
Sandia National Laboratories is a multi-program laboratory managed and
operated by Sandia Corporation, a wholly owned subsidiary of Lockheed

Martin Corporation, for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-AC04-94AL85000.

Virtual Machine Monitors as
Secure Service Platforms

Jason Trent

August 4, 2010

SAND2010-5159P

Welcome

 Categories of hypervisors

 Type I versus Type II hypervisors for VM IaaS

 Challenges to VM IaaS

 Potential VM services

 Virtualization as a secure platform

 Requirements for building a secure virtual platform

 Interesting academic architectures

VM Infrastructure as a Service

“Adding services via a virtual machine is analogous to adding
network services via a firewall. Both virtual machines and
firewalls intercept actions at a universal, low-level interface, and
both must overcome performance and semantic-gap problems.
Just as network firewalls have proven useful for adding network
services, we believe virtual machines will prove useful for
adding services for the entire computer.”

 Chen, P.M., Noble, B.D., “When Virtual Is Better Than Real,” In Proceedings of the 2001
Workshop on Hot Topics in Operating Systems (HotOS), pages 133– 138, May 2001.

Two Categories of Hypervisors

 Type I Hypervisors

• Bare Metal

• Examples:

 VMware ESXi

 Hyper-V

 “Thin” hypervisors

 Type II Hypervisors

• Hosted

• Examples:

 VMware Workstation

 VirtualPC

 Parallels

 IBM, “IBM Systems Virtualization,” 2005.

“Thin” Hypervisors

 Subclass of Type I hypervisor

 Single guest

 Guest allowed to interact with some
hardware directly

 Hypervisor virtualizes as little as
possible to maintain itself, its security
model, its features, and its running
guest

 Examples: Blue Pill, Vitriol, BitVisor,
MAVMM

When One Is Better Than Two

 Most security tools and research today are built with hosted
hypervisors

 These require that your VM is an image and runs in a hosted
OS. This is good for large servers and honey nets, etc…

 However, for end-point workstations this is less desirable

 Building on top of bare metal hypervisors allows an pre-existing
OS to run inside a VM-based security tool

 This likely means only one OS running at a time

 Most principles still apply when using a type two hypervisor

Challenges to VM IaaS

 Challenges

Performance [1]

Semantic gap [1]

Introspection subversion [2]

Hypervisor trust

1. Chen, P.M., Noble, B.D., “When Virtual Is Better Than Real,” In Proceedings of the 2001
Workshop on Hot Topics in Operating Systems (HotOS), pages 133– 138, May 2001.

2. Bahram, S., Jiang, X., Wang, Z., Grace, M., Li, J., Xu, D., “DKSM: Subverting Virtual Machine
Introspection for Fun and Profit,” NC State University, TR-2010-4, February 2010.

Potential VM Services

 Secure logging/reporting

 Intrusion prevention and detection

 Monitoring guest components

• SSDT/IDT hook detection

• Kernel integrity enforcement

 Debug registers –

• Strict monitoring, control, and usage of

 …

Virtualization as a Platform

 Static “thin” security hypervisors

• BitVisor

• rkAnalyzer (based on BitVisor)

• MAVMM

 Extensible “thin” security hypervisors

• ?

 …DANGER…

• Run-time loadable “ring -1” code

• Easier exploitation by malware

• Larger attack surface

• Sounds a lot like attacking a kernel

VMM Assurance

 “… a VMM is a simple-enough mechanism that we can
reasonably hope to implement it correctly.” [1]

 “We also assume that SecVisor does not have any
vulnerabilities.” [2]

 Et cetera…

1. Garfinkel, T., Rosenblum, M., “A Virtual Machine Introspection Based Architecture for Intrusion
Detection,” In Proceedings of the Networked and Distributed Systems Security Symposium,
February 2003.

2. Seshadri, A., Luk, M., Qu, N., Perrig, A., “SecVisor: A Tiny Hypervisor to Guarantee Lifetime
Kernel Code Integrity for Commodity Oses,” In Proceedings of the ACM Symposium on
Operating Systems Principles (SOSP 2007), October 2007.

Virtualization as a Secure Platform

 Can’t assume the hypervisor is secure

• Do everything we can to secure it

 Detect something wrong?

• Bail out (ala PatchGuard)

 Attestation for known, good initial state

 How do we trust loadable modules

• Only load trusted, signed modules (e.g. Driver Signing)

 Sounds a lot like securing a kernel

Designing a Secure Virtual Platform

 Employ hardware protection

• Paging –

 Extended Page Tables (EPT) on Intel

 Rapid Virtualization Index (RVI) (aka Nested Page Tables) on AMD

 Shadow paging

• DMA –

 Virtualization Technology for Direct I/O (Vt-d) on Intel

 AMD I/O Virtualization (AMD-Vi aka IOMMU) on AMD

• TPM –

 “Thin hypervisor” starts before OS

 Load-time hypervisor integrity

 Measure similar to Secure Boot

Designing a Secure Virtual Platform

1. Takahiro Shinagawa et al., “BitVisor: A Thin Hypervisor for Enforcing I/O Device Security,”
Proceedings of the 2009 ACM SIGPLAN/SIGOPS Virtual Execution Environments (VEE ’09),
March 2009.

