

Exceptional service in the national interest

Magnetic fields and tail-ion depletion in inertial confinement fusion (U)

Paul F. Schmit

Kinetic Processes in Extreme States of Matter 2013

December 18th, 2013

Los Alamos National Laboratory
(This presentation is Unclassified)

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Acknowledgments

My sincerest thanks to the following people for their input and guidance during the course of this investigation:

- Kim Molvig (LANL)
- Charles Nakhleh (LANL)
- Evan Dodd (LANL)
- Brian Albright (LANL)
- Adam Sefkow (SNL)
- Patrick Knapp (SNL)
- Dan Sinars (SNL)
- Ryan McBride (SNL)
- Steve Slutz (SNL)

Overview of Knudsen loss mechanism

- First work on tail-ion depletion & Knudsen layers in ICF by Petschek and Henderson:

VOLUME 33, NUMBER 19

PHYSICAL REVIEW LETTERS

4 NOVEMBER 1974

Burn Characteristics of Marginal Deuterium-Tritium Microspheres

Dale B. Henderson

Los Alamos Scientific Laboratory, Los Alamos, New Mexico 87544

(Received 5 August 1974)

Long mean free paths for ions in the tail of the distribution may allow escape, quenching the burn of marginal ($\rho R < 10^{-2}$ g/cm³) deuterium-tritium microspheres, possibly explaining the lack of success in experiments to date.

INFLUENCE OF HIGH-ENERGY ION LOSS ON DT REACTION RATE IN LASER FUSION PELLETS

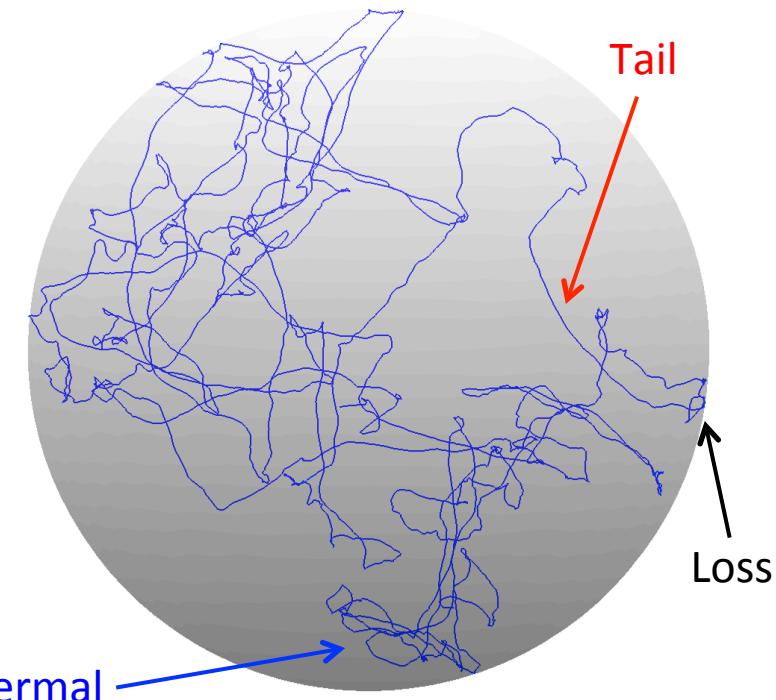
A.G. PETSCHEK*, D.B. HENDERSON (Los Alamos Scientific Laboratory, University of California, Los Alamos, New Mexico, United States of America)

ABSTRACT. Because of the longer mean free path of high-energy ions, they will be preferentially lost from small pellets containing thermonuclear reactants. This effect has been calculated and, in the most extreme case calculated, a factor-of-about-four reduction of the reaction rate in DT from the Maxwell average rate at the same mean ion kinetic energy is found.

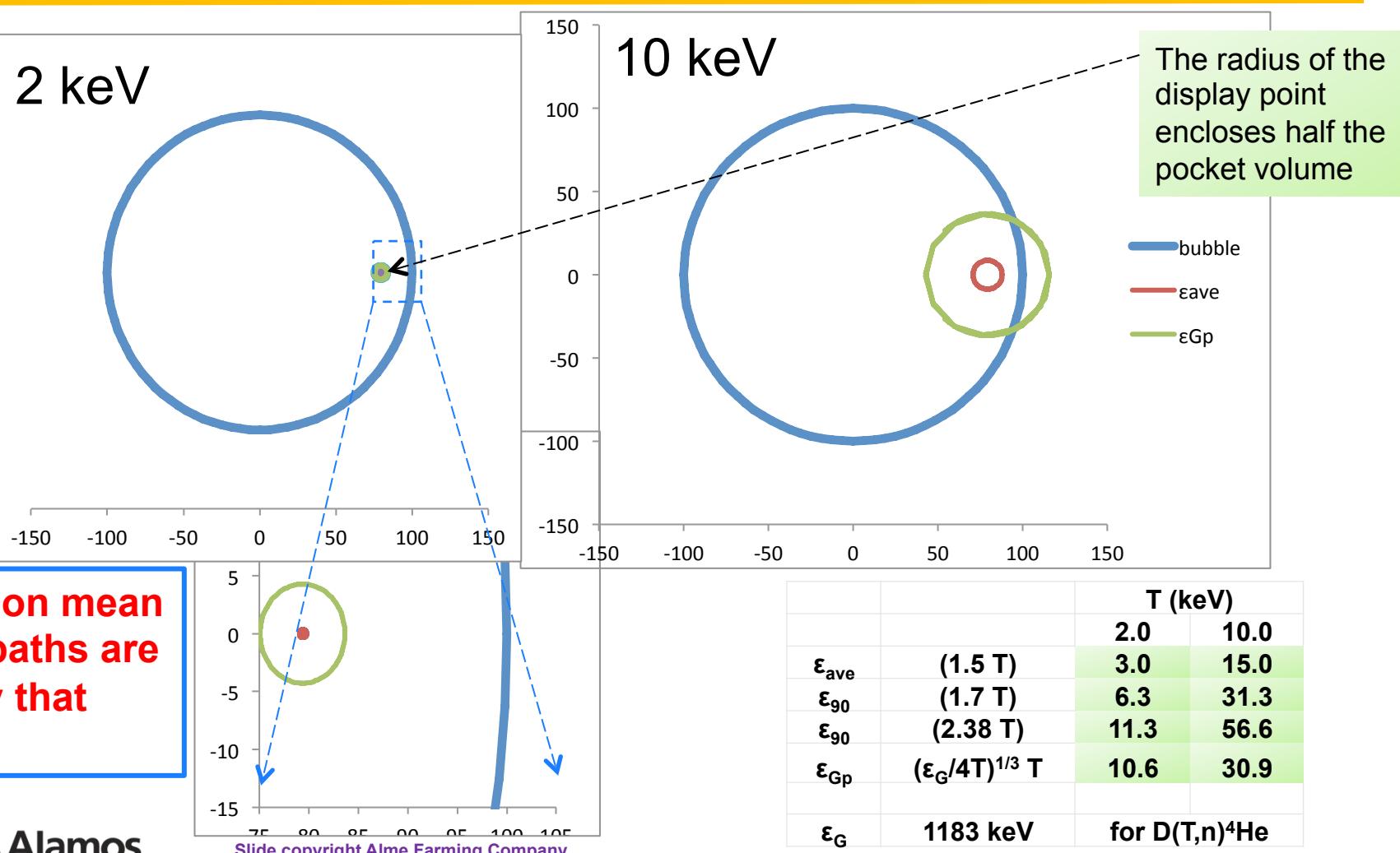
NUCLEAR FUSION, Vol.19, No.12 (1979)

$$\text{Hydro : } \frac{\lambda_{\text{mfp}}}{L} \ll 1$$

$$\text{Fuel ions : } \lambda_{\text{mfp}} \sim v^4$$



Raising Ion Temperature from 2 to 10 keV causes Gamow peak energy ions to hit the wall in a 100 μm pocket of burning DT plasma at 5 g/cm³



Kinetic local loss model illustrates enhanced tail-ion losses at high energies

Review Molvig *et al.* local loss model for tail-ions colliding with background Maxwellian*:

Planar tail-ion kinetic equation: $\frac{\partial f_i}{\partial t} + v\mu \frac{\partial f_i}{\partial z} = \frac{1}{2} \nu_{ii}^\mu \frac{v_{Ti}^3}{v^3} \frac{\partial}{\partial \mu} (1 - \mu^2) \frac{\partial f_i}{\partial \mu} + \mathcal{C}_{ii}^E (f_i, f_i)$

$^*\mu = \cos \theta$ (wall-directed pitch-angle)

Advection + pitch-angle scattering act diffusively (spatially) on short timescales $\approx \mathcal{D} \frac{\partial^2 f_i}{\partial z^2} \approx \frac{\mathcal{D}}{L^2} f_i$ (local loss approximation)

$\mathcal{D} \approx \frac{\Delta z^2}{\Delta t} \approx \lambda_i^2 \nu_{ii}^\mu \approx \frac{v_{Ti}^2}{3\nu_{ii}^\mu} \varepsilon_k^{5/2}$ (strong energy scaling)

$^* \varepsilon_k = m_i v^2 / 2T_i$

Local loss model:

$\frac{\partial f_i}{\partial t} = \frac{1}{\varepsilon_k^{1/2}} \frac{\partial}{\partial \varepsilon_k} \left[f_i + \frac{\partial}{\partial \varepsilon_k} f_i \right] - N_K^2 \varepsilon_k^{5/2} f_i$

$N_K^2 = \frac{1}{3} \frac{v_{Ti}^2}{L^2} \frac{1}{\nu_{ii}^\mu \nu_{ii}^E} \approx \frac{\lambda_i^2}{L^2}$ (Knudsen number)

Steady-state asymptotic solution:

$$f_K \approx \frac{2}{\sqrt{\pi + N_K \varepsilon_k^{3/2}}} \exp \left(-\varepsilon_k - \frac{2}{5} N_K \varepsilon_k^{5/2} \right)$$

Enhanced tail-ion depletion!
Negative impact on reactivity
Maxwellian at low energies,
consistent w/ assumptions

Kinetic local loss model illustrates enhanced tail-ion losses at high energies

- Fuel performance determined primarily by two parameters, N_K and T_i :
 - N_K determines tail shape
 - T_i determines location of Gamow peak energy
- Analytic solution [1] indicates significant reduction of fuel reactivity even for modest (>0.01) N_K .
- Calculations by Wilks *et al.* [2] as well as our own calculations indicate that original model may have *overestimated* the reactivity reduction factor.

