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* First work on tail-ion depletion & Knudsen layers in ICF by Petschek and Henderson:

VoLuME 33, NUMBER 19 PHYSICAL REVIEW LETTERS 4 NoveMBER 1974
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Burn Characteristics of Marginal Deuterium-Tritium Microspheres

Dale B. Henderson . 4
Los Alamos Scientific Laboratory, Los Alamos, New Mexico 87544 Fuel 1011S . )\mfp ~ U
(Received 5 August 1974)

Long mean free paths for ifons in the tail of the distribution may allow escape, quench-
ing the burn of marginal (pR<10"? g/cm?) deuterium-tritium microspheres, possibly ex-
plaining the lack of success in experiments to date.

Tail

INFLUENCE OF HIGH-ENERGY ION LOSS
ON DT REACTION RATE IN LASER FUSION PELLETS

A.G. PETSCHEK*, D.B. HENDERSON (Los Alamos
Scientific Laboratory, University of California,
Los Alamos, New Mexico, United States of America)

ABSTRACT. Because of the longer mean free path of high-
energy ions, they will be preferentially lost from small pellets
containing thermonuclear reactants. This effect has been
calculated and, in the most extreme case calculated, a factor-of-
about-four reduction of the reaction rate in DT from the
Maxwell average rate at the same mean ion kinetic energy is LOSS
found.

NUCLEAR FUSION, Vol.19, No.12 (1979)

Thermal
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Raising lon Temperature from 2 to 10 keV causes Gamow peak energy
ions to hit the wall in a 100 ym pocket of burning DT plasma at 5 g/cm3
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tail-ion losses at high energies

Review Molvig et al. local loss model for tail-ions colliding with background Maxwellian*:

Ofi | i J Lt 0 2y Ofi om gy

Planar tail-ion kinetic equation: — + v = .
_ q ot Rz = 2773 oL o)
1 — cos 0 (wall-directed \ |
H pitch-angle) |
Advection + pitch-angle scattering act 02 f; L
diffusively (spatially) on short timescales ~D 922 ]2 fi (local loss approximation)
AZ2 ’U2 5/92
D =~ ~ A2t~ T 52 (gtrong energy scalin
At 2 m SVZ k ( g gy g)
e = mv? /2T, Local loss model:
afz 1 5’ (9 5 2
|—> = T1/2 fi+ —fi Ny / fi
1 v? 1 )\2
2 T
Ni = 372 B~ T2 (Knudsen number)
S Enhanced tail-ion depletion!
Steady-state 2 72 5/\2\ Negative impact on reactivity
asymptotic  fx =~ —> OXD | —EkiT gNKé“k J lian at | .
solution: \/WJFNK%/ 2 _- axwellian at low energies,

consistent w/ assumetions 5

* K. Molvig et al., Phys. Rev. Lett. 109, 095001 (2012).
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tail-ion losses at high energies

* Fuel performance determined 1.0
primarily by two parameters,
Nk and T;: 0.8
— Ng determines tail shape S I
— T} determines location of § -
Gamow peak energy S 0.6
©
* Analytic solution [1] indicates =
significant reduction of fuel f 04
reactivity even for modest 8
(>0.01) Ng. Voo .
 Calculations by Wilks et al. [2] 1] .

as well as our own calculations 0.0 — A R
indicate that original model 1 L T.. (keV) 190 1000
may have overestimated the

reactivity reduction factor. FIG. 1. Reduction ratio vs T, for values of Ny as shown.

“Equation (8) is a simplified version of a more

, . . 1o, 1 A
accurate Padé approximant, used here for its N2 o Upy ~ ‘i
physical clarity and to avoid underestimating K~ 9792 p. E ™ 712
. . 3 L= vi v L
the ion-loss effect.” [1] 21711 6

[1] K. Molvig et al., PRL 109, 095001 (2012). [2] S. Wilks et al., Kinetic Effects in ICF Hot Spot Ignition, LLNL-PRES-594912 (2012)
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Substantial improvements to Molvig’s Knudsen local i) Naona
loss model have been made?

