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ABSTRACT
Standard recommender systems use data from users and
their rating behavior in order to recommend items of pos-
sible interest to them. Collaborative tagging systems like
del.icio.us, IMDb, and flickr are becoming increasingly pop-
ular and users are finding them increasingly useful. Com-
pared to conventional recommender systems, such tagging
systems offer additional rich data in the form of users as-
signing tags to items. It is thus interesting to ask whether
this additional information can be put to use while gener-
ating recommendations. We hypothesize that incorporating
item based tags into a recommender system will improve
its performance. We model such a system as a tri-partite
graph of users, items and tags and use this graph to de-
fine a scoring function making use of graph-based proximity
measures. Exactly calculating the item scores is compu-
tationally expensive and we use an efficient approximation
algorithm to calculate scores. The usefulness and efficiency
of the model are compared to a simple, non-graph based,
approach. We evaluate these models on a combination of
the Netflix ratings data and the IMDb tag data.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Information Filtering

General Terms
Algorithms, Experimentation
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1. INTRODUCTION
Recommender systems typically model user preferences

based on their past rating behavior and make individualized
recommendations from this data. They assume that people
who rate a large set of movies similarly will rate all movies
similarly. High prediction accuracy in state-of-the-art rec-
ommender systems validates this assumption [16]. Relying
purely on ratings between users and items strikes us as an
overly constraining principle. In fact, recommendation ap-
proaches are categorized into content-based [19] and collab-
orative filtering [20]. Collaborative filtering approaches –
those described above – are more accurate than content-
based approaches. Hybrid recommender systems take ad-
vantage of both of these approaches and typically enjoy even
better accuracy [1]. A significant problem with content-
based recommendation is that many items may not have
any easily indexable content associated with them.

However, a growing amount of data is available on infor-
mation objects in the form of tags. For example, Delicious1

is a collaborative tagging database for web pages, Flickr2 is
a tagging site for photos, and IMDb3 (The Internet Movie
DataBase) includes a set of tags that describes movies. In-
deed, recent research shows that tagging systems are often
descriptive [14], a result that supports using tags as the con-
tent features in a recommender system. In the context of
such systems, it’s interesting to ask whether we can leverage
the rich tagging information to make the recommendations
more effective than conventional recommender systems. In
other words, we believe tags will help recommendation and
our main goal is to evaluate a recommender system that
includes tags on each item.

In this paper, we propose a graph-based model to achieve
this goal. More specifically, we assume there is a matrix

1http://del.icio.us
2http://www.flickr.com
3http://www.imdb.com
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of user ratings on items (i.e., a user-item rating matrix)
and that each item has a set of tags associated with it. In
the interest of generality we do not assume any informa-
tion about which users tagged which items. Indeed, IMDb
is a system where the associations between users, tags and
items is not available and our approach can work with such
systems. Obviously, whenever such association information
were available, then one could take into account all of the
joint information about the tags used by particular users.
We regard our approach as the minimal reliable data we can
assume to be available with only a little effort. That is,
we always have ratings data available in collaborate filter-
ing settings. If the system is further a collaborative tagging
system, tagging data is available. If tags are not explicitly
available in a system, other online resources could be used to
generate tags via an information extraction approach. Here,
we are not concerned with extracting tags, and we just as-
sume they are available.

In our proposed model, we employ a graph proximity-
based approach over a graph consisting of users, items and
tags. The edges between users and items can be set accord-
ing to ratings, and tags are connected to related items. We
now have two ways of connecting items, via users and via
tags. Thus, unrated items nearby – in a graph proximity
sense – the items in a user’s rating history should also be
interesting to that user. Based on this model, we can sort
items according to their graph proximity to the querying
user and a group of tags associated with that user. We use
an efficient algorithm to approximate the two graph based
proximity measures: the Katz score and personalized Page-
Rank. These algorithms are iterative procedures that will
converge to the true solution if given enough time, but we
terminate them before that point. The approximations usu-
ally produce one or two decimal places of accuracy, which
is sufficient to get a good sense of the ordering. In other
investigations, these approximate approaches have been at
least 10 times faster [8].

