Palacios targets x86,
CNK uses no Linux source code Xen targets x86 + other archs

Kitten LWK Goals h)

"= Maintain goodness of Catamount, but modernize
= |nverted resource management: application in control, not OS kernel

= Predictable performance behavior
= Provide baseline Linux ABI compatibility (like CNK)
= Add support for multi-threading, POSIX threads, OpenMP, ...
= Leverage virtualization to support full-OS functionality
= Enforce security, prevent app from crashing node or other nodes
= Be good platform for HPC OS R&D

= Be suitable for deployment

= Non-goals
= Be a general-purpose OS
= Breadth of driver support

Kitten Basic Architecture

Sandia
"1 National _
Laboratories

Memory Management

Page 3

Page 2

Page 1

Page 0

= Kitten kernel provides mostly mechanisms + interfaces

= Bootstraps HW, figures out what resources are ava
= Controls access to privileged hardware

= PCT in user-space directs kernel how to allocate resources

= Create address spaces, virtual memory regions
= Map physical memory to address spaces
= Create threads/processes, bind to CPUs

o) - .

S | Node | P -

Q) »)

» | Control | = : 0| Guest

u O | Standard | @ + oS

o | Daemon | 5| "ipca | -8 Page N+3

0 2 bc.a e

2 | (PCT) |<[libmpi.a © Page N+2
Page N+1

o - i

> Kitten Kernel (+Palacios) Page N

£

Hardware Physical

Memory

ilable

Application
Virtual
Memory

Kitten LWK Implementation) .

= Monolithic, C code, GNU toolchain, Kbuild configuration
= Core Kernel 12K SLOC, x86 _arch 12K SLOC, include 22K SLOC

= Supports x86-64 architecture only, porting to ARM

= Boots on standard PC architecture, Cray XT, and in virtual machines
= Boots identically to Linux (Kitten bzlmage and init_task)

= Repurposes basic functionality from Linux
= Hardware bootstrap

= Basic OS kernel primitives (lists, locks, wait queues, etc.)
= Directory structure similar to Linux, arch dependent/independent dirs

= Custom address space management and task management
interfaces

= User-level APl for managing physical memory, building virtual address
spaces

= User-level API for creating tasks, which run in virtual address spaces

LWK Virtual Memory Regions) &

Laboratories

= User address space divided into virtual
memory regions:

Kernel = Text
= Data
= Heap
Stack Anonymous = Stack
mmap() grows . . .
down = Each region is mapped to a contiguous
region of physical memor
Heap l egion of physical memory
T = Straightforward to use large pages
UNIX Heap = PCT in user-space sets up the mapping
Grows Up . . .
Data = All virtual<->physical mapping occurs
before application starts
Text = No demand paging

= No memory oversubscription

SMARTMAP Intra-node Optimization) S
Eliminates Unnecessary Memory Copies

= Basic Idea: Each process on a node maps the memory of
all other processes on the same node into its virtual SMARTMAP Example
address space

= Enables single copy process to process message passing ATdodprOSfF:ggte
(vs. multiple copies in traditional approaches)
3
S
MPI Exchange
singl impact O
10000 | SiNgle copy impac 0]
\ L®)
’a - -O
= 1000 L <
g ’ ——Portals - BTL '©
= 100 / Portals -MTL -E
1 ——Shared Memory Ly
10 ' g ——SMARTMAP =~
_de Virt Addr 0
1
CNPIRTESSESESS PO P11 P2 PR3
Te5 MPI Processes P0-P3
Message Size (Bytes)

Task Migration Optimization

Round-trip Task Migration Time

Operating System | (task on core A migrates to core B,
then back to A)

Linux 2.6.35.7 4435 ns

i\

Kitten 1.3 2630 ns

Core-switching performance between two cores in
the same Intel X5570 2.93 GHz processor. Kitten
achieves a speedup of 1.7 compared to Linux,
due to simpler implementation.