) Spherical cavity solution
= More accurate Padé

solution to kinetic ot o2 L sin{nme [ (V) + (@e/ai)l} ()
: K:sph(l‘ae) ~ fmax (Eref) ZQ(_l) h ‘

eq uation n=1 {nwx/[(;\’;‘?")—l + (qez/ai)]} n(€ref)
0 !:ull diffusion solution 91 et 4 B2k

in place of local loss (&)~ e rean P [—( T+ rncil? )]

model
= ActualDand T ions fZE) o

used, not o

representative mass £

2.5 1ons o

o . 4

=  Asymptotic matching 0 P (E)

to free-streaming half-
space problem
(“Coulomb-Milne”

boundary cpndmon) at 1 B. J. Albright, Kim Molvig, C.-K. Huang, A. N. Simakoyv, E. S.

edge Of Ca\”ty Dodd, N. M. Hoffman, G. Kagan, and P. F. Schmit, “Revised
Knudsen-layer reduction of fusion reactivity,” Phys. Plasmas
(in press).

q =-0.615 (“extrapolation length™)




UNCLASSIFIED
1 o o . Sandia
Including these effects lessens the reactivity reduction  (d) jam

Laboratories

> 10
> i —_
% | G- 0'8 ./ -
© O -~ 0.024
9 T_D. 06 B Lot caV }\’mfp/RcaV 7]
P . (inverse cavity 1
oS 0.4 w=0.12 radius in thermal ]
5 i
3 S 0.2 deuteron mfp) |
- i | | |
0.0 L L L L1111 L L L L1111 L
- 1 10 100
1.0
T (keV) |
I _ 0.8
2 0.6
% 04
¢
Original local loss o 02
WKB model* 0.0 ‘ e
1 10 100 1000
T.. (keV)

FIG. 1. Reduction ratio vs T, for values of Nx as shown. 8

* K. Molvig et al., Phys. Rev. Lett. 109, 095001 (2012).
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Magnetized Liner Inertial Fusion (MagLIF)* concept
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1. A10-50 T axial magnetic field (B,) is
applied to inhibit thermal conduction losses
and to enhance alpha particle deposition

b
]llf‘! = 2. ZBL preheats the fuel to
| ) ~100-250 eV to reduce the
required compression to
CR=~20-30

614 -2 0 2 4 6

Dist. [cm]

Z power flow
(A-K gap)

|zBL.

Liner (Li, Be, or Al)

Cold DD or DT gas (fuel)

ZBL
preheated
fuel

Compressed
/ B, field
717,

3. Z drive current and By field implode liner (via
z-pinch) at 50-100 km/s, compressing the fuel
and B, field by factors of nearly 10 in ~100 ns

With DT fuel, simulations indicate scientific breakeven may be possible on Z

(fusion energy out = energy deposited in fusion fuel)

9

«S. A. Slutz et al., PoP 17, 056303 (2010). S.A. Slutz and R. A. Vesey, PRL 108, 025003 (2012).
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Recent experiments on OMEGA already have ) i

shown benefit of applied B-fields on temps/yields*

\

\

Spherical target geometry not
optimum for realizing maximum
performance gain with a solenoidal By

B-field, due to field line intersections @
with cold pusher. &_/E

Backlighter
target

MagLIF’s cylindrical geometry,
higher predicted stagnation B-
fields and lower hot spot
densities suggest greater
relative performance
enhancement with B.

Spherical
Nevertheless, modest et
gains in measured ion
temperature (15%) and /
yield (30%) are reported ™"
for magnetized (80 kG )

seed field) direct-drive
DD shots. Compressed Additional benefits probable

B-fields near 40 MG. for the tail-ion kinetics.

