

FY11 Storage and Transportation R&D Planning

Meeting with BAM, SNL, INL, NRC

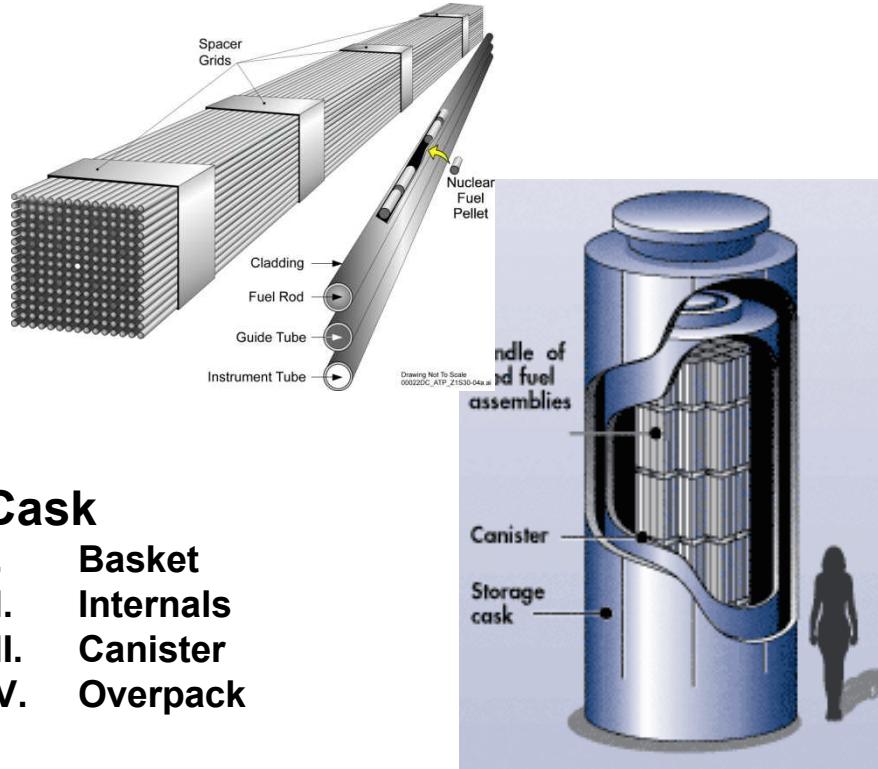
July 13, 2010

Baltimore, Maryland

R&D Opportunities Focus

Objectives:

- Develop the technical bases to demonstrate used fuel integrity for a storage period of up to 300 years.
- Develop technical bases for fuel retrievability and transport after long term storage.


Tasks

- Identify major storage system components
- Define functional requirements
- Identify mechanisms affecting VLTS
- Prioritize testing needs
- Conduct tests/analyses

Storage System Components

I. Fuel

- I. Pellet
- II. Fuel/Clad
- III. Assembly

II. Cask

- I. Basket
- II. Internals
- III. Canister
- IV. Overpack

III. ISFSI

- I. Pad
- II. Rebar
- III. Physical Protection

Functional Requirements

- Defined by:
 - Regulations
 - Regulatory guidance
 - Industry practice and experience
 - Programmatic requirements
 - Unforeseen requirements stemming from R&D investigations

Functional Requirements

(U.S. Focus - others to add)

- Regulatory Requirements:
 - 10CFR72
 - Allows for storage up to 120 years (60 yrs in-pool and 60 yrs dry storage)
 - Used fuel cladding must be protected against degradation that leads to gross failure
 - Must maintain confinement of intact and damaged used fuel
 - Must be retrievable
 - NUREG-1536 requires maintenance of;
 - Thermal performance
 - Radiological performance
 - Confinement
 - Sub-criticality
 - Retrievability

Functional Requirements

- Regulatory Guidance: Potential Issues*
 - Condition of fuel and basket in a sealed canister
 - Degradation conditions that could require repackaging...what are they and how are they expected to occur?
 - Repackaging at sites where reactor decommissioning has taken place
 - Required long-term monitoring
 - Aging management requirements
 - Effect of potential climate change
 - Influence of very long term storage on transportability
- Regulatory Guidance: Plan for storage for up to 300 yrs**

* Einziger, presentation at EPRI meeting; “Issues Related to Long-term Dry Storage of Used Nuclear Fuel”, Nov 18-19, 2009.