Sandia
National _
Laboratories

11

Getting Started) i
hg clone https://code.coogle.com/p/kitten

make menuconfig (chose all defaults)
make isoimage

= Then boot the isoimage wherever you’d like

= You should see a bunch of boostrap messages detailing the hardware
detected

= Once boostrap is done, the “hello world” init task will be started

= You can replace the “hello world” init task with an ELF executable of your
choosing (e.g., an OpenMP application)

= All binaries must be statically linked

= By default, init_task limited to 64 MB. To increase, either edit
kernel/init_task.c to increase defaults or use kernel command line
options:

= jnit_heap_size=1073741824 init_stack_size=4194304 12

Sandia
’11 National
Laboratories

Future Directions

Define “Node Virtualization Layer” interfaces (DOE/ASCR Hobbes)

= Example: Run science app in Kitten partition, analysis app in Linux partition,
share memory regions (or snapshots) between the two

= Doesn’t necessarily have to use virtualization hardware, both OS stacks
could run natively if the cooperate

Define runtime system interfaces (DOE/ASCR XPRESS)
Better networking and I/O support
Explore capabilities of other research OSes / kernels

= Physical memory management interfaces in L4
= Partition management interfaces in Tesselation (Berkeley)

= Message passing interfaces of Barrelfish

13

Conclusion

= Relies on an external general-purpose OS, nominally Linux

= Simple resource management, gives app control

= Kitten supports a basic Linux user-level environment
= Standard Glibc, POSIX threads support, OpenMP
= Subset of Linux system calls supported

= Kitten leverages virtualization for full OS support
= Kitten being leveraged by several current research projects

Kitten LWK is a special purpose “Compute Node OS” for HPC

= Component of overall system

Sandia
National _
Laboratories

14

Acknowledgements

= Ron Brightwell (SNL)

= David DeBonis (SNL, HP)

= Michael Levenhagen (SNL)

= Patrick Bridges (U. New Mexico)

= Peter Dinda (Northwestern)
= John Lange (U. Pittsburgh)

Sandia
National
Laboratories

Additional Slides

16

National

Physical Memory Management)

= Region based physical memory management
= Broadly separated into two partitions

= Kmem (Kernel Memory)
= Umem (User Memory)
= Kmem pool is fixed at boot time, doesn’t grow
= Size configurable using kmem_size boot parameter, 64 MB by default
= Kernel uses kmem API to allocate kmem
= Umem pool managed by user-space
= PCT uses pmem syscall APl to allocate physical memory
= PCT uses aspace syscall APl to bind physical memory to address spaces

17

Pmem Region Data Structure) e,

(include/lwk/pmem.h and kernel/mm/pmem.c)

[**
* Defines a physical memory region.
*/

struct pmem region ({

paddr t start; /* region occupies: [start, end) */

paddr t end;

bool type is set; /* type field is set? */

pmem type t type; /* physical memory type */

bool numa node is set; /* numa node field is set? */

numa node t numa_ node; /* locality group region is in */

bool allocated is set; /* allocated field set? */

bool allocated; /* region is allocated? */

bool name is set; /* name field is set? */

char name[32]; /* human-readable name of region */
}i

18

Pmem Core API rh) e

(include/lwk/pmem.h and kernel/mm/pmem.c)

/* Add a region of physical memory to the pmem pool */
int pmem add(const struct pmem region *rgn);

/* Update a region of physical memory’s meta-data */
int pmem update(const struct pmem region *update);

/* Find a region of physical memory meeting given criteria */
int pmem query(const struct pmem region *query,
struct pmem region *result);

/* Atomically query and mark result as allocated */
int pmem alloc(size t size, size t alignment,
const struct pmem region *constraint,

struct pmem region *result);

19

Example Pmem Layout after Boot

= VMware guest configured for 4 GB memory:

