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Ocean Modeling In POP

# Parallel Ocean Program (POP) is one of the models in the

Community Climate System Model (CCSM).
#® Physics of POP

» Finite difference of thin stratified fluid equations w/

hydrostatic and Boussinesq approximations.

o Coupled temperature & salinity advection-diffusion.
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%POP Equations
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POP Equations (Take 2)
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}The Coriolis Term (1)

® Consider the Coriolis-Diffusion equation:

A Q u f
o VA v g

# (Periodic) Fourier analysis gives spectral radius for Jacobi:

(16 cos?(2mh) + 92h4> b2
PJ = 16

which means Jacobi converges If:

4
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}’The Coriolis Term (2)

A u f

-0 —-A v g

#® Problem: Ocean models have kilometer scale h.
#® Solution: €2 is diagonal, so it can be block inverted.
# (Periodic) Fourier analysis shows Block(2) Jacobi is stable

for any (2 and spectral radius,

[ 16cos*(27h) b2
PE =\ 16 + Q2nt

# |n fact, larger () = faster convergence.
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Smoothing Factor
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AMG for Coriolis-Diffusion

Consider (Block) Jacobi, (Block) SGS and (Block) ILU(O)
as smoothers to a 2-grid method w/ GMRES acceleration.

Coarse grid: Non-smoothed aggregation w/ 2 nullspace
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2-Level AMG Convergence
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Iterations
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Iterations

POP w/o wind: Large At
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POP w/ wind: Large At
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POP Equations (Take 3)
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}Schur Complements

# Treat Velocity-Pressure problem as a Schur Complement
system.

® Factor a block 2 x 2 matrix:

A BT | 1 11a 111 4a1BT
C D CA-L T S I

where S =D — CA-'B”.
# Approximate this factorization in order to precondition.

# Now we're left with two questions:
» How to approximate A~'? (See previous slides).
» How to approximate S—1? @Sandia
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; SIMPLE & Block SIMPLE

® SIMPLE-like methods approximate S = D — CA~!B?, with
S=D-CFr'B"

where F' = diag(A).

® Walit a second!

o Isn’t SIMPLE’s F' a lot like a step of point Jacobi on the
convection-diffusion-Coriolis block?

o Didn’t we just show that this is unstable for large (2?
#® We'd best look at a Block SIMPLE as well.
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Solver lterations

POP w/o wind: Large At

160

=== Diagonal SIMPLE
=== Block(4) SIMPLE

140

120

=
(@)
o

(o0}
o

(o)}
(@]

D
o
T

20

10

10°
Timestep (hours)

104 Sandia
National
Laboratories

Preconditioning for Implicit Ocean Models — p.20/23



Solver lterations

POP w/o wind: Az Refinement
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Conclusions

# Block methods are important for Coriolis-Diffusion.
o AMG + Block Jacobi / Block GS works well.
o Convection may require more powerful block
smoothers (Block ILU?).
#® Schur complement must capture (1,1)’s block nature.
# Block SIMPLE is OK even w/ large timesteps.

o Future work
o Less mesh dependence.
o Robust implementation in POP.
o Harder & more realistic problems.
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