We begin by reviewing related work in social search and
graph based recommendation in the next section. We then
describe a simple model to incorporate tags into a recom-
mender system in Section 3. Next, Section 4 describes the
proposed model in detail, including the related user graph
in Section 4.4. We show how the proposed method works
with Netflix Ratings and IMDb tags in Section 5. Through-
out much of this research, we were motivated by a vision of
a query based recommender system. Section 6 outlines the
vision for such a system and discusses future work.

We make the following contributions:

• We propose and implement two approaches to inte-
grate tags and ratings in a recommender system: the
first is a straightforward combination of content scores
(from tags) and predicted user score (from ratings), see
Section 3; the second is novel and employs two com-
monly used graph proximity measures enhanced by a
nearest-neighbor heuristic (Section 4).

• We create a dataset containing both ratings and tags
by the joining Netflix and IMDb datasets. Besides its
use for our research in validating the utility of graph
based proximity measures for enhancing the effective-
ness of recommender systems, this “joined” data set
is a valuable resource which can be used in future re-
search projects, including extensions of this work (Sec-

tion 5.1).

• We evaluate the effectiveness of our methods in the
context of top-k recommendations. In this context,
rather than mean-squared prediction error, measures
such as normalized discounted cumulative gain are more
appropriate and we use them in our evaluation. The
results show our approach is robust, efficient, and ef-
fective (Section 5.3).

• We outline a vision for future recommender systems
using queries based on tags (Section 6).

2. RELATED WORK
We identified three broad classes of related work: social

search, graph based recommendation, and query based hy-
brid recommendation. A related topic that we do not discuss
is personalized search. In our framework, we assume that
users provide ratings on the items, which is not the case in
most personalized search settings.

2.1 Social Search
The term social search is used to describe a type of web

search that considers social information gathered from Web
2.0 applications [5]. Many methods have been proposed
to improve discovery of relationships from social data and
enhance social search results. For example, [11] proposed
FolkRank, a generalized link analysis approach (similar to
PageRank), to compute strengths of each entity of the net-
work. FolkRank computes the score of each entity based on
its relationships with others and the strengths of the rela-
tionships that spread activation. Therefore, a tag stated to
be strong by important users becomes strong, and a docu-
ment strongly related to strong tags by strong users becomes
strong itself.

In [2] the popularity of web pages, users, and annotations
are captured simultaneously by SocialPageRank based on
relationships of entities. The intuition behind this model
is that the annotations are good summaries of web pages
and popular web pages have higher annotation counts. The
contribution of SocialSimRank [2] and SocialPageRank is
that combining social score of a page with textual similarity
of tags associating that web page to a query improves the
quality of the results.

Chakrabarti [6] presents HubRank; a method for proxim-
ity searches in entity-relation (ER) graphs, which is fast and
space efficient compared to previous proximity search algo-
rithms. HubRank has a preprocessing phase which chooses
a small fraction of nodes using query log statistics, and then
computes and indexes certain random-walk fingerprints for
that fraction of nodes in the multi-entity graph. At query
time, a small active subgraph is identified and bordered by
nodes with existing indexed fingerprints. These fingerprints
are adaptively loaded and the remaining active nodes are
then computed iteratively in order to calculate approximate
personalized PageRank vectors.

Schenkel et al. [24] expand the scope of social search by
collecting social information from LibraryThing4. They model
social and semantic relationships among tags and items, and
calculate the score of a document for a tag for each user
based on these relations. The score of a document for a
query, then, is produced by summing up the scores of that

4http://www.librarything.com



document for tags in the query. Similarly, [23] develop an in-
cremental top-k algorithm considering strengths of relations
among users and relations of different tags. They use a top-
k threshold model and use social and semantic expansions
in an incrementally on-demand manner to leverage social
wisdom.

In [5], Carmel et al. try to take searcher’s personal prefer-
ences into account by re-ranking search results. In order to
re-rank search results for a user, they extract related users
to that user and compute the similarity strength between
them based on their social activity and re-rank the non-
personalized search results. Therefore, documents that are
strongly related to similar users get boosted in the person-
alized result.