Physical Memory Map:
[0000000000000000,
[0x00000000083000,
[0x0000000009£f000,
[0x00000000100000,
[0x00000000200000,
[0x00000000413000,
[0x00000004000000,
[0x00000004119000,
[0x00000006162000,
[0x000000bfee0000,
[0x000000b££00000,
[0x000000c0000000,
[0x00000100000000,

Total User-Level Managed Memory:

0x00000000083000)
0x0000000009£000)
0x00000000100000)
0x00000000200000)
0x00000000413000)
0x00000004000000)
0x00000004119000)
0x00000006162000)
0x000000bfee0000)
0x000000b£f£00000)
0x000000c0000000)
0x00000100000000)
0x00000140000000)

BOOTMEM
KMEM
BOOTMEM
KMEM
BOOTMEM
KMEM
INITRD
INIT TASK
UMEM
BOOTMEM
UMEM
BOOTMEM
UMEM

4192722944 bytes

numa node=0
numa_node=0
numa node=0
numa node=0
numa_node=0
numa node=0
numa node=0
numa_node=0
numa node=0
numa_node=0
numa node=0
numa node=0

numa_node=0

Sandia
National _
Laboratories

i\

(Bootstrap allocs)

(BIOS reserved)

(ACPI stuff)

(GPU, APIC, ...)

20

Kmem Management API) e,

(include/lwk/kmem.h and kernel/mm/kmem.c)

= All Kmem managed by buddy allocator (kernel/mm/buddy.c)
= Two ways to allocate:

= malloc() style give me some memory
= Page-based give me a contiguous set of pages

/* malloc-style, implementation tracks block size internally */
extern void *kmem alloc(size t size);
extern void kmem free(const void *addr);

/* page-based, caller must remember order of the block */
extern void *kmem get pages(unsigned long order);

extern void kmem free pages(const void *addr,
unsigned long order);

21

LWK Virtual Memory Regions) &

Laboratories

= User address space divided into virtual
memory regions:

Kernel = Text
= Data
= Heap
Stack Anonymous = Stack
mmap() grows . . .
down = Each region is mapped to a contiguous
region of physical memor
Heap l egion of physical memory
T = Straightforward to use large pages
UNIX Heap = PCT in user-space sets up the mapping
Grows Up . . .
Data = All virtual<->physical mapping occurs
before application starts
Text = No demand paging

= No memory oversubscription
22

National

Aspace Management) e

= Every execution context must execute in the context of a
virtual address space, represented by an aspace structure

= After bootstrap, all address spaces have the kernel mapped
into them above PAGE_OFFSET (matches Linux design)
= Avoids context switch to enter kernel
= Enables kernel threads to run without context switch

= Address space consists of non-overlapping virtual memory
regions, each mapped to physical memory or hardware

= Currently no support for handing page faults

" |n future may allow dynamic binding of virtual memory region
to a physical memory pool for NUMA first-touch support

23

Sandia
Aspace Core AP]) s
aboratories
(include/lwk/aspace.h and kernel/mm/aspace.c)
/* Create a new aspace, possibly with a specific ID */
int aspace create(id t id request, const char * name,
id t *id);

/* Create a virtual memory region */

int aspace add region(id t id, vaddr t start, size t extent,
vmflags t flags, vmpagesize t pagesz,
const char * name);

/* Map physical memory to a virtual memory region */
int aspace map pmem(id t id, paddr t pmem,
vaddr t start, size t extent);

/* Map one aspace into another at a given virtual address */
int aspace smartmap(id t src, id t dst,

vaddr_t start, size_t extent);
24

Sandia

Task Management) .

= Every context of execution represented by a task
= Each task is associated with an aspace

= Threads implemented as multiple tasks associated with the same aspace

= Each task represented by a kernel-level task_struct
= Contiguous block of memory including TCB and kernel stack (on x86)
= |ncludes the task’s permissions (uid/gid), fdtable, signal table, etc.