** COMSECY-10-0007, Project Plan for the Regulatory Program Review to Support Extended Storage and Transportation of Spent Nuclear Fuel, June 15, 2010.

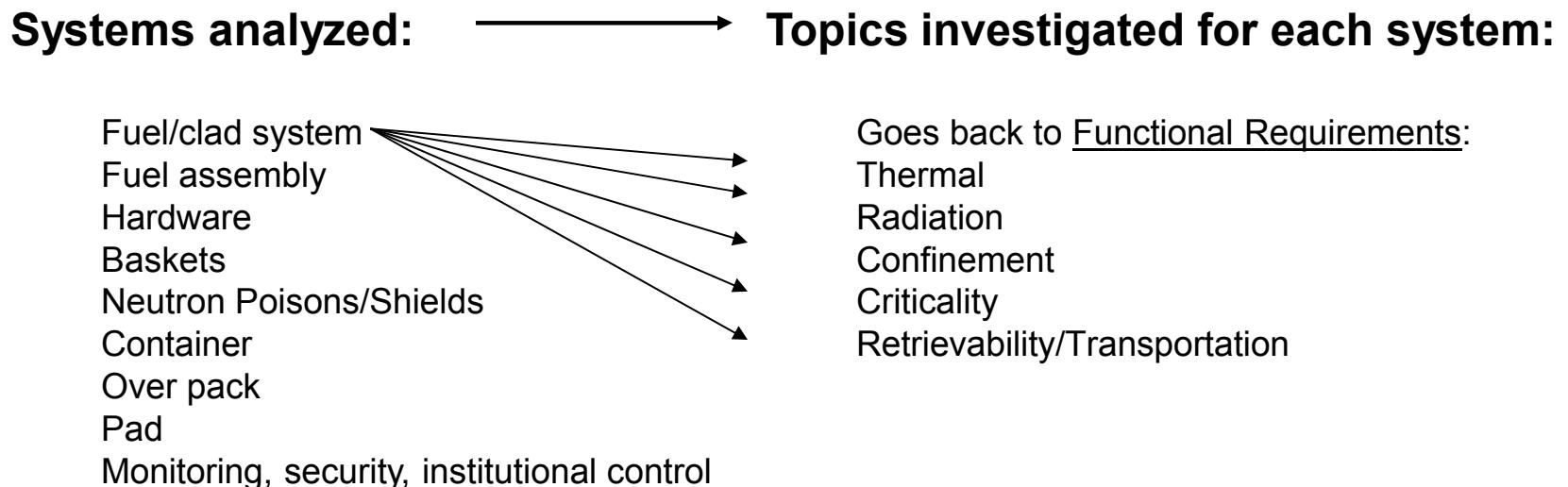
Functional Requirements

- Industry Experience: Technical issues addressed from past R&D program; [EPRI/INL/NRC Dry Cask Storage Characterization (DCSC) Project]
 - No cask functional degradation observed 15 years
 - Assemblies look the same
 - No sticking; no significant bowing upon removal
 - No visual signs of degradation
 - No leaks during storage
 - No significant additional fission gas release to rod internals
 - No significant hydride reorientation
 - No creep during storage
 - “Creep life” remains
 - Most severe conditions during first 20 years

