
Programming and Run Time ModelsProgramming and Run-Time Models
for Heavily Threaded Systems

Run-Time Systems Panel

Ron Brightwell
Sandia National Laboratories

Scalable System Software
rbbrigh@sandia.gov

July 27, 2010

Sandia is a Multiprogram Laboratory Operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy Under Contract DE-ACO4-94AL85000.

SAND2010-5039P

Sandia Lightweight Kernel (LWK) Approach

• Separate policy decision from policy enforcement
• Move resource management as close to application as possible
• Protect applications from each other• Protect applications from each other
• Let user processes (libraries) manage resources
• Get out of the way

LWK - General Structure

PCT App. 1PCT App. 3App. 2

lib liblib

libmpi.a

libc.a

libmpi.a

libc.a

libmpi.a

libc.a

QK

LWK - Typical Usage

PCT App. 1PCT

libc a

libmpi.a

libc.a

QK

Quintessential Kernel (QK)

• Policy enforcer
• Initializes hardware
• Handles interrupts and exceptions• Handles interrupts and exceptions
• Maintains hardware virtual addressing
• No virtual memory support
• Static size
• Non-blocking
• Small number of well-defined entry pointsy p

Process Control Thread (PCT)

• Runs in user space
• More privileged than user applications
• Policy maker• Policy maker

– Process loading
– Process scheduling

Vi t l dd t– Virtual address space management
– Fault handling
– Signals

Pros and Cons of LWK Approach
(From a Run-Time Perspective)

• Cons
– Node-level resource allocation and management is static

• Memory allocation happens at application load timee o y a oca o appe s a app ca o oad e
• Bad for shared memory on NUMA systems

– Run-time components only communicate on set-up and tear-down
• ProsPros

– Supports an application-specific run-time
• Never happened in practice
• OSFA worked for MPI applicationspp

– User-level networking
• Run-time system can use same network interface as applications
• No need for communication stack inside the OS

– Memory management and scheduling are greatly simplified

2. What support does the run-time need
from hardware to do a better job at

exascale?
How is that different from current situation?

Hardware Support for Run-Time Systems

• Network hardware support for thread activation
– Run-time system components must communicate across nodes
– Message reception in current networks occurs by recognizing change in memory

• Leads to polling

– Need hardware mechanism to block/unblock threads on network events
– Active message model only makes sense with hardware support

W iti til th ’ thi t d t ti i i i b d• Waiting until there’s nothing to do to notice incoming messages is bad

• More advanced network functions (eureka, dynamic hierarchy)
• More sophisticated mode switch / protection hardware

H d f i f ti• Hardware performance information
– Dynamic resource management decisions will need performance info
– Current performance counters only capture a subset of what is needed

Thread scheduling• Thread scheduling
– Hardware support for efficient scheduling
– Must be flexible (programmable?)

Should allow for operating on groups of threads– Should allow for operating on groups of threads

3. What protection rings should be available
to an e ascale r n time? Sho ld those beto an exascale run-time? Should those be

organized differently than in current
systems? What is the role that virtualizationsystems? What is the role that virtualization
will play at exascale? What layers should be

virtualized? What is a Parallel Virtual
Machine in the exascale era?

Protection Rings

• Current scalable HPC applications don’t make system calls
– Allows the ratio of full-featured service nodes to lightweight nodes to be

small
– All “real” system calls on Sandia LWK were serialized through one process

• Current run-time systems don’t make system calls either
– Only at set-up and tear-downOnly at set up and tear down

• Probably only need a small subset of cores with ring 0 capability
– System calls will turn into run-time thread activation response

May need to have more sophisticated network protection mechanism• May need to have more sophisticated network protection mechanism
– Would like to have run-time system threads invoked on message arrival

6. Current HPC systems are built atop a y p
large number of individual OS images, with
tight coupling at the application level but
very limited coupling at the OS level. Will

such an approach scale to exascale?

Yes

• This is part of what defines the OS and differentiates run-time system
– The lowest level of local hardware management

• Need hierarchical structure to allow for scalability• Need hierarchical structure to allow for scalability
• Exascale will require tighter coupling between some components

– Run-time system components
RAS t d ti t– RAS system and run-time system

– Application and run-time system
• Need to provide information while minimizing dependencies

– Use all information but limit required information
– OS shouldn’t require non-local information