B,

* P. Y. Chang et al., PRL 107, 035006 (2011). M. Hohenberger et al., Phys. Plasmas 19, 056306 (2012)
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Heuristic model indicates B should mitigate Knudsen

ofi Ofi
ar T,

(wall-directed |

Planar tail-ion kinetic equation:

= §Vz'z' w3 Op (1_,“
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"1 National

Laboratories

Lk 0

2) 8fz

E
a,LL +C (fwfl)

)

* —_—
p = cosd pitch-angle)

“Local loss” model:

D ~ )\21/’”"o<62/2

711

l

Of 10 [ 0] yapy
ot 811/2 Der [fz + 8€kfl:| fi i

2 2 |

fK =~ exp ( Ek — 5NK85/2) :
\/7T—|—NK€2/2 !

Enhanced tail depletion

D

|
0% fi

5.2 i (diffusion = local loss)
z

“Magnetized local loss” model:

— /2
D~ p? vt €

l

af;, 1 90 G, N2
ot B 52/2 881C [fl+ 86kf:| ]1€/2fl
1 *NBN,OL/L

S ocexp [—(1+0)e]

No enhanced tail depletion

Suggests that preferential loss of high energy ions suppressed by magnetic field,

mitigating Knudsen mechanism perpendicular to B. But what B do we need?

11




UNCLASSIFIED |
Estimate of threshold to mitigate Knudsen depletion* ri) s
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Objective: want most reactive ions to undergo magnetized (classical) diffusion to suppress
preferential high energy losses. This requires:

* Fusing ions execute Larmor orbits between scattering events (magnetization)

* Larmor orbits smaller than fuel dimensions (confinement)

By balancing Maxwellian particle density ( f; ~ exp[—¢/T]) and Gamow tunneling factor
(fo ~ exp[—(eg/e)1/2]), peak reactivity occurs at Gamow peak energy, |ecp, = £1|:

o cq = (Ta ;21 7Z5)*2m,.c* = 986.127 Z3 A, keV (Gamow energy)

A1 Ay

¢ ~ 3.1 (8 keV DD)
1/3
e £=6.2696(Z,25)%® (M) T (keV)] ™ (Gamow factor) —s ¢ ~ 4.0 (4 keV DD)

Threshold conditions to mitigate Knudsen-depleted reactivities should constrain the
motion of ions near the Gamow peak energy.

Transform between Gamow peak and thermal Knudsen numbers:

102, 1 A2
_ 2 2 _ T ~ M
2 u 2
2 v Vi 1 - PL
Ny = €3N (5= e~ L)

12
- _________________________________________________________________________________________________________________

* P. F. Schmit, Kim Molving, and C. W. Nakhleh, Physics of Plasmas 20, 112705 (2013).
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Threshold criteria (expressed in dimensionless parameters related to bulk plasma):

1) Magnetization of ions at Gamow peak energy: ~ reeeeeeeoon

B e =
wcip NKp Ng ENBN%

2) Confinement of ions at Gamow peak energy:

PL\ 1
(f>pNNBp<<1 <~ NB<<§1/2

Condition (1) better satisfied at large N, which normally would produce
significant depletion (Ng ~ O(1)).

Important: we expect Maxwellian reactivities to be restored with magnetic
fields too weak to magnetize thermal ions (Ng/Nk < 1).

Even relatively modest magnetic fields could offer performance gains by
suppressing Knudsen layer formation.

13

* P. F. Schmit, Kim Molving, and C. W. Nakhleh, Physics of Plasmas 20, 112705 (2013).
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Simulations of tail-ion transport with B-fields* i) Netora
New code solves complete tail-ion kinetic equation via equivalent set
of stochastic differential orbit equations for ensemble of test particles.