“Equation (8) is a simplified version of a more accurate Padé approximant, used here for its physical clarity and to avoid *underestimating* the ion-loss effect.” [1]

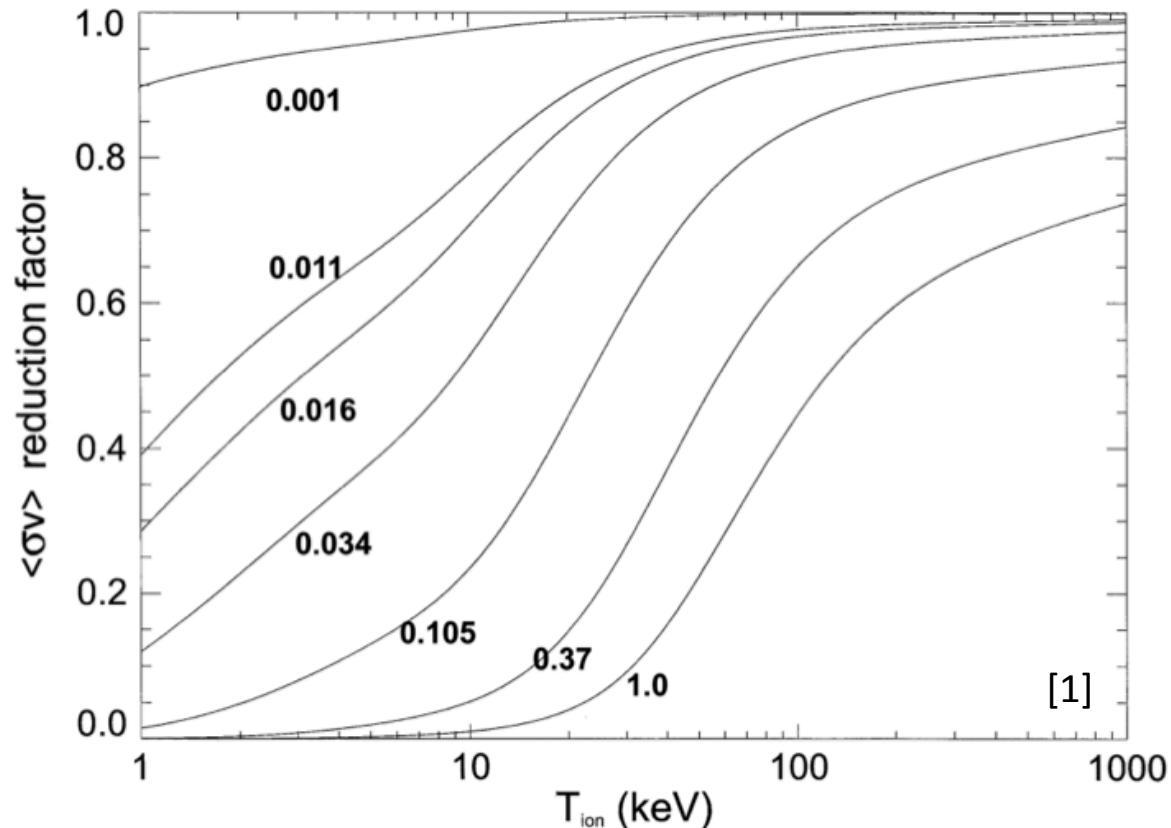


FIG. 1. Reduction ratio vs T_{ion} for values of N_K as shown.

$$N_K^2 = \frac{1}{3} \frac{v_{Ti}^2}{L^2} \frac{1}{\nu_{ii}^\mu \nu_{ii}^E} \approx \frac{\lambda_i^2}{L^2}$$

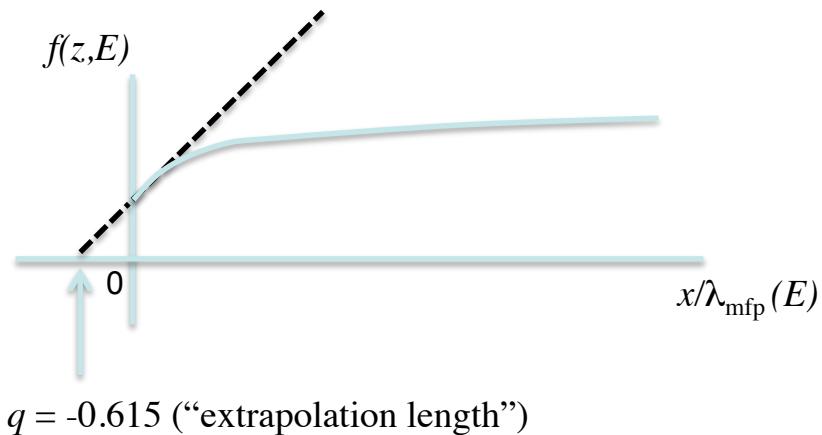
Substantial improvements to Molvig's Knudsen local loss model have been made¹

- More accurate Padé solution to kinetic equation
- Full diffusion solution in place of local loss model
- Actual D and T ions used, not representative mass 2.5 ions
- Asymptotic matching to free-streaming half-space problem (“Coulomb-Milne” boundary condition) at edge of cavity

Spherical cavity solution

$$f_{K,\text{sph}}^{CM}(x, \epsilon) \approx f_{\max}(\epsilon_{\text{ref}}) \sum_{n=1}^{\infty} 2(-1)^{n+1} \frac{\sin \left\{ n\pi x / [(N_K^{\text{cav}})^{-1} + (q\epsilon^2/\alpha_i)] \right\}}{\left\{ n\pi x / [(N_K^{\text{cav}})^{-1} + (q\epsilon^2/\alpha_i)] \right\}} \frac{h_n(\epsilon)}{h_n(\epsilon_{\text{ref}})}.$$

$$h_n(\epsilon) \approx \frac{2\pi^{-1/2}}{\sqrt{1 + \kappa_n \epsilon^{3/2}}} \exp \left[- \left(\frac{\epsilon + \frac{4}{5} \kappa_n \epsilon^{5/2} + \frac{8}{25} \kappa_n^2 \epsilon^4}{1 + \frac{4}{5} \kappa_n \epsilon^{3/2}} \right) \right]$$



¹ B. J. Albright, Kim Molvig, C.-K. Huang, A. N. Simakov, E. S. Dodd, N. M. Hoffman, G. Kagan, and P. F. Schmit, “Revised Knudsen-layer reduction of fusion reactivity,” Phys. Plasmas (in press).

Including these effects lessens the reactivity reduction

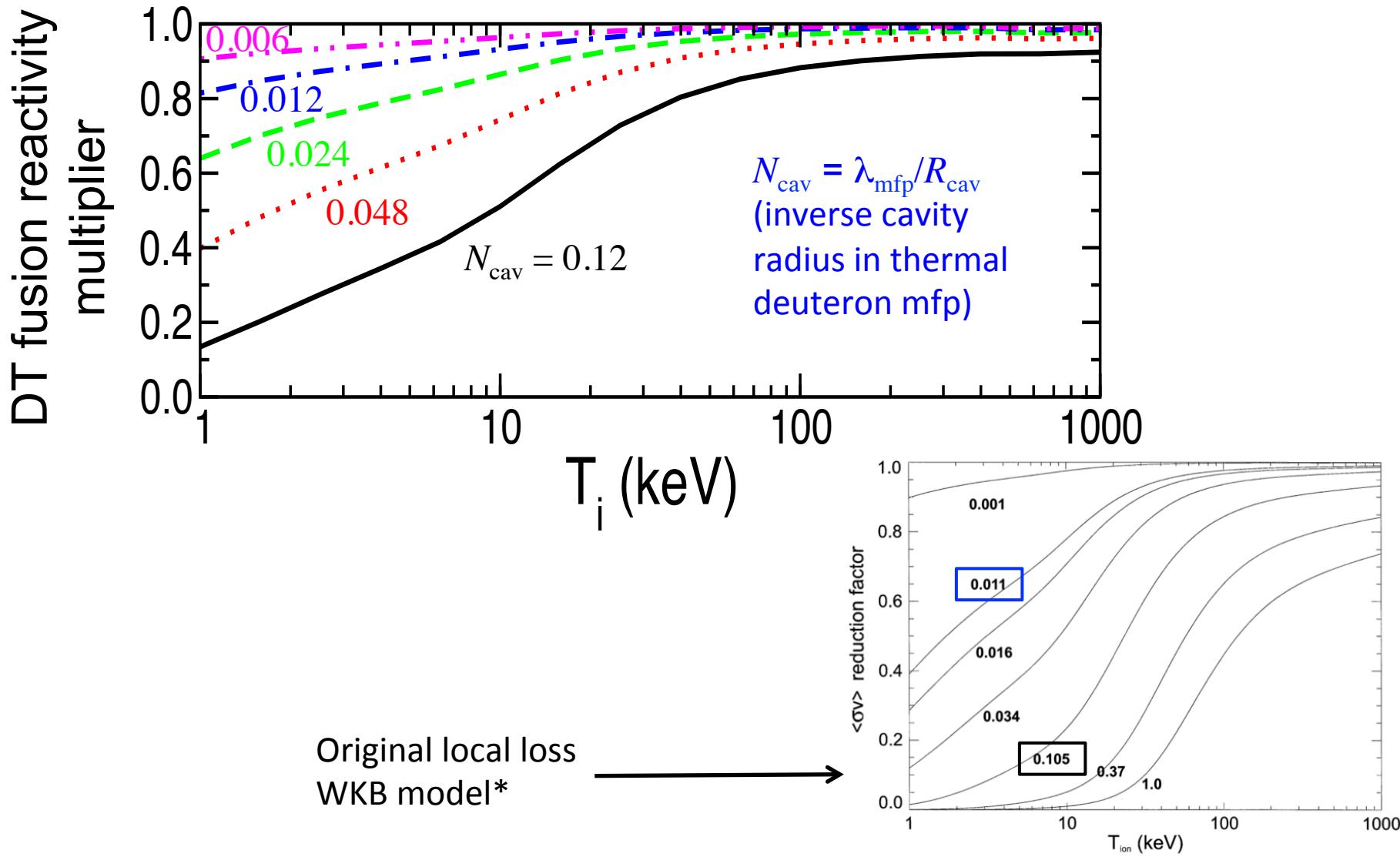
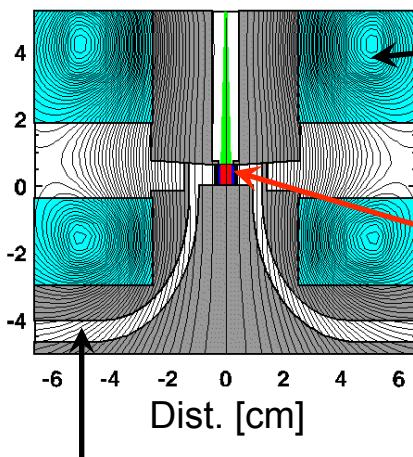