Challenge:
Demonstrate similar behavior for up to 300 years

Functional Requirements

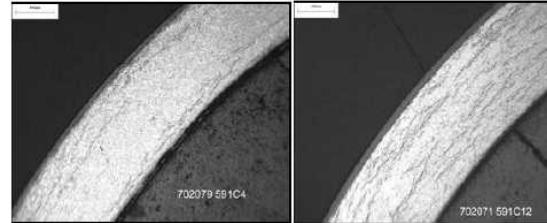
- Industry Experience: What hasn't been addressed?
 - Effect of marine environment
 - Cannot rule out corrosion and stress corrosion cracking
 - Development of advanced cladding materials
 - MOX fuel
 - Long-term concrete degradation
 - High burnup fuel (>45GWD/MTU) Hydride reorientation
 - Hydride embrittlement
 - Creep
 - Plenum gas pressure
 - Corrosion


Challenge:
Demonstrate mat'l degradation behavior for high burnup used fuel over a long storage period.

Functional Requirements

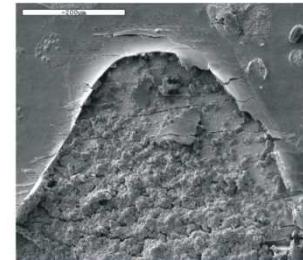
- Programmatic Requirements
 - Support industry and regulators in;
 - Identifying technical gaps related to long-term storage of used fuel for up to 300 years.
 - Develop plan for addressing these gaps
 - With industry (and regulator input), conduct research needed to address the technical gaps
 - Develop the technical basis for very long term storage of used fuel
 - Develop the technical basis for retrievability and transport of used fuel after long term storage
 - Engage the international community in this effort

Identify mechanisms effecting VLTS


- A Features, Events, and Processes (FEPS) methodology is used to identify degradation mechanisms

Early list of identified technical gaps based on Functional Requirements and FEPS analysis

– Fuels


- Hydride re-orientation
- Hydride embrittlement
- Plenum gas pressure
- Corrosion
- Creep

Hydride Orientation in Clad

– Casks

- Seals
- Bolted and welded closures
- Neutron shields
- Concrete degradation

*Seal Corrosion,
D. Wolff, et al., PATRAM 2004*

– Cask Systems

- Concrete degradation
- Salt atmosphere (coastal environments)

Provisional List of Data Needs

	Fuel	Internals/Canister	Overpack/ISFSI	Transportation
Germany				
Japan				
United Kingdom				
United States	<ul style="list-style-type: none">• Hydride re-orientation• Hydride embrittlement• Corrosion• Creep	<ul style="list-style-type: none">• de-watering effectiveness• stress corrosion cracking (marine environments)• Neutron poison degradation	<ul style="list-style-type: none">• Concrete degradation (marine environments)• Closure lids and bolts	<ul style="list-style-type: none">• Fuel retrievability• Clad integrity of high burnup fuel after storage• Kinetic energy transferred to fuel from normal condition loadings (e.g., 1-meter drop)

Data Acquisition

	Destructive Examination	Non-destructive Examination/Analysis	Accelerated Aging Applications	Aging Management Plan
Fuel	<u>PIE</u> (hot cell) <ul style="list-style-type: none">• Hydride reorientation• Hydride embrittlement• Corrosion	<u>Physical measurements</u> <ul style="list-style-type: none">• Creep	<u>High burnup fuel</u> <ul style="list-style-type: none">• Hydride reorientation• Hydride embrittlement• Corrosion• Creep• Fuel modeling and analysis	<ul style="list-style-type: none">• Limit excursion temperatures/time during dry loading?
Internals/Canister	<ul style="list-style-type: none">• Marine environment stress corrosion cracking• Neutron poison mat'l metallography/examination		<ul style="list-style-type: none">• Stress corrosion cracking	<ul style="list-style-type: none">• Mitigative measures for SCC in marine environments
Overpack/ISFSI		<ul style="list-style-type: none">• Visual inspections		<ul style="list-style-type: none">• Concrete inspection and repair• Closure lid/bolts inspection and repair
Transportation	<ul style="list-style-type: none">• Measure internal KE from a 1-meter drop test	<ul style="list-style-type: none">• Model and analyze fuel response to a 1-meter drop test (incorporate findings from corrosion, hydride degradation and KE inputs to analysis)		