~—oo| Cylindrical system (N,~0.1) Spherical system (N,~0.1)
x = 0.1 20
x =1.0 =

W, = @Y (|| XA f
O Q“Qpip\‘%g
‘54}2'*? e ‘q,{f#“v %ﬁ’%“é"’\[

=

10

X () Y Oty

 Ergodicity evident, especially with weaker B

* Direct signature of weak magnetization difficult to
detect from trajectories, but appears clearly in
ensemble statistics 14

* P. F. Schmit, Kim Molving, and C. W. Nakhleh, Physics of Plasmas 20, 112705 (2013).
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Simulations of tail-ion transport with B-fields i) el
Distribution function at several radial position: 5 keV, 1 g/cc, DD plasma, N, ~ 0.1, 10 eV wall
x =0
Cylindrical system Spherical system

10 1 Z 10

Gamow peak:
18.4 keV

f(pv Ek)

10 "

f(ﬂ; 876)

10

0 é 1I0 1I5 2IO 2IS 0 0 é 1I0 1I5 2I0 2I5 30
e (keV) er (keV)
Red line: Maxwellian distribution

Green line: Analytical 1D solution (unmagnetized) [Molvig et al., PRL 109, 095001 (2012)]

10°

* Knudsen depletion stronger in spherical geometry vs. cylindrical geometry

* Analytical model seems to overestimate depletion scaling significantly, particularly for core plasma.
Consistent with observations by Wilks et al. using particle-in-cell code, Lsp*.

* lon transport model assumptions validated, even very close to cold wall 15

*S. Wilks et al., Kinetic Effects in ICF Hot Spoft Ignition, LLNL-PRES-594912 (2012).
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Simulations of tail-ion transport with B-fields ) i
Distribution function at several radial position: 5 keV, 1 g/cc, DD plasma, N, ~ 0.1, 10 eV wall

X =9

Spherical system

Cylindrical system

107 107 !
. Gamow peak: . Gamow peak:
18.4 keV 18.4 keV

by by
= =
=101 =101

10° ; ; ; - . | 10° ; ; ; - . |

0 5 10 15 20 25 30 0 5 10 15 20 25 30
er (keV)

er (keV)

Red line: Maxwellian distribution
Green line: Analytical 1D solution (unmagnetized) [Molvig et al., PRL 109, 095001 (2012)]

* Magnetization mitigates Knudsen depletion substantially in cylindrical system
* Tail depletion weaker in spherical system, but not to the same extent as cylindrical system.

* Similar qualitative differences observed for alpha energy deposition*
16

* M. M. Basko et al., Nucl. Fusion 40, 59 (2000). S. Yu. Gus’kov et al., Sov. J. Quantum Electron. 14, 1062 (1984)
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Cylindrical and spherical systems: 5 keV, 1 g/cc, DD plasma, Nx = 0.1

x=0 x=1

Cylinder:
depletion
suppressed
completely by
B-field

=5

Sphere:
depletion
suppressed
only partially
by B-field

Spherical symmetry-breaking
of reactivity contours (3D—>1D) 17

* P. F. Schmit, Kim Molving, and C. W. Nakhleh, Physics of Plasmas 20, 112705 (2013).
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Exploring the dimensionless parameter landscape rh) i
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Cylindrical system: 8 keV, 1 g/cc, DD plasma: volume-averaged reactivity reduction

______________________ (Knudsen numbers for thermal D ions)
Relevant MagLIF E
timescales: i Tl
Ko~ ! AANA
Tad 0(10 pS) | : i :
| .

Teq ~ O(100 ps)

. . . MaglLIF
MagLIIf p?lnt design is operating
well within the plateau regime*
regime for fully restored
Maxwellian reactivities.

L nL L Scan (N, Ng)-space at
o, TY? fixed T, n by varying B, L.
Ng~ 2 o ~ 3.1)
B~ T 737 (& ~ 3.