FIG. 1. Reduction ratio vs T_{ion} for values of N_K as shown. 8

SNL is working toward the evaluation of a new

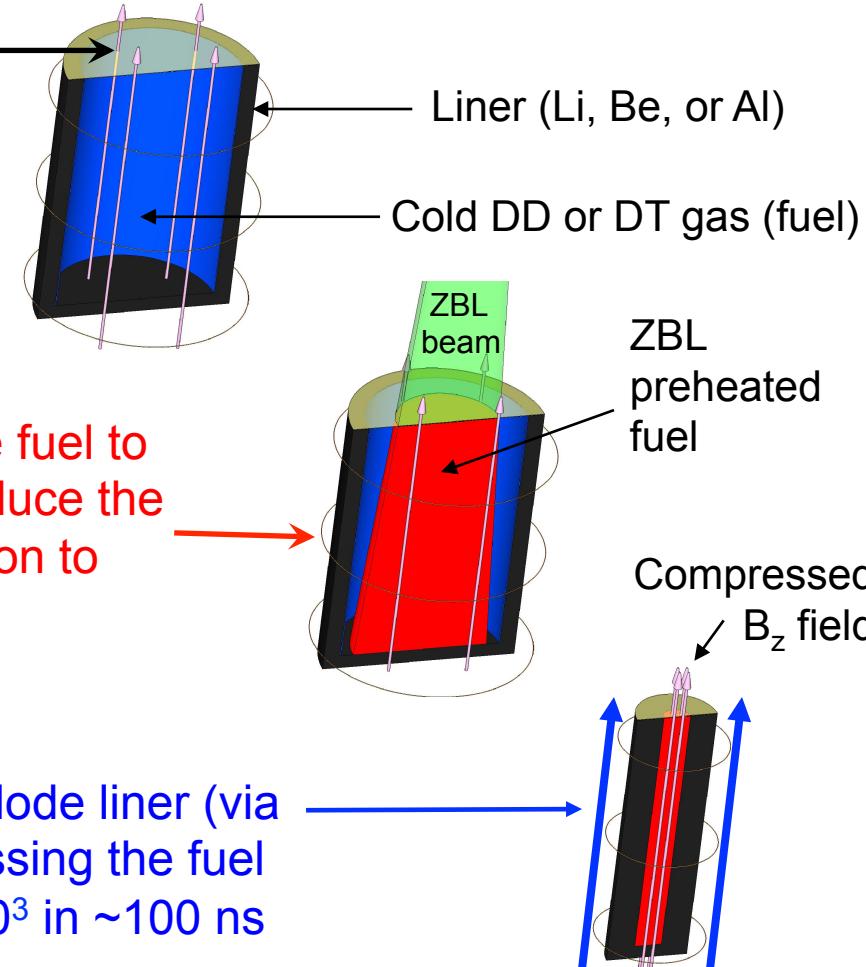
Magnetized Liner Inertial Fusion (MagLIF)* concept

1. A 10–50 T axial magnetic field (B_z) is applied to inhibit thermal conduction losses and to enhance alpha particle deposition



Z power flow
(A-K gap)

2. ZBL preheats the fuel to ~ 100 –250 eV to reduce the required compression to $CR \approx 20$ –30

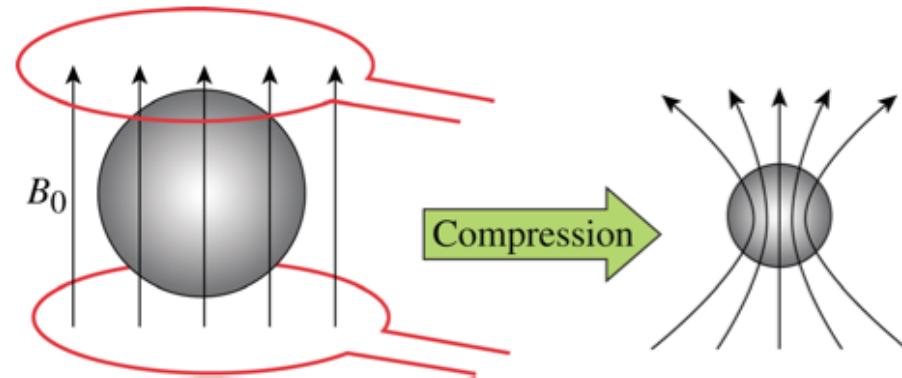


3. Z drive current and B_θ field implode liner (via z-pinch) at 50–100 km/s, compressing the fuel and B_z field by factors of nearly 10^3 in ~ 100 ns

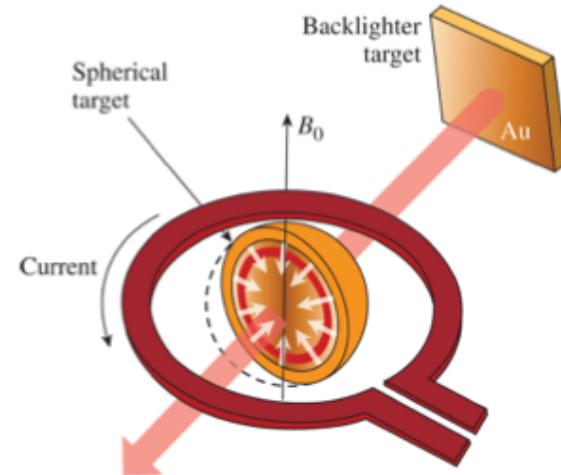
With DT fuel, simulations indicate scientific breakeven may be possible on Z (fusion energy out = energy deposited in fusion fuel)

Recent experiments on OMEGA already have shown benefit of applied B-fields on temps/yields*

Spherical target geometry not optimum for realizing maximum performance gain with a solenoidal B-field, due to field line intersections with cold pusher.



Nevertheless, modest gains in measured ion temperature (15%) and yield (30%) are reported for magnetized (80 kG seed field) direct-drive DD shots. Compressed B-fields near 40 MG.



MagLIF's cylindrical geometry, higher predicted stagnation B-fields and lower hot spot densities suggest greater relative performance enhancement with B .

Additional benefits probable for the tail-ion kinetics.

Heuristic model indicates B should mitigate Knudsen

Planar tail-ion kinetic equation:
$$\frac{\partial f_i}{\partial t} + v\mu \frac{\partial f_i}{\partial z} = \underbrace{\frac{1}{2} \nu_{ii}^\mu \frac{v_{Ti}^3}{v^3} \frac{\partial}{\partial \mu} (1 - \mu^2) \frac{\partial f_i}{\partial \mu}}_{\approx \mathcal{D} \frac{\partial^2 f_i}{\partial z^2}} + \mathcal{C}_{ii}^E (f_i, f_i)$$

$^*\mu = \cos \theta$ (wall-directed pitch-angle)

$\approx \mathcal{D} \frac{\partial^2 f_i}{\partial z^2} \approx \frac{\mathcal{D}}{L^2} f_i$ (diffusion \rightarrow local loss)

“Local loss” model:

$$\mathcal{D} \approx \lambda_i^2 \nu_{ii}^\mu \propto \varepsilon_k^{5/2}$$

$$\frac{\partial f_i}{\partial t} = \frac{1}{\varepsilon_k^{1/2}} \frac{\partial}{\partial \varepsilon_k} \left[f_i + \frac{\partial}{\partial \varepsilon_k} f_i \right] - N_K^2 \varepsilon_k^{5/2} f_i$$

$$^*N_K \approx \lambda_i / L$$

$$f_K \approx \frac{2}{\sqrt{\pi + N_K \varepsilon_k^{3/2}}} \exp \left(-\varepsilon_k - \frac{2}{5} N_K \varepsilon_k^{5/2} \right)$$