Zhou et al. [27] combined language-modeling-based meth-
ods for information retrieval with social annotations in a
unified framework to detect topical information in tags and
integrate those information into traditional information re-
trieval techniques. In the first step they categorize users
by domain and extract topics from contents and annotation
of documents, and in the second step they incorporate user
domain interests and topical background models to enhance
document and query language models.

2.2 Graph-Based Recommendation Methods
The relationships between users and items based on their

rating preferences can be modeled as a bipartite graph. For
example, in a movie recommender system, the nodes of the
graph are users and movies, where a user is connected to
a movie with a weighted edge if the user rated that movie
and the rating is the weight of the edge. Gori et al. ([10])
present ItemRank, a random-walk based scoring algorithm
that by using a similarity measure, ranks movies according
to expected user preferences. Average commute time, PCA
commute time distance, and elements of the graph Lapla-
cian’s pseudo-inverse are some of the measures characteriz-
ing similarity that Gori et al. used in ItemRank. The intu-
ition behind ItemRank is that user preferences can spread
through the correlation graph, so they used the PageRank
algorithm because it has both propagation and attenuation
properties.

In [9], the authors present a similar method for measuring
similarity between any pair of nodes based on the number
and length of the paths between them. They compute sim-
ilarities based on a Markov chain model of random walk
through the graph by assigning transition probabilities to
the edges and considering items as states of the Markov
chain. They show that the pseudo-inverse of the Laplacian
matrix of the graph is a valid kernel and can be considered as
a similarity measure. Moreover, [4] present various measures
and show that commute time is highly sensitive to nodes’ de-
grees, which can be scaled to the stationary distribution of
a simple random walk. They propose angular-based mea-
sures for recommendation and showed that its performance
is much better than using commute time alone. An alternate
approach proposed in [12] is to use link prediction measures,
including Katz’s score, to improve standard the accuracy of
collaborative filtering.

Zhang et al. [26] model the label distribution for users
and items and also pairwise relationships between users and
items as a Gaussian Markov random field. They use this
Gaussian semi-supervised model in order to solve the prob-
lem of top-k recommendations. Another contribution of

their work is using an absorbing random-walk algorithm
while considering degrees of nodes and directly generating
top-k items without predicting ratings, just like our pro-
posal.

2.3 Query Based Hybrid Recommenders
Many recent commercial movie recommendation systems5

are designed around the idea of a “movie genome project”
– a set of features describing the movies. These were most
likely inspired by the success of Pandora’s6 “music genome
project” used to build user customized radio-stations. The
movie “genes” identified by these systems could easily serve
as the tags in our approach. In particular, Jinni implements
a query-based search and recommendation system similar to
the vision we outline in Section 6.

To improve query based movie search results, [18] com-
bines predicted user ratings with common search methods.
In a more general setting, Cheng et al. [7] introduce a model
for recommender system where attributes are added to item
nodes as new nodes. Items are then sorted based on random
walk proximity to a query, which could be a set of item nodes
or attribute nodes. Multi-way clustering is used to reduce
the amount of computation and hence the effectiveness and
efficiency are improved.

3. A SIMPLE MODEL INTEGRATING TAGS
There has been much work on keyword searching within

the information retrieval literature. In the most popular sce-
nario, items are ranked via a combination of query-dependent
features and document-importance features. The idea is
that a less precise match in a highly important document
may trump a great match in a total stinker. Common query-
based features are the tf-idf score or the BM25 score [21]
between a document and a query. Document-importance
features take many forms. Possibly the most well-known are
the PageRank scores associated with pages on the web, but
domain specific heuristics, such as the number of document
views, are equally valid.