*Hot spot parameters: 8 keV, 0.5 g/cc, 100 MG B-field, 100 micron radius 18

* S. A. Slutz et al., PoP 17, 056303 (2010). A. B. Sefkow et al., SAND 2012-0876C (2012).
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Exploring the dimensionless parameter landscape rh)

Spherical system: 8 keV, 1 g/cc, DD plasma: volume-averaged reactivity reduction

(Knudsen numbers for thermal D ions)

Clearly only a limited N
benefit provided by
magnetic field in @ 0.5
spherical geometry.

Essentially a transition
from 3D to 1D depletion

- 10.6

______________________

Relevant OMEGA
timescales:

- 104
Thy ~ O(0.1 ps) i

Teq ™ O(1 ps)

Magnetization
threshold
--------------------- ! Np/Nk =&~ 25 -2 -15/-1 05T 0 05 1 ...
loglONB f<U'U>Made
Magnetized OMEGA Equivalent .
) . OMEGA Confinement
experiments not in . threshold
operating .,
enhanced Knudsen regime* Np =¢£71/2
regime
*Hot spot parameters: 3 keV, 30 g/cc, 44 MG B-field, 15 micron radius 19

* P. Y. Chang et al., PRL 107, 035006 (2011). M. Hohenberger et al., Phys. Plasmas 19, 056306 (2012)
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arbitrary multidimensional environments
Some initial tests:

Isobaric cylinder with perturbed “cryo” layer Isobaric cylinder with smaller gradients

9
8
7
6
5
4
3
2
1

n/ng

-18

-19

-20

-21

—22

-23

-24

2 - v v e w9 3 » e &

= =~ N W B o & 9 ® e

0 2 4 6 8 10 "0 1 2 3 4 5 6 7 8 9
logy [(00) ygax] logy [(ov)] 1og 10 [(00) pras) logyq [(ov)]

Rad-hydro codes cannot resolve nonthermal features in fuel ion distributions

20
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* Heuristic local loss model suggests B suppresses preferential losses of high energy
ions.

e Tail-ion kinetic equation derived in hybrid cylindrical-spherical coordinates,
determines tail-ion transport in arbitrary inhomogeneous dense plasma

 Numerical code developed to solve kinetic tail-ion equations in both cylindrical and
spherical ICF configurations.

* Analytical Knudsen depletion model (Molvig et al., PRL 2012) overestimates the
extent and scaling of tail depletion, especially in core plasma.

* Uniform magnetization restores Maxwell-averaged reactivities throughout fuel
volume by slowing down tail-ion diffusion rate at high ion energies.

e Strong, uniform B totally restores reactivity in cylindrical cavity. For spherical

cavities, reactivity restoration is finite, but limited.
21
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* Simulations confirm validity of threshold conditions for restoration of depleted
fusion reactivity by magnetic fields.

* MagLIF should have significant margin to avoid tail-ion losses due to strong fuel
magnetization at stagnation
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. . 8fa €Za afa . » 8fa
lon Boltzmann equation: D +v-Vf, + -~ E - Gy Coa(fa) — Wea (v X b) v

) Hybrid coordinate system:
Model assumptions: Y y

* Tail-ions dynamics don’t feed back on each other or bulk,
so can use linearized test-particle collision operator and o = sinf
prescribe steady-state bulk density, temperature, etc. (= cosf

e Uniform applied magnetic field: B = Bz

* Cylindrically radial ambipolar electric fields: E = E(p)p

* Hybrid cylindrical/spherical (spatial/velocity) coordinates Y

* Solving for steady-state tail solutions in stationary bulk
plasma state. p

z

U3

In hybrid coordinates, Fokker-Planck form:

88];@ + ;gp (o-vpCOS (b/fa) o i (UUSin qb/ fa)

¢’ p
Y
+ ig eZaEav2 cos ' fo | — 1 J 6ZGEU/JJCOS(b/faL — o ¢Zali S0 + Wea | fa
v20v \ m, vou \ mg rolod mg OV

