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1 Ensembles and Sensitivity Analysis

With recent advances in computational power, scientists can now run thousands
of related simulations to explore a single problem. We refer to such a group of
related simulations as an ensemble. More generally, an ensemble can be thought of
as a set of samples, each consisting of the same set of variables, in a shared high-
dimensional space describing a particular problem domain. Practically, an ensemble
is a collection of data sets with common attributes that we wish to analyze as a
whole. Thus ensemble analysis is a form of meta-analysis that looks at the combined
behaviors and features of the collection in an effort to understand and describe the
underlying problem space. By looking at the ensemble as a whole, higher level
patterns emerge beyond what can be seen by examining individual simulation runs.

As an example, a form of ensemble analysis called sensitivity analysis evaluates
how changes in simulation input parameters correlate with changes in simulation
results. In addition to revealing the types and strengths of relationships between in-
puts and outputs, sensitivity analysis can be used to verify that simulation results
are within expected ranges and to validate that the underlying model is behaving
correctly. Unexpected results can identify simulation errors and reveal flaws in sim-
ulation codes. Input parameters form the set of independent variables, and outputs
the set of dependent variables. Commonly, sensitivity analyses are performed using
either simple regression, correlating a single input to a single output at a time, or
multiple regression, correlating a group of inputs to a single output. However, nei-
ther of these approaches provides a means for evaluating the collective relationships
among multiple inputs and multiple outputs.
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Our introduction to this work began during an evaluation of the impacts on analy-
sis and visualization workflows that were likely to result from architectural changes
being proposed for exascale computing. As part of the evaluation, we interviewed
analysts working at Sandia National Laboratories in a variety of simulation domains,
including thermal, solid mechanics, and electrical circuit analysis. Sensitivity anal-
ysis is a common component within each domain’s work flow, although the types
of result data vary widely, ranging from simple tables of metrics to time series and
finite element models. The analysts typically use Dakota (Adams et al, 2013) to
manage ensemble creation, using custom scripts to extract scalar metrics from finite
element outputs or time series. The metrics are merged with tables of original in-
put parameters and analyzed using Dakota, JMP, Matlab, Minitab, Excel, and other
tools. Existing visualization tools such as ParaView (Kitware, 2013) and EnSight
(Computational Engineering International, 2013) are used for remote visualization
of large simulation results, but are fundamentally designed to visualize individual
simulations, or handfuls of simulations that are loaded into memory simultaneously
and visually superimposed. Ensembles containing hundreds or thousands of sim-
ulations require a different type of analysis, a different visual abstraction, and a
different system architecture to effectively manage integrating so many results.

This investigation led to the creation of Slycat, a system designed to meet the
needs of ensemble analysis. For sensitivity analysis and parameter studies in par-
ticular, Slycat provides a visual interface to answer the following questions about a
given ensemble:

• Which input parameters are most strongly correlated with specific outputs?
• Which input parameters exhibit little or no impact on output responses?
• Which simulations are anomalous, and in what ways do they differ?

We use canonical correlation analysis (CCA) to model the relationships between
input and output parameters because it maps well to the structure of our problem, es-
pecially in its ability to correlate multiple inputs against multiple outputs. Although
powerful and ideally suited to the problem, CCA results can be difficult-to-interpret;
thus, the central contribution of this work has been making CCA accessible to do-
main experts through the tight integration of useful visualizations with iterative ex-
ploratory analysis.

2 Related Work

Previous work exploring ensemble visualization often focuses on the design of ex-
periments, and is often less about understanding the simulations than with direct-
ing them to a particular outcome. For example, in (Bruckner and Moller, 2010)
and (Coffey et al, 2013), the work is focused on providing a visual evaluation of
the simulations, allowing a user to steer toward an optimal aesthetic result. This
results-driven approach is directed at finding a “magic” spot within the input pa-
rameter space, based on an individual’s aesthetic sense. Our work focuses on con-
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tributing confidence and understanding to physically valid modeling and simulation
processes.

The work of (Matkovic et al, 2010) recognizes the need for “advanced tools”
to support engineers in visualizing and understanding ensembles, and incorporates
multivariate visualization techniques including parallel plotting, multiple linked
views, and scatterplots to display one-to-one correlations.