Enhanced tail depletion

“Magnetized local loss” model:

$$\mathcal{D} \approx \rho_L^2 \nu_{ii}^\mu \propto \varepsilon_k^{-1/2}$$

$$\frac{\partial f_i}{\partial t} = \frac{1}{\varepsilon_k^{1/2}} \frac{\partial}{\partial \varepsilon_k} \left[f_i + \frac{\partial}{\partial \varepsilon_k} f_i \right] - \frac{N_B^2}{\varepsilon_k^{1/2}} f_i$$

$$^*N_B \approx \rho_L / L$$

$$f_B \propto \exp \left[-(1 + \delta) \varepsilon_k \right]$$

No enhanced tail depletion

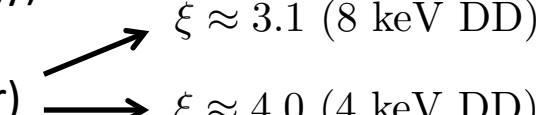
Suggests that *preferential* loss of high energy ions suppressed by magnetic field, mitigating Knudsen mechanism perpendicular to B . **But what B do we need?**

Estimate of threshold to mitigate Knudsen depletion*

Objective: want most reactive ions to undergo magnetized (classical) diffusion to suppress preferential high energy losses. This requires:

- Fusing ions execute Larmor orbits between scattering events (*magnetization*)
- Larmor orbits smaller than fuel dimensions (*confinement*)

By balancing Maxwellian particle density ($f_1 \sim \exp[-\epsilon/T]$) and Gamow tunneling factor ($f_2 \sim \exp[-(\epsilon_G/\epsilon)^{1/2}]$), peak reactivity occurs at Gamow peak energy, $\epsilon_{Gp} = \xi T$:

- $\epsilon_G = (\pi \alpha_f Z_1 Z_2)^2 2m_r c^2 = 986.1 Z_1^2 Z_2^2 A_r$ keV (Gamow energy)
- $\xi = 6.2696 (Z_1 Z_2)^{2/3} \left(\frac{A_1 A_2}{A_1 + A_2} \right)^{1/3} [T \text{ (keV)}]^{-1/3}$ (Gamow factor) 

Threshold conditions to mitigate Knudsen-depleted reactivities should constrain the motion of ions near the Gamow peak energy.

Transform between Gamow peak and thermal Knudsen numbers:

$$N_{Kp} = \xi^2 N_K \quad \left(N_K^2 = \frac{1}{3} \frac{v_{Ti}^2}{L^2} \frac{1}{\nu_{ii}^\mu \nu_{ii}^E} \approx \frac{\lambda_i^2}{L^2} \right)$$

$$N_{Bp} = \xi^{1/2} N_B \quad \left(N_B^2 = \frac{v_{Ti}^2}{\omega_{ci}^2} \frac{\nu_{ii}^\mu}{\nu_{ii}^E} \frac{1}{L^2} \approx \frac{\rho_L^2}{L^2} \right)$$

Estimate of threshold to mitigate Knudsen depletion*

Threshold criteria (expressed in dimensionless parameters related to bulk plasma):

1) **Magnetization** of ions at Gamow peak energy:

$$\left(\frac{\nu_{ii}^\mu}{\omega_{ci}}\right)_p \approx \frac{N_{Bp}}{N_{Kp}} \lesssim 1 \iff \frac{N_B}{N_K} \lesssim \xi^{3/2}$$

2) **Confinement** of ions at Gamow peak energy:

$$\left(\frac{\rho_L}{L}\right)_p \approx N_{Bp} \ll 1 \iff N_B \ll \frac{1}{\xi^{1/2}}$$

$$N_K \approx \frac{\lambda_i}{L}$$

$$N_B \approx \frac{\rho_L}{L}$$

$$\xi \sim \mathcal{O}(1)$$

Condition (1) better satisfied at large N_K , which normally would produce significant depletion ($N_K \sim \mathcal{O}(1)$).

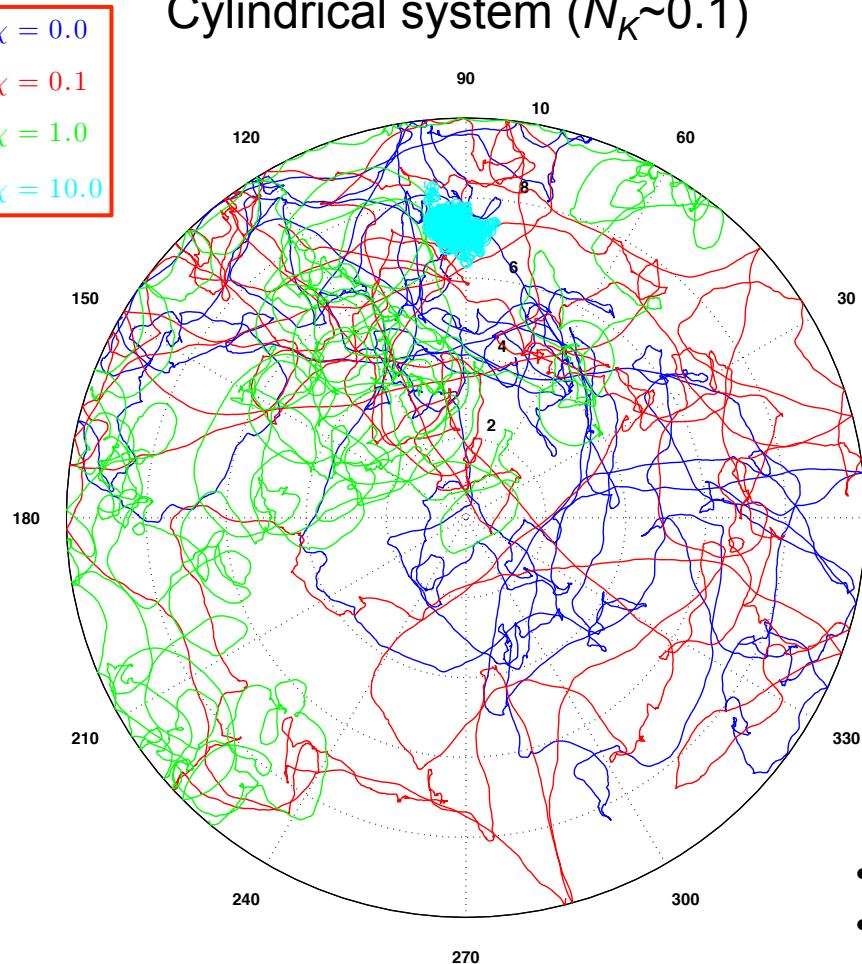
Important: we expect Maxwellian reactivities to be restored with magnetic fields too weak to magnetize thermal ions ($N_B/N_K < 1$).

Even relatively modest magnetic fields could offer performance gains by suppressing Knudsen layer formation.

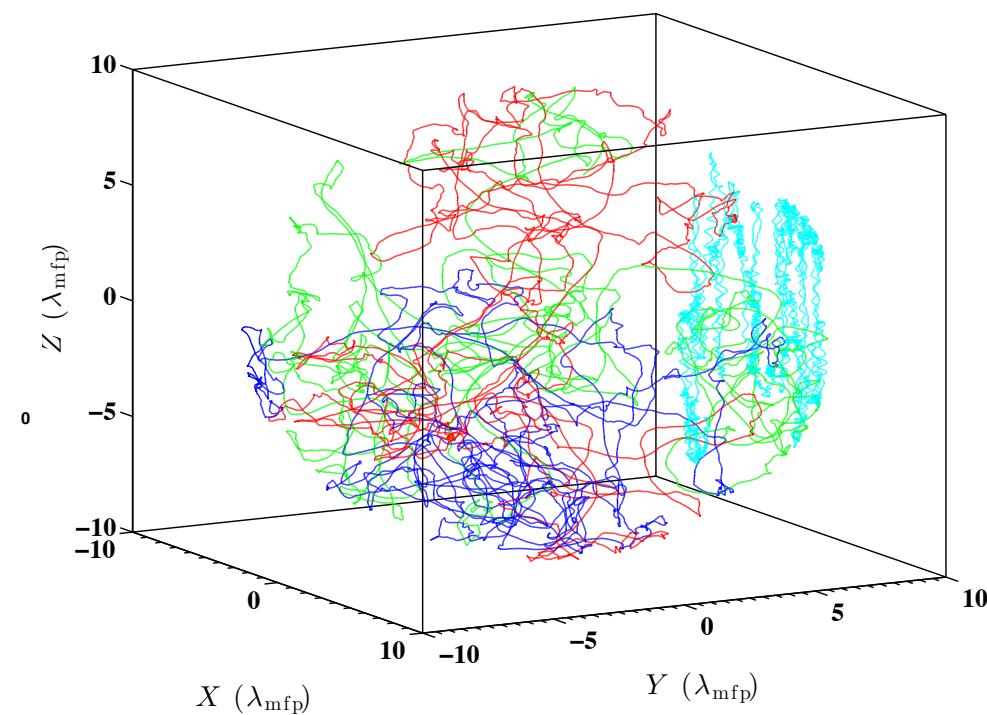
Simulations of tail-ion transport with B-fields*

New code solves complete tail-ion kinetic equation via equivalent set of stochastic differential orbit equations for ensemble of test particles.