10 T, 10f V3 1 /0 of 1 0%f
— 3 - 7 —a - a w“Ta e 2 a a
Ya UTa32 9y [D(v) (fa+ Mg v OV )] TV v3 F) [2 (8,u (1=#) op i 1 — p? 09’2

24

* P. F. Schmit, Kim Molving, and C. W. Nakhleh, Physics of Plasmas 20, 112705 (2013).
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Further manipulations:
* Convert to dimensionless length, time, velocity, and potential
units based on 1 keV, 1 g/cc reference plasma.
Z2 Anpmoe*(Z2In Aap)o

Vo = A m3vio (A} (1/time)
Vo = ZZ) (velocity)
Ao = Z—Zs (length)
oq = % (potential) )
* Transform velocity magnitude to energy variable: &, = u? = UUT
TO

 Define new dependent variable, I}, = (1/2)p5i/2fa, such that
number of particles in each differential volume element is given

by: AN = dpdey, dpdd’ F,

— (|7 = (1/2)pe}?

e Castinto canonical Fokker-Planck form with clear drag and
diffusion contributions for each variable

* Yielding...
25

* P. F. Schmit, Kim Molving, and C. W. Nakhleh, Physics of Plasmas 20, 112705 (2013).
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Tail-ion kinetic equation™:

OF, 0 0 0 9] 1 02 1 02 1 0°
—Foby — = Foby — —F Fy — —FF, + = Dy o+ z==5Dupta + z55D:F,
ot Op 9¢'” T T M Dey 2092 ?? 2 Ou? 29e2 ¢
- Fp :0511/2 cos ¢’ “y o = Wea  (magnetic field only shows
0 =
Fy = Zo 0P sing’ /2 sin ¢/ Ly — V,0  upin gyrophase drag term)
2 ap 051/2 ‘ ’
Drag . (ZZ21n Agp)
- Zg 0D mllg I, = —7F—-
terms f,u = 78_p01-—//2 CcoSs ¢’ P 3/2 NF(gk) <Z§ lnAab>0
€k
2pm1l, 1 0P e
Fo=— ( 511/2 A, <A_b> [D(eg) — ToD'(ex)] + Zaa—pas,lf/2 Ccos ¢’> Tdp 7, i
~ | dt |
— pmlly 1 :d(b/ :
Dy 372 Fler) — 2 o =Tet D;fﬂ(t)i
. . 1L, dp 1/2 i
Diffusion | p ~_7 P (o) (1 ) o =Tt D/, Lo ()
terms £, P :
1\ D(ex) —= = F. + DI[Ts(1).
D.. —4pmH TyAaq < > 51/2 e T T :
k

_ Ay f
The formal solution to this equation can be found by solving an equivalent set of
single-particle stochastic differential orbital equations for an ensemble of test particles

I —————————————
* Similar advection-only terms appear for the other two spatial coordinates, @ and
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Fusion with long mean free path ions (OMEGA)

OMEGA Laser Facility OMEGA drives DT gas fuel to burning
(non-ignited) condition. At peak burn
parameters are:
I = 9 keV
0=6gm/cm’
Target schematic R=25 um
P —— A
N, =—=0.083
L
(L=R/25)

The small Knudsen number
expansion that gives
hydrodynamics is in question
— plasma particularly

Example of layers

> Los Alamos
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The Gamow Peak in Fusion Reactivity

Fusion cross section O fus = (EE) exp (—(Eg/E)Y/?)

Eq =1182 KeV

barns | Maxwellian distribution

04 / - S(E) 1/2 '

| <ov >~ mmexp(—(Eq/E) /- E/T;)
0.3 7 Fusion reaction rate

_ I I 1/3

0 — G
027 Tz o (4Tz )
0.1 1
EO
Gamow peak @ - = 4

0.0 e t——t————t——t——t—— )
0 10 20 30 40 50 60 70 &80 90 100 110 120 EO 140 550 NOt the 10 20 !
familiar in astrophysics

lam
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