Other work wrestles with the multivariate nature of the ensemble, but the data
is often inherently spatial and the visualization techniques rely on this. (Wilson and
Potter, 2009) explore geospatial weather data, and the authors discuss how ensem-
bles mitigate uncertainty in simulations, a common thread throughout this research.
Other work on weather simulations, (Potter et al, 2009b) and (Potter et al, 2009a),
employs isocontours over spatial domains. (Sanyal et al, 2010) adds statistical met-
rics represented as ribbons and glyphs to communicate the inter-simulation uncer-
tainty present in an ensemble of weather predictions.

Feature extraction can be a useful tool for ensemble visualization, as demon-
strated in (Smith et al, 2006). The authors work with time-varying, spatial data to
cluster based on feature identification. (Hummel et al, 2013) is another excellent ex-
ample of feature extraction, used to visualize fluid flow variance across an ensemble.
Linked views provide selection in the feature space to produce a visualization over
the physical domain. (Steed et al, 2013) incorporates several multivariate feature
detection techniques in a single interface, while (Piringer et al, 2012) visualize mul-
tivariate data using downsampling, 3D surface plots, extracted scalar features, and
glyph-based visualizations to explore an ensemble of 2D functions. In addition to
comparing ensemble members against each other, the latter work attempts to illus-
trate the distribution of features across the ensemble.

(Sukharev et al, 2009) use feature detection and CCA to reveal structure in mul-
tivariate data, demonstrating their analysis on time-varying climate data sets. Once
their data has been clustered, segmented, and correlations computed, the results are
geo-spatially overlaid on the weather prediction region for visualization and inter-
pretation.

To more clearly identify the relationships in functional magnetic resonance imag-
ing data sets, (Karhunen et al, 2013) exploit CCA prior to applying blind source
separation techniques and achieve marked performance improvements. Other work
(Ge et al, 2009) demonstrates CCA correlations that reflect the spatial correlations
in multiple sensor arrays, even in the presence of noise. Another application of CCA
(Degani et al, 2006) analyzes the correlations between the operating environment of
a Boeing aircraft and the actions and responses of the pilots. In (Marzban, 2013)
CCA is shown to capture complex weather relationships between model parameters
and forecast quantities.

Sensitivity analysis can be defined as the determination of the contributions of
individual uncertain analysis inputs to the uncertainty in analysis results (Helton,
2008). Our research is focused on understanding the behavior of an ensemble with
the intent of exposing hidden relationships between the simulation input parameters
and the results, which is similar to sensitivity analysis without the emphasis on
numerical quantification of uncertainty. Sampling tools, (Adams et al, 2013) and
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(Abdellatif et al, 2010), are typically relied on to provide coverage of the simulation
parameter space. Even with a sampling method in place, much system behavior is
unknown and there is more work to do to uncover those input-output relationships.
(Song and Zhao, 2012) employ a variance-based method to identify the first-order
model sensitivities when applied to forest growth simulations. Other work (Shearer
et al, 2010) applies classic statistical methods, such as ANOVA, to U.S. immigration
model results, and statistical aggregation to models of large distributed computing
systems (Mills et al, 2011).

3 System Architecture

To support answering the questions outlined in Sect. 1, and to support additional
analysis types in the future, we designed Slycat around the following general re-
quirements:

• Remote ensemble analysis, in which large data is analyzed in-place to minimize
data movement.

• Ubiquitous access to analysis results regardless of the availability of the original
data sets or source platforms.

• Desktop delivery providing interactive exploration of ensemble analysis results,
and collaborative sharing with appropriate access controls.

The need for remote ensemble analysis is driven by the ever widening gap be-
tween high performance computing (HPC) compute performance and I/O perfor-
mance. Practically speaking, we have reached a point where computation is effec-
tively “free” while data movement has become very expensive, and moving raw
ensemble data from the HPC platform where it was generated to the host running
Slycat would take significantly more time than the analysis computations to follow!
Better instead to perform those computations on the machine where the ensemble
data is located, so that only the model – typically orders of magnitude smaller than
the original data – must be moved across the network to the Slycat host. This led
Slycat to the design of Fig. 1.

An important practical consideration for users of HPC platforms is that ensem-
ble results may often become temporarily or permanently unavailable – login nodes
come and go due to resource contention, users often must archive or delete their
data as scratch filesystems near capacity, and so on. Because Slycat stores its own
greatly-reduced models of the underlying raw data, and only those models are nec-
essary to produce a visualization, users can continue to access their Slycat analysis
results even when their HPC resources are unavailable.