 Software protection

• Best practices, code auditing,
etc…

• Control particular driver
interactions

• Hypervisor run-time integrity

• HyperSafe approach

[1]

HyperSafe

 Non-Bypassable Memory Lockdown

• Paging-based protections

 Ensure lifetime W X for all hypervisor code pages

• i.e. After initial setup no page that has ever been writable will be
allowed to become executable

 Ensure no pages are double-mapped to violate this property

 Write-protect page tables

 Hypervisor uses page-faults in hypervisor to enforce

HyperSafe continued…

 Restricted Pointer Indexing

• Used for control-flow integrity (CFI)

• Modification to the compilation

 Pre-compute indirect control-flow and use function entrance and
exit wrappers to enforce this control flow

 Mark data pages which contain the control flow tables as read-
only

 Wang, Z., Jiang, X., “HyperSafe: A Lightweight Approach to Provide Lifetime Hypervisor Control-
Flow Integrity,” In Proceedings of the Thirty First IEEE Symposium on Security & Privacy,
Oakland 2010.

Building an Extensible Hypervisor

 Requirements:

• Kernel best practices

 NX, measured launch, integrity checking, etc…

• Utilize hardware

 EPT/RVI

 Vt-d/AMD-Vi

 TPM

• Driver control or device virtualization

 Required for interposition of devices

 Must be able to know the state of hardware

 Doesn’t necessarily need full driver

Building an Extensible Hypervisor

 Requirements:

• Module loader

 Signing enforced by loader

 Modules not allowed to allocate executable memory

• Symbol resolution

 Imported internal symbols resolved for module

 Exported symbols from module maintained

• Inspection/interposition API

 Inspect guest memory

 Assist bridging semantic gap

 Interpose on data transfer (i.e. to/from hard disk, network, etc…)

FLOW: A VM Service Case Study

 FLOW is a disk transfer inspector built on top of the BitVisor
hypervisor

 Interposes on all disk reads and writes

 May sanitize DMA contents before data is written to disk or
used by the OS

 Does NOT currently reconstruct files or higher-level semantics
(i.e. it operates only on DMA transaction buffers)

FLOW: Implementation

 BitVisor uses the built-in ability to
capture all disk reads and writes to
implement encryption

 Single choke point,
storage_handle_sectors(), for hard disk
data interposition

 Modified to implement a simple
signature scanner/sanitizer

 This is where an interface could be
added to allow additional computation
without modifying original code

FLOW: Timing Analysis

 Created files of random data

 Timed transfers of size: 1 MB, 10MB, 100MB, and 1GB

 Read file twice

1. Initial read (no cache)

2. Second read (with cache from first read)

 Tested three environments:

• Plain Windows XP

• Windows XP inside vanilla BitVisor 1.1

• Windows XP inside BitVisor with substring signatures

FLOW: Performance

FLOW: Outcome

 Inspecting data does add overhead, in addition to the
hypervisor

 However, this overhead is insignificant relative to the cost of
performing the disk I/O

 In the past, similar results have been shown with network traffic

 I/O inspection adds minor overhead, but provides very powerful
positioning to respond to malicious/undesirable data

 The hypervisor design should allow the analysis performed on
data to be extensible

Parting thoughts

 Can’t implement service on top of hypervisors that are assumed
to be secure

 Must work toward protected environment

 There is still a lot of research to be done in hypervisor security

 Hypervisor enables a more closed eco-system that may benefit
from restrictions that are less practical in the kernel

 Developing extensible hypervisors provides a quick means to
add services

Interesting VM Architectures

 Garfinkel, T., Pfaff, B., Chow, J., Rosenblum, M., Boneh, D., “Terra: A
Virtual Machine-Based Platform for Trusted Computing,” in
Proceedings of the 9th ACM Symposium on Operating Systems
Principles, pp. 193–206, 2003.

 Sailer, R., Valdez, E., Jaegar, T., Perez, R., Doorn, L., Griffin, J., Berger,
S., “sHype: Secure Hypervisor Approach to Trusted Virtualized
Systems,” IBM Research Report, RC23511, February 2005.

 Payne, B., Carbone, M., Sharif, M., Lee, W., “Lares: An Architecture for
Secure Active Monitoring Using Virtualization,” In Proceedings of the
IEEE Symposium on Security and Privacy, 2008.

 Rutkowska, J., Wojtczuk, R., “Qubes OS Architecture,” Invisible Things
Lab, January 2010.

 Douglas, H., “Thin Hypervisor-Based Security Architectures for
Embedded Platforms,” Royal Institute of Technology, Sweden,
February, 2010.

Questions

 Munroe, R., “Network,” http://xkcd.com/350/, November 2007.

http://xkcd.com/350/