Cylindrical system ($N_K \sim 0.1$)



Spherical system ($N_K \sim 0.1$)



- Ergodicity evident, especially with weaker \mathbf{B}
- Direct signature of weak magnetization difficult to detect from trajectories, but appears clearly in ensemble statistics

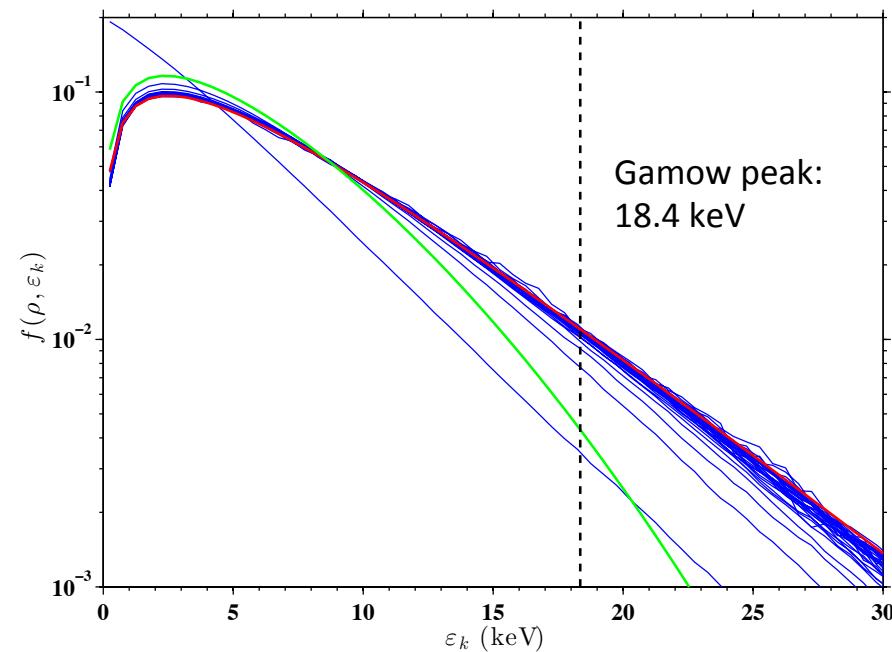
* χ defined alternatively as : $\chi \equiv \frac{\omega_{ca}}{\nu_{\mu a}} \approx \frac{N_K}{N_B}$

Simulations of tail-ion transport with B-fields

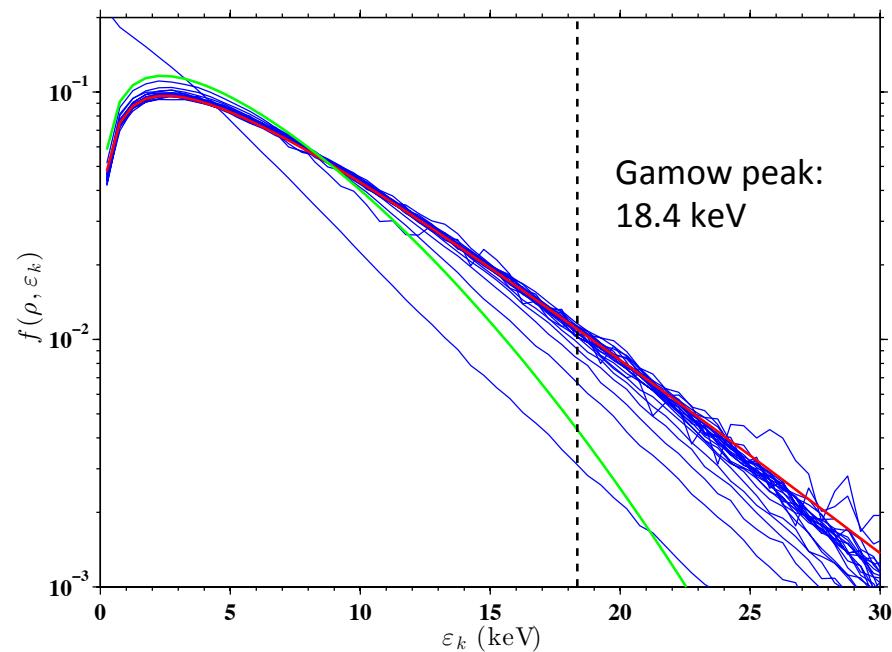
Distribution function at several radial position: 5 keV, 1 g/cc, DD plasma, $N_K \sim 0.1$, 10 eV wall

$$\chi = 0$$

Cylindrical system



Spherical system



Red line: Maxwellian distribution

Green line: Analytical 1D solution (unmagnetized) [Molvig *et al.*, PRL 109, 095001 (2012)]

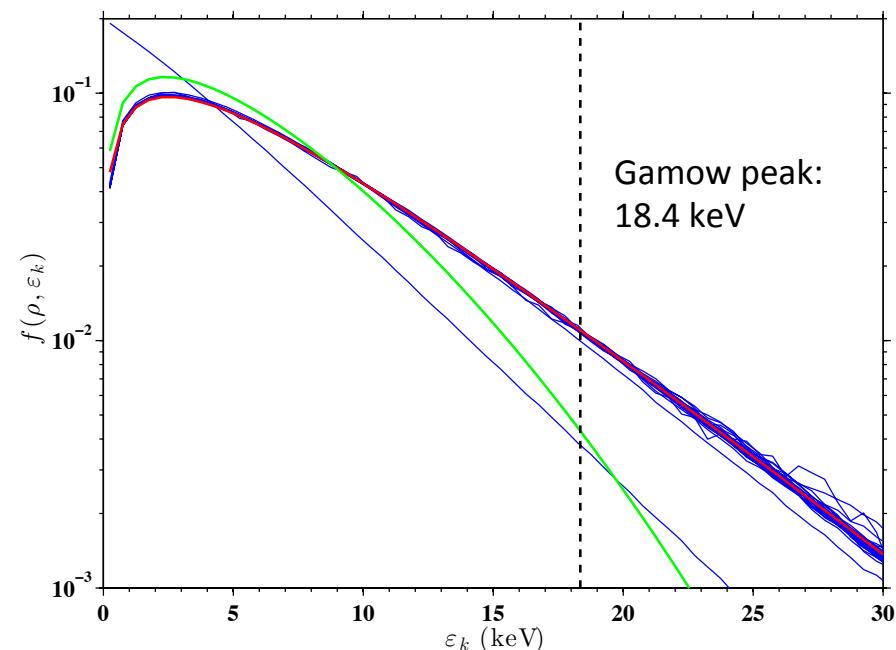
- Knudsen depletion stronger in spherical geometry vs. cylindrical geometry
- Analytical model seems to overestimate depletion scaling significantly, particularly for core plasma. Consistent with observations by Wilks *et al.* using particle-in-cell code, Lsp*.
- Ion transport **model assumptions validated**, even very close to cold wall

Simulations of tail-ion transport with B-fields

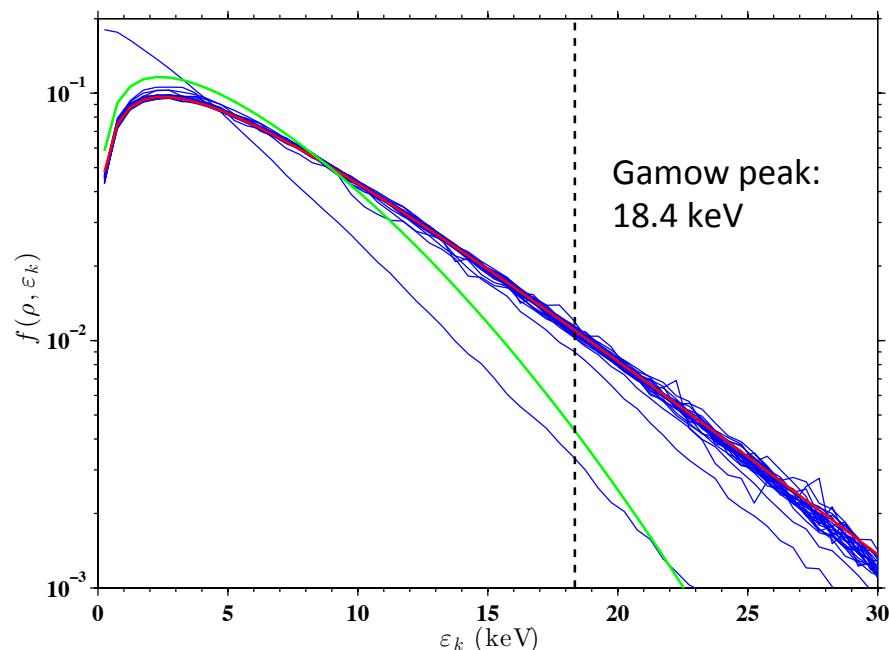
Distribution function at several radial position: 5 keV, 1 g/cc, DD plasma, $N_K \sim 0.1$, 10 eV wall