Finally, we wanted a system architecture that could support easy desktop delivery
and collaboration: for example, we wanted Slycat users to be able to share results
seamlessly with a colleague, across the network, without any software downloads
or installation. That meant using existing web standards and clients, and dictated
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Fig. 1 Slycat system diagram depicting how large data on an HPC platform is analyzed in-place
to produce greatly reduced model artifacts that are stored by the Slycat web server. Later, these
artifacts are delivered – incrementally and on-demand – to interactive clients.

much of the subsequent design and derived requirements for Slycat: straightfor-
wardly, it meant adopting a web server as the front-end for the system, and standard
web browsers as clients (or custom clients using standard web protocols to com-
municate). In-turn, this meant that we had to design interactions and visualizations
that could work using the set of technologies widely available within web browsers,
such as HTML5, JavaScript, AJAX, SVG, and Canvas. Unlike dedicated visualiza-
tion tools such as ParaView or Ensight, we could not rely on the client to perform
serious calculations, necessitating pre-computation of visualization artifacts, orga-
nized for rapid, incremental retrieval from the server on-demand. As an example, we
allow users to interact with data tables that can contain thousands of columns and
millions of rows - data that would cause unacceptable delays if it had to be trans-
ferred from server to client in its entirety before the visualization could be viewed.
Instead, only the subset of data that is needed to display the currently-visible ta-
ble rows is transferred “just-in-time”, minimizing total bandwidth consumption and
keeping the interface responsive. Although working around the constraints of web
browsers has been a challenge, the rewards have been significant, enabling Slycat
users to “bookmark” the state of a visualization and share it with colleagues simply
by sharing a hyperlink.

The Slycat source code and documentation are freely available under an open
source license, at https://github.com/sandialabs/slycat.
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4 Canonical Correlation Analysis

Canonical Correlation Analysis (CCA) was proposed by H. Hoteling (Hotelling,
1936) in 1936 (he was also instrumental in developing Principal Component Analy-
sis in 1933). CCA is a method that can be used to understand relationships between
two sets of multivariate data. One set X = {x1, . . . ,xn} is presumed to be indepen-
dent, and the other set Y = {y1, . . . ,yn} is dependent, where we have n samples,
with X ⊂ Rp1 and Y ⊂ Rp2 (i.e. each vector xi has p1 components and each vec-
tor y j has p2 components). CCA attempts to find projections a and b such that
R2 = corr(aT X ,bTY ) is maximized. The vectors a and b are known as the first pair
of canonical variables, and are computed by solving an eigenvalue problem (An-
derson, 2003). Further pairs of canonical variables are then identified such that they
are all orthogonal and ordered by decreasing importance. For each R2 computed,
various statistics can be computed to determine the significance of the correlation.
A common statistic used in this context is the p-value associated with Wilks’ λ

(Krzanowski, 1988).
Once the canonical variables are determined, they can be used to understand how

the variables in X are related to the variables in Y , although this should be done with
some caution. The components of the vectors a and b can be used to determine the
relative importance of the corresponding variables in X and Y . These components
are known as canonical coefficients. However, the canonical coefficients are con-
sidered difficult to interpret and may hide certain redundancies in the data. For this
reason, it is more typical to analyze the canonical loadings, also known as the struc-
ture coefficients. The structure coefficients are given by the correlations between
the canonical variates and the original variables (e.g. corr(aT X ,X)). The structure
coefficients are generally preferred to the canonical coefficients due to the fact that
they are more closely related to the original variables.

CCA is well-known in the field of statistics and is included in most statistical
software packages. However, it has not received as much use in applications as the
methods it generalizes, such as multivariate regression and Principal Component
Analysis.

5 Visualization

In Slycat, sensitivity analysis is performed through an iterative cycle of variable se-
lection, CCA analysis, and visual exploration of the resulting CCA model. Analysis
typically starts with an all-to-all evaluation to get an initial sense of the data, re-
vealing the most strongly correlated combinations of variables. Some cases require
iterative refinement to tease apart disparate groups of inputs and outputs.

We combine three levels of representation in a single web page using multiple
linked views, as shown in Fig. 2. In the upper left, the Correlation View represents
the relationships found in the ensemble as a whole, displaying CCA coefficients for
each variable in tabular form, grouped by correlation component into columns. All
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Fig. 2 Slycat visualization showing an all-to-all CCA analysis of a 250 simulation electrical circuit
ensemble. As seen through the length and shared color/direction of the bars in the Correlation View
in the upper left, the first CCA component exhibits a strong positive correlation predominantly
between the combined inputs X25 and X14 and both of the outputs Y1 and Y2, an example of a
many-to-many relationship.

but the top two table rows correspond to variables, which are labeled along the left
edge of the view. The first two rows provide each component’s R2 and p-value. In-
put variables/rows are colored green, while output variables/rows are lavender. This
green/purple color-coding is used consistently throughout the interface to designate
inputs and outputs. Each column can have its rows sorted by correlation weights, in
ascending or descending order. Sorting is performed within each column indepen-
dently.