= Each CPU maintains its own task queue

= Runnable tasks schedule round-robin
= Blocked tasks are idle until they are woken up

25

Task Core API) o,

(include/lwk/task.h and kernel/task.c)

/* Specifies the initial conditions to use when spawning a new task */
typedef struct {

id t task id;

char task _name[32];

id t user id; // User ID the task executes as

id t group id; // Group ID the task executes as

id t aspace id; // Address space the task executes in

id t cpu_id; // CPU ID the task starts executing on

vaddr t stack ptr; // Ignored for kernel tasks

vaddr t entry point; // Instruction address to start executing at
int use args; // If true, pass args to entry point()
uintptr t arg[4]; // Args to pass to entry point()

} start state t;

/* Spawn a new task with the requested start_state */
int task create(const start state t *start state, id t *task id);

int task _switch cpus(id t cpu id); /* allow task to migrate itself */ 26

Sandia
’11 National
Laboratories

Thread Support

= Kitten user-applications link with standard GNU C library
(Glibc) and other system libraries installed on the Linux build
host

" Functionality added to Kitten to support Glibc NPTL POSIX
threads implementation
= Futex() system call (fast user-level locking)
= Basic support for signals
= Match Linux implementation of thread local storage
= Support for multiple threads per CPU core, preemptively scheduled

= Kitten supports runtimes that work on top of POSIX threads
= GOMP OpenMP implementation
= Qthreads
= Probably others with a little effort

27

System Calls)

Laboratories

Kitten syscall calling conventions identical to Linux
Syscall linkage defined in include/arch/unistd.h

Syscall implementations
= Linux syscall implementations kernel/linux_syscalls/
= LWK specific syscalls kernel/lwk_syscalls

General approach is to implement a Linux syscall when we find
it is needed, only implement as much as is needed

Current Linux syscall list, some are —ENOSYS stubs:

= brk, clock_gettime, clone, close, dup2, dup, exit, exit_group, fcntl, fork,
fstat, futex, getcpu, getdents64, getdents, getgid, getgroups, getpid,
getrlimit, getrusage, gettid, gettimeofday, getuid, ioctl, kill, Iseek,
madvise, mkdir, mknod, mmap, mprotect, mremap, munmap,
nanosleep, open, pipe, poll, read, readlink, readv, rmdir, rt_sigaction,
rt_sigpending, rt_sigprocmask, sched getaffinity, sched yield,
sethostname, set_robust_list, set_tid address, settimeofday, stat, time,
uname, unlink, wait4, write, writev 28

Kitten Networking)

= Ported OFA Infiniband stack to Kitten a couple years ago

= |mplemented Linux compatibility layer to support OFA stack mostly
unmodified

= Turned out to be a lot of work
= Difficult to make work on new IB clusters different than ours

= Recently started focusing on Portals4
= Target Portals4 as lowest-level communication API

= For development purposes, create implementations over Ethernet and
(possibly) Infiniband

= Portals4 reference implementation currently running in VMware
virtual machine over VMware’s virtual e1000 Ethernet device

Enables Kitten virtual cluster development environment

29

Sandia
National
Kltten /O Forwarding Ll
Prototype implementation developed over summer
= |nfluenced by IOFSL, wanted to use SMARTMAP and Portals

= Supports local files for drivers, forwards all else off node

= Kitten reflects off-node 1/0 calls to user-space
= Avoids need for custom Glibc port
= Only control reflected, no extra buffer copies

User-level
Glibc iofwd
e =
App Panasas

. i ool
Other Bits
= Platform independent subsystems,
rely on arch code to implement

= ELF loader (mostly in user-space liblwk)

= PCl enumeration, reads/writes to config space

= Driver infrastructure

= |nterrupt registration and dispatch

= Cross-calls

= Timekeeping and timers

= Console subsystem

= KGDB support

= Job launch tool in progress
= Similar to yod, aprun, mpirun, etc... Linux tool for launching Kitten apps
= Uses Portals4 for all communication
= |mplements PMI over Portals4
= |/O forwarding layer over Portals4 31