$$\chi = 5$$

Cylindrical system



Spherical system



Red line: Maxwellian distribution

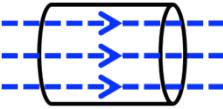
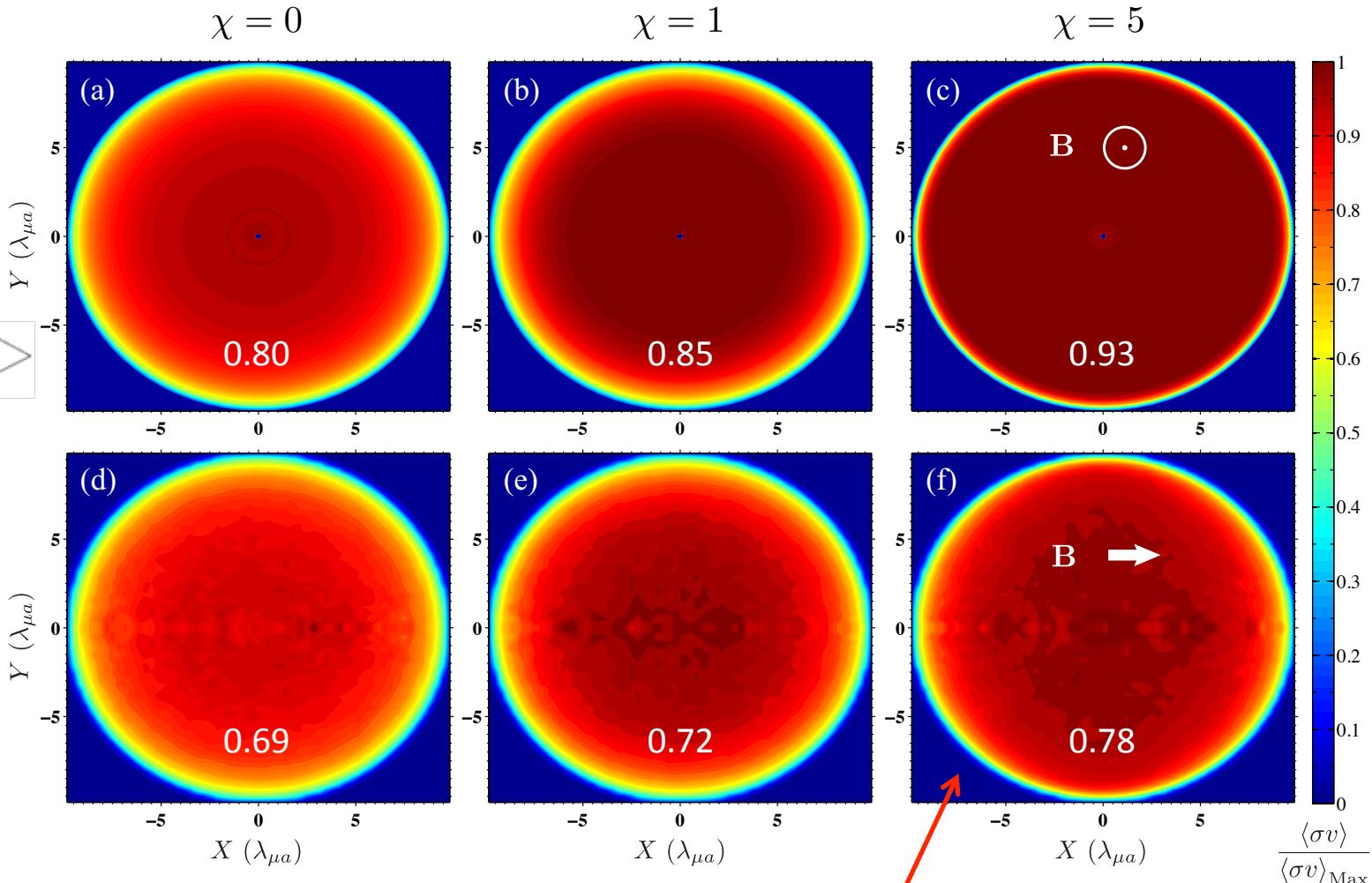
Green line: Analytical 1D solution (unmagnetized) [Molvig *et al.*, PRL 109, 095001 (2012)]

- Magnetization mitigates Knudsen depletion substantially in cylindrical system
- Tail depletion weaker in spherical system, but **not to the same extent** as cylindrical system.
- Similar qualitative differences observed for alpha energy deposition*

Simulations of tail-ion transport with B-fields

Cylindrical and spherical systems: 5 keV, 1 g/cc, DD plasma, $N_K = 0.1$

Cylinder:
depletion suppressed
completely by
B-field



Spherical symmetry-breaking
of reactivity contours (3D → 1D)

Exploring the dimensionless parameter landscape

Cylindrical system: 8 keV, 1 g/cc, DD plasma: volume-averaged reactivity reduction

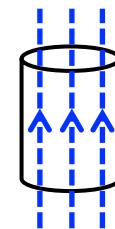
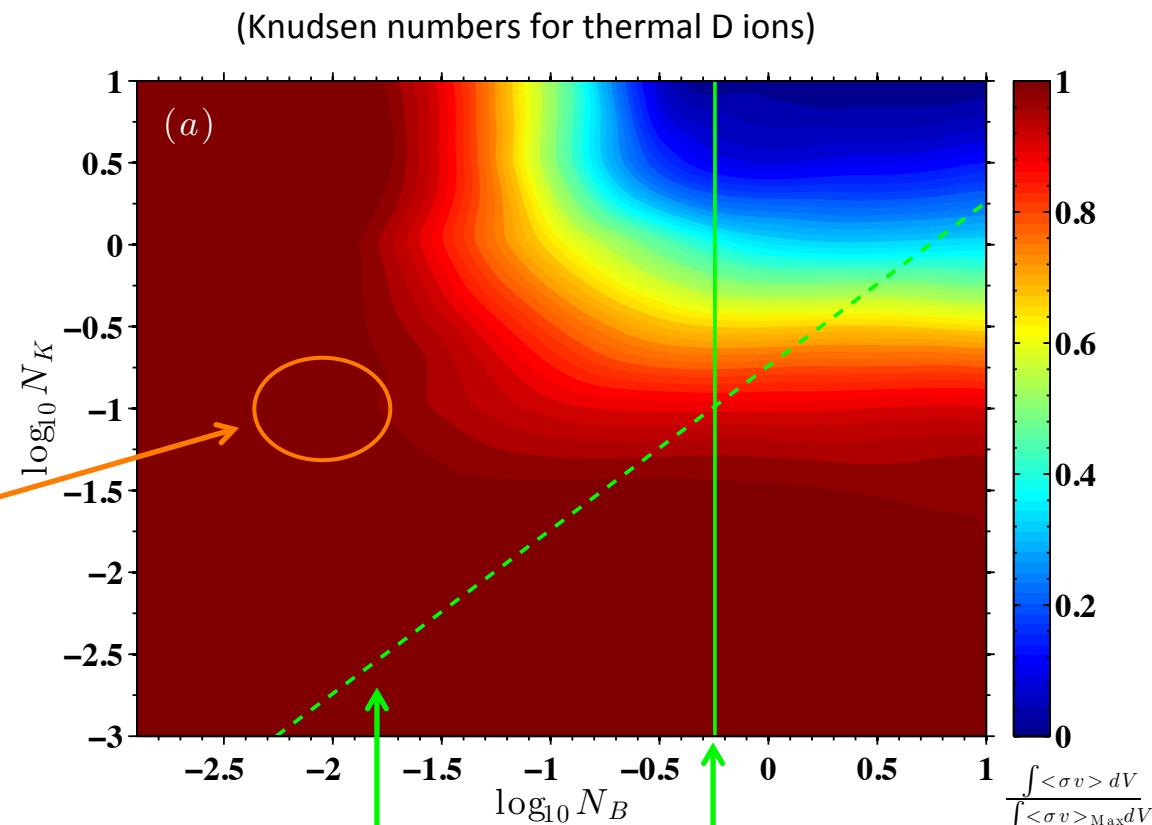
Relevant MagLIF timescales:

$$\tau_{dd}^\mu \sim \mathcal{O}(10 \text{ ps})$$

$$\tau_{\text{eq}} \sim \mathcal{O}(100 \text{ ps})$$

$$\tau_{\text{burn}} \sim \mathcal{O}(1 \text{ ns})$$

MagLIF point design is well within the plateau regime for fully restored Maxwellian reactivities.



$$\left. \begin{aligned} N_K &\sim \frac{\lambda_{\text{mfp}}}{L} \sim \frac{T^2}{nL} \\ N_B &\sim \frac{\rho_L}{L} \sim \frac{T^{1/2}}{BL} \end{aligned} \right\} \Rightarrow \text{Scan } (N_K, N_B)\text{-space at fixed } T, n \text{ by varying } B, L.$$

Magnetization threshold
 $N_B/N_K = \xi^{3/2}$

Confinement threshold
 $N_B = \xi^{-1/2}$

$$(\xi \approx 3.1)$$

*Hot spot parameters: 8 keV, 0.5 g/cc, 100 MG B-field, 100 micron radius

Exploring the dimensionless parameter landscape

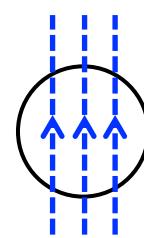
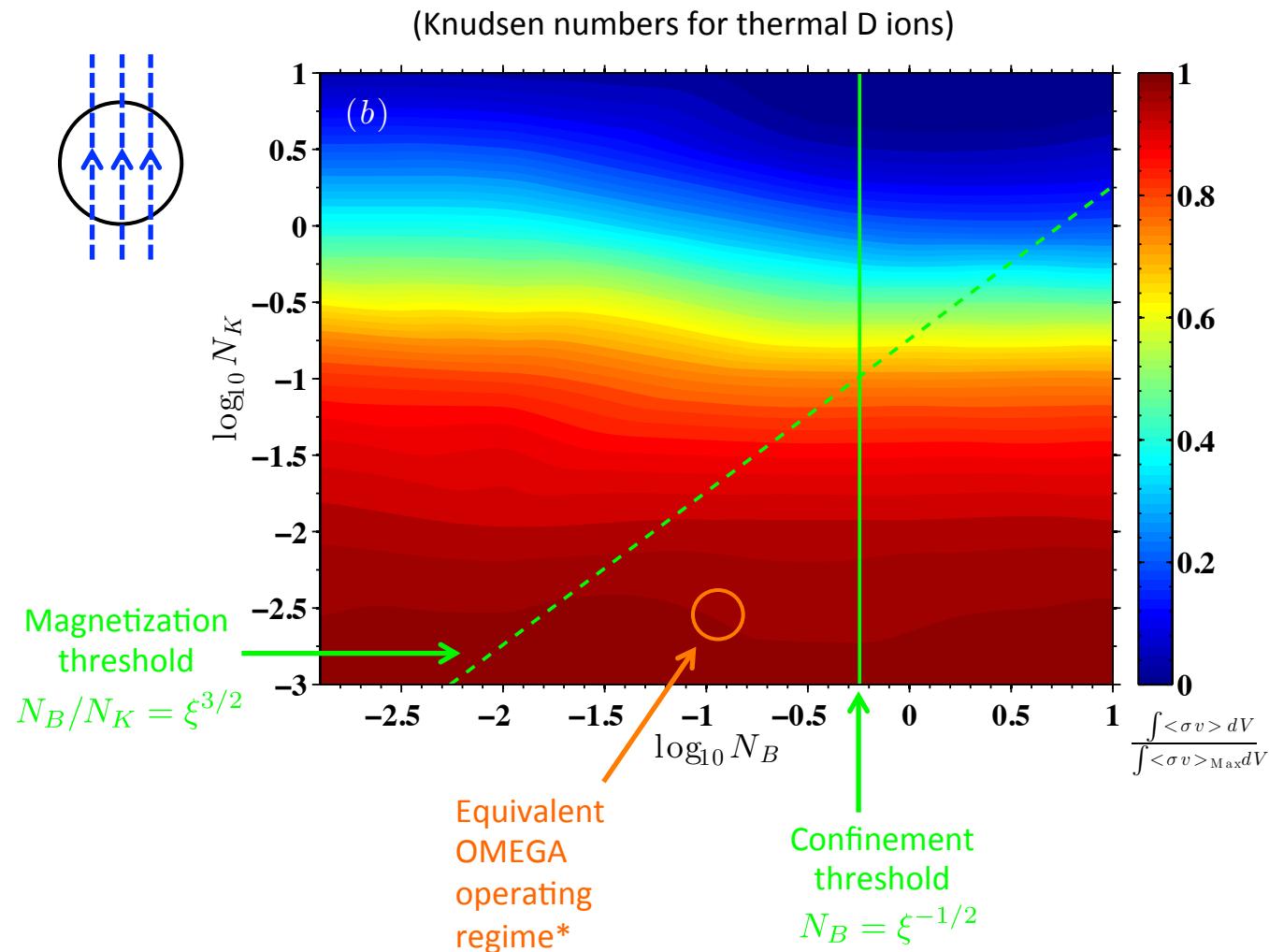
Spherical system: 8 keV, 1 g/cc, DD plasma: volume-averaged reactivity reduction