Users select a component by clicking its column header, expanding its coef-
ficients into an inline bar chart. The bars visually encode the signed correlation
weights for each variable, with left-facing blue bars representing negative weights
and right-facing red bars representing positive weights. Color-coding the bars visu-
ally reinforces the relationship types. Variables with matching colors are positively
correlated, variables with mismatched colors are inversely correlated. Bar length
indicates a variable’s relative importance. Sorting a component in descending or-
der forms a tornado plot, which makes it simple to evaluate which variables exhibit
strong correlations, what types of relationships exist between variables, and which
inputs have the most impact on the results.

The scatterplot in the upper right of Fig. 2 is the Simulation View. It visualizes
how well individual simulations are described by the correlations of the ensemble as
a whole. The coordinate space for this plot is abstract, and the axes can be considered
to be input and output metavariables, with the x-axis representing all the inputs and
the y-axis all the outputs. The axes are the projections of the data onto the canonical
variables, a and b. Each simulation is rendered as a point in the scatterplot, with
coordinates computed as sums of variable values, weighted by the canonical variable
values for the selected CCA component. Consequently, the scatterplot changes when
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selecting a new component. A perfect correlation between inputs and outputs would
form a diagonal line, while anomalous simulations frequently appear as positional
outliers.

Additionally, points can be color-coded by the values of any of the input or out-
put variables, providing another way to identify outliers. Clicking on a row in the
Correlation View or a column header in the Variable Table (see below) selects that
variable’s values for display in the scatterplot. We use Moreland’s blue/white/red
diverging color map (Moreland, 2009) for encoding the values, where blue is at the
low end of the scale and red at the high end. While we did not assign any particular
meaning to the central values, we found in testing that the diverging color map made
it easier to interpret values of nearby points.

Across the bottom of the display, the Variable Table displays the raw variable
values from each simulation. Each column corresponds to a variable and each row
to an individual simulation. There is a bi-directional link between selecting table
columns and bar chart rows. Selecting a column not only changes the color-coding
of the scatterplot points, but also correspondingly colors the column element back-
grounds to visually correlate the two views. Using the same interface as the bar
chart, the table columns can be sorted. There is a bi-directional link between select-
ing rows in the table and points in the scatterplot. Darker green/purple backgrounds
highlight the table rows, while selected points in the scatterplot are enlarged.

6 Electrical Simulation Sensitivity Analysis

Our users model circuits using Xyce, an open source, high-performance circuit sim-
ulator developed by Sandia National Laboratories as part of the Advanced Simula-
tion and Computing (ASC) Program (Thornquist et al, 2013). We will look at two
circuit ensembles of differing scales, first a small ensemble of 250 runs, followed
by a large ensemble of 2641 runs. In both cases, some of the input variables take a
restricted set of values (-1, 0, or 1). These values correspond to selecting different
models whose responses are low, nominal, and high, respectively. The models act
to encapsulate groups of input variables, thereby reducing the number of variables
and the number of runs needed in the ensemble.

6.1 Small Ensemble

This ensemble has 250 runs, each with 25 input parameters and 4 output metrics.
Outputs Y1 and Y2 measure voltage responses, while Y3 and Y4 measure current.
The goal with this analysis was to answer the first two questions from the list in Sec-
tion 1: Which input parameters are most strongly correlated with specific outputs?
Which input parameters exhibit little or no impact on output responses?
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Fig. 3 In the second CCA component, the input parameter X23 is highly correlated with the cur-
rent response, Y4. Color-coding the scatterplot by the values of X23 (top image) and Y4 (bottom
image), we can see that there is a one-to-one correspondence between the low, nominal, and high
values of X23 and 3 distinct groups in the Y4 response values. In both images, the table rows are
sorted by Y4 value and we have selected a simulation on the boundary between two of the Y4
groups. Note that this run is also on the edge of the transition between the low and the nominal
value groups in X23.

As seen in the Correlation View bar chart in Fig. 2, the first CCA component
shows a positively correlated relationship that is mostly between the input parame-
ters X25 and X14 and both of the voltage outputs. The inputs are listed in decreasing
order of importance, so the parameters at the bottom of the green region in the first
column exhibit little or no impact on voltage responses.

