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Ocean Modeling in POP

Left: THCM, J. Thies; Right: POP website

Parallel Ocean Program (POP) is one of the models in the
Community Climate System Model (CCSM).

Physics of POP
Finite difference of thin stratified fluid equations w/
hydrostatic and Boussinesq approximations.
Coupled temperature & salinity advection-diffusion.
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POP Equations
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POP Equations (Take 2)
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The Coriolis Term (1)
Consider the Coriolis-Diffusion equation:

[

−∆ Ω

−Ω −∆

] [

u

v

]

=

[

f

g

]

.

(Periodic) Fourier analysis gives spectral radius for Jacobi:

ρJ =

(

16 cos2(2πh) + Ω2h4

16

)1/2

which means Jacobi converges if:

Ω <
4

h2
| sin(2πh)|.
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The Coriolis Term (2)
[

−∆ Ω

−Ω −∆

] [

u
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f

g
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.

Problem: Ocean models have kilometer scale h.

Solution: Ω is diagonal, so it can be block inverted.

(Periodic) Fourier analysis shows Block(2) Jacobi is stable
for any Ω and spectral radius,

ρB =

(

16 cos2(2πh)

16 + Ω2h4

)1/2

In fact, larger Ω ⇒ faster convergence.
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Smoothing Factor byΩ
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AMG for Coriolis-Diffusion

Consider (Block) Jacobi, (Block) SGS and (Block) ILU(0)
as smoothers to a 2-grid method w/ GMRES acceleration.

Coarse grid: Non-smoothed aggregation w/ 2 nullspace
vectors.
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2-Level AMG Convergence
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POP w/o wind: ∆x Refinement

1000 2000 3000 4000 5000 6000
0

10

20

30

40

50

60

70

80

90

100

# Unknowns

Ite
ra

tio
ns

 

 

Jacobi
Block Jacobi
ILU(0)

Preconditioning for Implicit Ocean Models – p.13/23



POP w/o wind: Large ∆t
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POP w/ wind: Large ∆t
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POP Equations (Take 3)
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Schur Complements
Treat Velocity-Pressure problem as a Schur Complement
system.

Factor a block 2 × 2 matrix:
[

A BT

C D

]

=

[

I

CA−1 I

] [

A

S

] [

I A−1BT

I

]

where S = D − CA−1BT .

Approximate this factorization in order to precondition.

Now we’re left with two questions:
How to approximate A−1? (See previous slides).
How to approximate S−1?
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SIMPLE & Block SIMPLE
SIMPLE-like methods approximate S = D − CA−1BT , with

S = D − CF−1BT ,

where F = diag(A).

Wait a second!
Isn’t SIMPLE’s F a lot like a step of point Jacobi on the
convection-diffusion-Coriolis block?
Didn’t we just show that this is unstable for large Ω?

We’d best look at a Block SIMPLE as well.
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POP w/o wind: Large ∆t
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POP w/o wind: ∆x Refinement
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Conclusions
Block methods are important for Coriolis-Diffusion.

AMG + Block Jacobi / Block GS works well.
Convection may require more powerful block
smoothers (Block ILU?).

Schur complement must capture (1,1)’s block nature.
Block SIMPLE is OK even w/ large timesteps.

Future work
Less mesh dependence.
Robust implementation in POP.
Harder & more realistic problems.
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