Clearly only a limited benefit provided by magnetic field in spherical geometry. Essentially a transition from 3D to 1D depletion

Relevant OMEGA timescales:

- $\tau_{dd}^\mu \sim \mathcal{O}(0.1 \text{ ps})$
- $\tau_{\text{eq}} \sim \mathcal{O}(1 \text{ ps})$
- $\tau_{\text{burn}} \sim \mathcal{O}(100 \text{ ps})$

Magnetized OMEGA experiments not in enhanced Knudsen regime

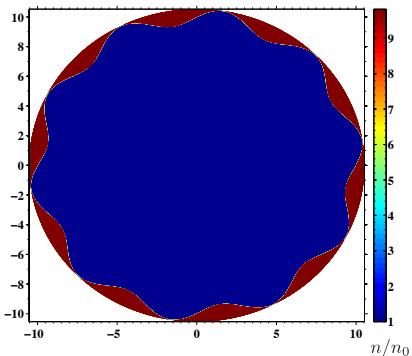
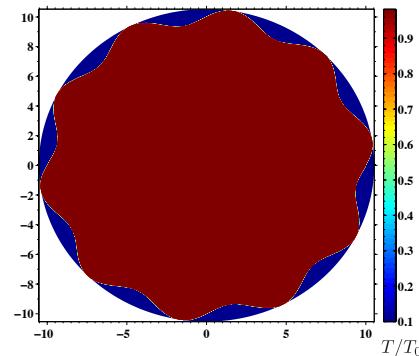


*Hot spot parameters: 3 keV, 30 g/cc, 44 MG B-field, 15 micron radius

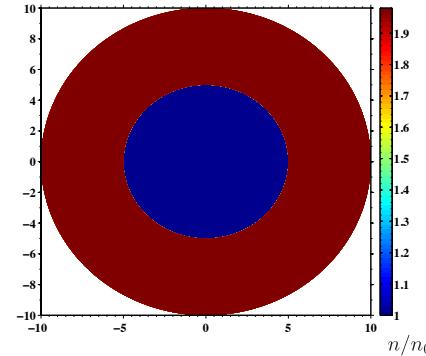
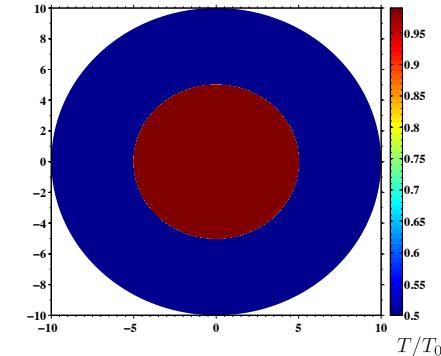
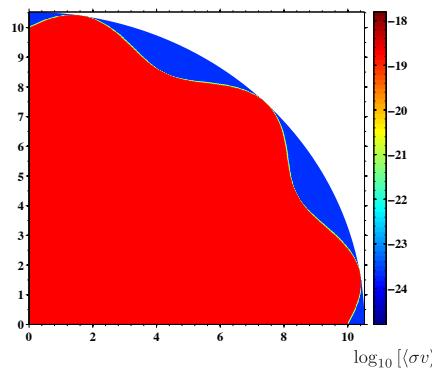
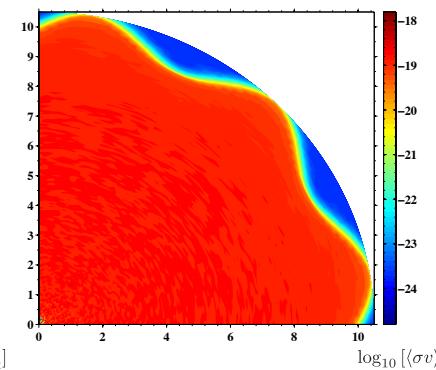
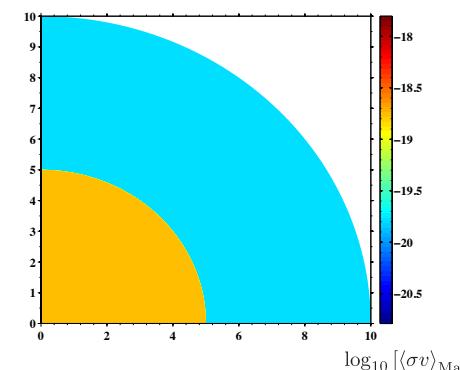
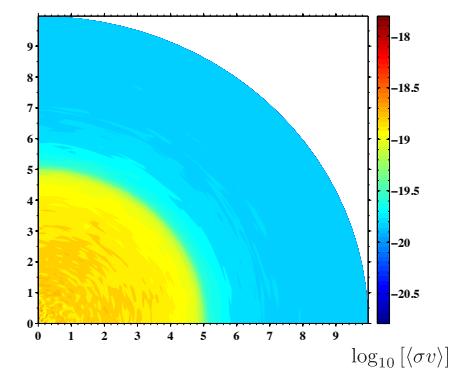
Currently testing new capability to simulate arbitrary multidimensional environments

Some initial tests:

Isobaric cylinder with perturbed “cryo” layer



Isobaric cylinder with smaller gradients



Rad-hydro codes cannot resolve nonthermal features in fuel ion distributions

Conclusions

- Heuristic local loss model suggests \mathbf{B} suppresses preferential losses of high energy ions.
- Tail-ion kinetic equation derived in hybrid cylindrical-spherical coordinates, determines tail-ion transport in arbitrary inhomogeneous dense plasma
- Numerical code developed to solve kinetic tail-ion equations in both cylindrical and spherical ICF configurations.
- Analytical Knudsen depletion model (Molvig *et al.*, PRL 2012) overestimates the extent and scaling of tail depletion, especially in core plasma.
- Uniform magnetization restores Maxwell-averaged reactivities throughout fuel volume by slowing down tail-ion diffusion rate at high ion energies.
- Strong, uniform \mathbf{B} totally restores reactivity in cylindrical cavity. For spherical cavities, reactivity restoration is finite, but limited.

Conclusions

- Simulations confirm validity of threshold conditions for restoration of depleted fusion reactivity by magnetic fields.
- MagLIF should have significant margin to avoid tail-ion losses due to strong fuel magnetization at stagnation

Backup slides...

Tail-ion kinetic equations and model assumptions*

Ion Boltzmann equation: $\frac{\partial f_a}{\partial t} + \mathbf{v} \cdot \nabla f_a + \frac{eZ_a}{m_a} \mathbf{E} \cdot \frac{\partial f_a}{\partial \mathbf{v}} = \mathcal{C}_a(f_a) - \omega_{ca} (\mathbf{v} \times \hat{\mathbf{b}}) \cdot \frac{\partial f_a}{\partial \mathbf{v}}$

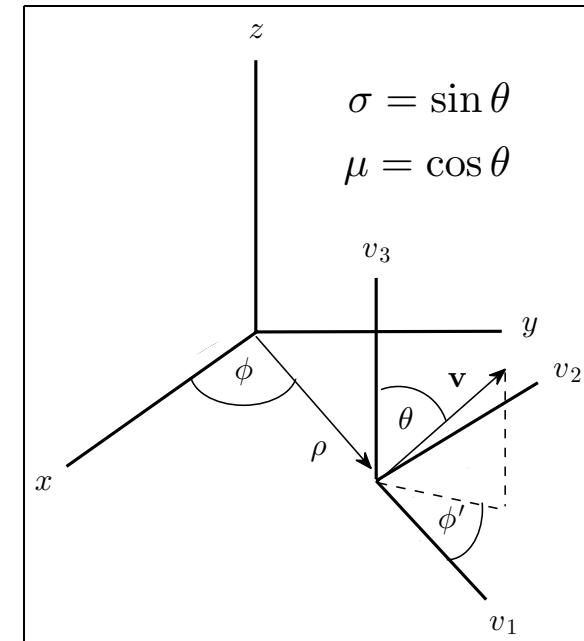
Model assumptions:

- Tail-ions dynamics don't feed back on each other or bulk, so can use linearized test-particle collision operator and prescribe steady-state bulk density, temperature, etc.
- Uniform applied magnetic field: $\mathbf{B} = B\hat{\mathbf{z}}$
- Cylindrically radial ambipolar electric fields: $\mathbf{E} = E(\rho)\hat{\rho}$
- Hybrid cylindrical/spherical (spatial/velocity) coordinates
- **Solving for steady-state tail solutions in stationary bulk plasma state.**

In hybrid coordinates, Fokker-Planck form:

$$\begin{aligned} \frac{\partial f_a}{\partial t} + \frac{1}{\rho} \frac{\partial}{\partial \rho} (\sigma v \rho \cos \phi' f_a) - \frac{\partial}{\partial \phi'} \left(\sigma v \frac{\sin \phi'}{\rho} f_a \right) \\ + \frac{1}{v^2} \frac{\partial}{\partial v} \left(\frac{eZ_a E}{m_a} \sigma v^2 \cos \phi' f_a \right) - \frac{1}{v} \frac{\partial}{\partial \mu} \left(\frac{eZ_a E}{m_a} \sigma \mu \cos \phi' f_a \right) - \frac{\partial}{\partial \phi'} \left[\left(\frac{eZ_a E}{m_a} \frac{\sin \phi'}{\sigma v} + \omega_{ca} \right) f_a \right] \\ = \nu_a^E v_{Ta}^3 \frac{1}{v^2} \frac{\partial}{\partial v} \left[D(v) \left(f_a + \frac{T_a}{m_a} \frac{1}{v} \frac{\partial f_a}{\partial v} \right) \right] + \nu_a^\mu \frac{v_{Ta}^3}{v^3} F(v) \left[\frac{1}{2} \left(\frac{\partial}{\partial \mu} (1 - \mu^2) \frac{\partial f_a}{\partial \mu} + \frac{1}{1 - \mu^2} \frac{\partial^2 f_a}{\partial \phi'^2} \right) \right] \end{aligned}$$

Hybrid coordinate system:



Tail-ion kinetic equations and model assumptions*

Further manipulations:

- Convert to dimensionless length, time, velocity, and potential units based on 1 keV, 1 g/cc *reference plasma*.

$$\nu_{\mu 0} \equiv \frac{Z_a^2}{\sqrt{A_a}} \frac{4\pi \rho_{m0} e^4 \langle Z_b^2 \ln \Lambda_{ab} \rangle_0}{m_p^3 v_{T0}^3 \langle A_b \rangle_0} \quad (1/\text{time})$$

$$v_{T0} \equiv \sqrt{\frac{2T_0}{m_a}} \quad (\text{velocity})$$

$$\lambda_{\mu 0} \equiv \frac{v_{T0}}{\nu_{\mu 0}} \quad (\text{length})$$

$$\Phi_0 \equiv \frac{T_0}{e} \quad (\text{potential})$$

- Transform velocity magnitude to energy variable: $\varepsilon_k = u^2 \equiv \frac{v^2}{v_{T0}^2}$
- Define new dependent variable, $F_a \equiv (1/2)\rho \varepsilon_k^{1/2} f_a$, such that number of particles in each differential volume element is given by: $dN = d\rho d\varepsilon_k d\mu d\phi' F_a$ $\longrightarrow {}^*||\mathcal{J}|| = (1/2)\rho \varepsilon_k^{1/2}$
- Cast into canonical Fokker-Planck form with clear *drag* and *diffusion* contributions for each variable
- Yielding...

Tail-ion kinetic equations and model assumptions

Tail-ion kinetic equation*:

$$\frac{\partial F_a}{\partial t} = -\frac{\partial}{\partial \rho} \mathcal{F}_\rho F_a - \frac{\partial}{\partial \phi'} \mathcal{F}_\phi F_a - \frac{\partial}{\partial \mu} \mathcal{F}_\mu F_a - \frac{\partial}{\partial \varepsilon_k} \mathcal{F}_\varepsilon F_a + \frac{1}{2} \frac{\partial^2}{\partial \phi'^2} \mathcal{D}_{\phi\phi} F_a + \frac{1}{2} \frac{\partial^2}{\partial \mu^2} \mathcal{D}_{\mu\mu} F_a + \frac{1}{2} \frac{\partial^2}{\partial \varepsilon_k^2} \mathcal{D}_{\varepsilon\varepsilon} F_a$$

Drag terms

$$\mathcal{F}_\rho = \sigma \varepsilon_k^{1/2} \cos \phi'$$

$$\mathcal{F}_\phi = \frac{Z_a}{2} \frac{\partial \Phi}{\partial \rho} \frac{\sin \phi'}{\sigma \varepsilon_k^{1/2}} - \sigma \varepsilon_k^{1/2} \frac{\sin \phi'}{\rho} + \chi_a$$

$$\mathcal{F}_\mu = \frac{Z_a}{2} \frac{\partial \Phi}{\partial \rho} \frac{\sigma \mu}{\varepsilon_k^{1/2}} \cos \phi' - \frac{\rho_m \Pi_a}{\varepsilon_k^{3/2}} \mu F(\varepsilon_k)$$

$$\mathcal{F}_\varepsilon = - \left(\frac{2 \rho_m \Pi_a}{\varepsilon_k^{1/2}} A_a \left\langle \frac{1}{A_b} \right\rangle [D(\varepsilon_k) - T_a D'(\varepsilon_k)] + Z_a \frac{\partial \Phi}{\partial \rho} \sigma \varepsilon_k^{1/2} \cos \phi' \right)$$

$$^* \chi_a \equiv \frac{\omega_{ca}}{\nu_{\mu 0}} \quad (\text{magnetic field only shows up in gyrophase drag term})$$

$$^* \Pi_a \equiv \frac{\langle Z_b^2 \ln \Lambda_{ab} \rangle}{\langle Z_b^2 \ln \Lambda_{ab} \rangle_0}$$

Diffusion terms

$$\mathcal{D}_{\phi\phi} = \frac{\rho_m \Pi_a}{\varepsilon_k^{3/2}} F(\varepsilon_k) \frac{1}{1 - \mu^2}$$

$$\mathcal{D}_{\mu\mu} = \frac{\rho_m \Pi_a}{\varepsilon_k^{3/2}} F(\varepsilon_k) (1 - \mu^2)$$

$$\mathcal{D}_{\varepsilon\varepsilon} = 4 \rho_m \Pi_a T_a A_a \left\langle \frac{1}{A_b} \right\rangle \frac{D(\varepsilon_k)}{\varepsilon_k^{1/2}}$$

$$\frac{d\rho}{dt} = \mathcal{F}_\rho$$

$$\frac{d\phi'}{dt} = \mathcal{F}_\phi + \mathcal{D}_{\phi\phi}^{1/2} \Gamma_1(t)$$

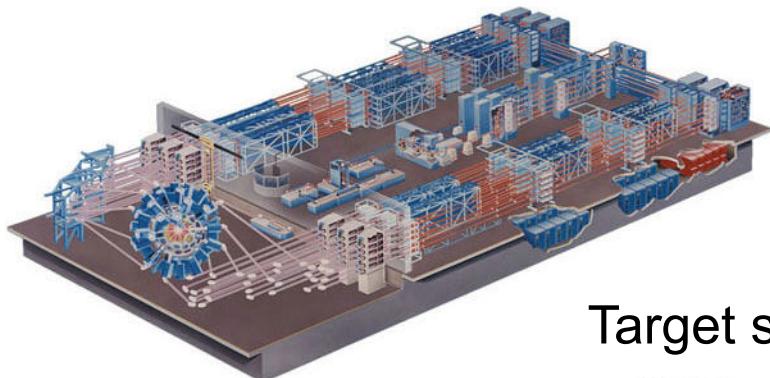
$$\frac{d\mu}{dt} = \mathcal{F}_\mu + \mathcal{D}_{\mu\mu}^{1/2} \Gamma_2(t)$$

$$\frac{d\varepsilon_k}{dt} = \mathcal{F}_\varepsilon + \mathcal{D}_{\varepsilon\varepsilon}^{1/2} \Gamma_3(t)$$

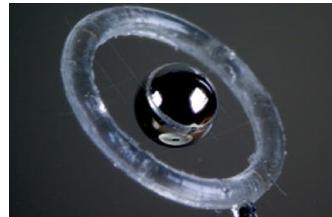
The formal solution to this equation can be found by solving an equivalent set of single-particle stochastic differential orbital equations for an ensemble of test particles

Fusion with long mean free path ions (OMEGA)

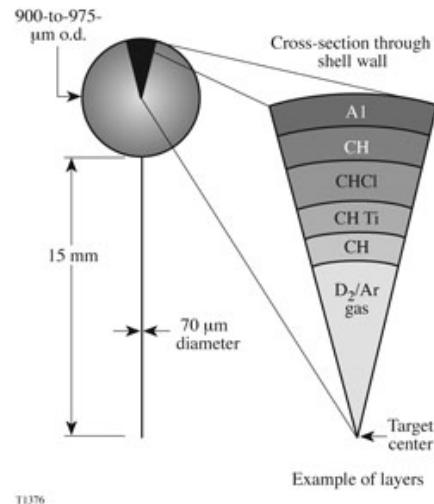
OMEGA Laser Facility



Saturn mounted target



Target schematic



UNCLASSIFIED

UNCLASSIFIED

The Gamow Peak in Fusion Reactivity

Fusion cross section



$$\sigma_{fus} = \frac{S(E)}{E} \exp(-(E_G/E)^{1/2})$$

$$E_G = 1182 \text{ KeV}$$

$$\langle \sigma v \rangle \simeq \frac{S(E)}{E^{1/2}} \exp(-(E_G/E)^{1/2} - E/T_i)$$

$$\frac{E_0}{T_i} = \left(\frac{E_G}{4T_i} \right)^{1/3}$$

Gamow peak @ $\frac{E_0}{T_i} \approx 4$
Not the 10 – 20
familiar in astrophysics