In Fig. 3, the sorted variables for CCA2 reveal a strong inverse correlation pre-
dominantly between the input X23 and the current response, Y4. Color-coding the
runs alternatively by the first the input values, then the outputs, we can see a one-
to-one correspondence between the low, nominal, and high values of X23 and 3
distinct groups in the Y4 response values. Although the other current response, Y3,
is also to a lesser degree present in CCA2, it is more strongly described by CCA3,
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Fig. 4 In the third CCA component, the input parameter X8 is inversely correlated with the other
current response Y3. Color-coding the scatterplot by the values of X8 (top image) and Y3 (bottom
image), we can see the inverse relationship between low values (dark blue) in the input parameter
and high values (dark red) in the output. In both images, the table rows are sorted by decreasing
X8 values and we have selected the four runs with the lowest values in X8.

as shown in Fig. 4. The central relationship is an inverse correlation between the
input X8 and the output Y3.

6.2 Large Ensemble

This ensemble from a different circuit simulation is an order of magnitude larger
with 2641 runs, including 266 input variables and 9 outputs. The outputs for this
circuit are more varied than the previous circuit, so they do not fall into the two
simple categories of voltage and current. Rather they capture events and features,
where some of the outputs are naturally grouped together and others are not.
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Fig. 5 In the first CCA component of the all-to-all analysis of the large ensemble, anomalous
runs (in red) are highlighted near the top of the scatterplot. We initially noticed them based on
their position. The vertical position indicates that the difference between these simulations and the
others is based on one of the outputs. Color-coding, combined with sorting the table, shows that
these four simulations have much higher values in Y4 than any of the other simulations.

Given the large number of input variables, our initial analysis goal is to reduce
the number of variables that we are using to drive the simulations. Our analysis uses
a process like the one described for the small ensemble to evaluate which inputs
are driving which outputs. Slycat easily scales to handle the increased variables and
additional simulation runs (our largest ensemble to date has been about 500,000
runs). We are able to reduce the number of input variables from 266 down to 21.
Unfortunately, due to space considerations, we are unable to provide the details of
this analysis result. Instead, we return to the list in Sect. 1, and demonstrate how
Slycat can be used to answer the third question : Which simulations are anomalous,
and in what ways do they differ?

In the all-to-all analysis done as part of the variable reduction, we notice four
anomalous points in the upper part of the scatterplot, shown in red in Fig. 5. Dis-
tance off of the diagonal is a metric for how well the linear correlation found by
CCA describes a particular simulation. These four runs visually stand out imme-
diately. What sets them apart? Since the Y-axis in the scatterplot is a metavariable
based on the simulation outputs, vertical placement is a function of output variable
values. Color-coding by the various outputs, we discover that Y4 values for these
four simulations are at the high end of the scale. Sorting the Y4 values in the table,
we find that these four simulations have Y4 values that are distinctly higher than any
of the others (notice that they are in red, while the next largest values are in orange).

Next we investigate what is common amongst the four simulations’ inputs, be-
cause presumably there is a common factor that is leading to these higher responses.
We perform a many-to-one CCA analysis between all of the inputs and Y4. The top
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Fig. 6 We perform an all-to-one analysis for Y4 to discover which input variables are causing the
four anomalous output values. The top two variables, X248 (left image) and X255 (right image),
have identical input values for the four anomalous simulation runs, but neither is the sole driver,
since both demonstrate the same inputs driving a variety of outputs. The source of the anomalous
outputs must stem from a combination of inputs acting in concert.

two input variables, X248 and X255, both have identical values for all four simula-
tions. However, each of these variables provides a range of other Y4 responses for
the same input values, as seen in Fig. 6, so neither variable in isolation is the cause.
Using the table, we find nine variables that share identical values for all four sim-
ulations (X248, X255, X224, X175, X176, X187, X196, X213, and X229). Given
X248’s strong correlation with Y4, it is definitely involved. We will need to do fur-
ther testing to isolate which additional input variables are involved. However, Slycat
has enabled us to narrow down the possibilities to just a handful of variables.

7 Conclusions and Future Work

We have met our design goals for Slycat and demonstrated through two electrical
circuit analysis examples of varying scale how the system can be used to answer the
required three analysis questions in Sect. 1. Because our users also produce time-
varying plots of voltage and current waveforms as part of these analyses, our next
task will be to create an analysis type to handle time-varying data.
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