Our proposed model for combining tags and recommender
systems takes a similar approach to an information retrieval
search. Instead of a query, we assume there is a set of tags
associated with each user. In our experiments, these are
the set of tags on all items the user has rated; but we out-
line a more expansive vision of true keyword queries for rec-
ommender systems in Section 6. Our problem setting is
still different from classic keyword search in two main ways.
First, our input data is different. In our case we are deal-
ing with two matrices MU (user/item rating matrix) and
MW (item/keyword occurrence matrix). Second, the rank-
ing must be done with respect to the individual user issuing
the query. In this setting, it has more in common with
personalized search than standard keyword search, but as
pointed out in Section 2, our problem is considerably dif-
ferent from personalized search in taking user ratings into
account.

Similar to the ranking described above, we use two main
components in our score formula, one of which represents

5See http://www.jinni.com, http://www.hellomovies.com,
http://www.clerkdogs.com, and http://www.nanocrowd.
com. Note that David F. Gleich has a small financial stake
in the company behind HelloMovies.
6http://www.pandora.com



the score of every item regardless of the tag set but with
respect to the user issuing the query. Second, we use the
tf-idf score of every item with respect to each tag. Let SQ

represent the tf-idf score and SC represent the predicted
content score from a collaborative filtering approach. Both
score values are then scaled to the [0, 1] interval and linearly
combined through a β parameter. Let T represent the set
of tags for the user, we define the score associated with user
u and item i to be

score(u, i;T ) = β · SQ(T, i) + (1− β) · SC(u, i). (1)

This model, however, does not take into account indirect
tag similarities. Therefore, it is especially sensitive to tag
sparsity. This is due to the fact that every item’s score with
respect to the tags is calculated only based on those tags
that appear in item’s set. This might cause problems in
situations where the set of tags assigned to every item is not
expressive enough to describe all aspects of the item.

4. A GRAPH-BASED MODEL INTEGRAT-
ING TAGS

4.1 The Data Structure
The data available to our proposed system is, as men-

tioned earlier, the user-item rating matrix and a list of tags
for each item. We now model the input as a tri-partite graph
of user, item, and tag nodes. Edges connect users and items
based on the available ratings, while edges between items
and tags are simply defined using the item-tag matrix – the
MW matrix. The intuition behind this model is that simi-
larity between items, induced by users or tags, is reinforced.

Let U = {u1, u2, . . . , um} be the set of users, I = {i1, i2, . . . , in}
be the set of items, and W = {w1, w2, . . . , wk} be the set
of tags. Therefore, we can define an undirected graph G =
(V,E), where V = U ∪ I ∪W is the set of nodes and the
adjacency matrix is defined as:

Ai,j =



1 i ∈ U, j ∈ I, rij ≥ µ
1 i ∈ I, j ∈ U, rji ≥ µ
1 i ∈ I, j ∈W, tij = 1

1 i ∈W, j ∈ I, tji = 1

0 otherwise

where rij is the rating of item ij by user ui, tij is the element
in ith row and jth column of MW matrix. This means we
add an edge between a user and an item only if the rating of
the user on that particular item is at least µ, which in our
case is set to 3 (on a scale of 1-5). This setting corresponds
to picking all movies that the user “liked”, “really-liked”, or
“loved” according to the Netflix rating scale. Defining edges
between items and tags is done in the obvious way using the
MW matrix.

4.2 The Proximity Measures
We are not the first to suggest graph based proximity

measures for a recommender system. Bao et al. [2] propose
a matrix-algebraic method to propagate similarity of users,
items, and tags iteratively until convergence. Sarkar and
Moore suggest that an approximated version of commute
time could be used to show similarity of users and items in
a recommender system [22]. In our proposed graph-based
model, we too assume that the proximity of nodes indicates

similarity. From the variety of proximity measures in social
networks, we have selected the pair-wise Katz measure and
the personalized PageRank [17] measure.

The Katz measure between vertices u and v is defined as

K(u, v) =

∞∑
`=1

α`Pathsl(u, v),

where Pathsl(u, v) is the number of paths of length l be-
tween two vertices and 0 < α < 1 is an attenuation factor.
Likewise, PageRank is a random-walk-based authority mea-
sure defined for nodes in a network. The PageRank score
between two nodes is

R(u, v) = (1− α)

∞∑
`=0

α`Probl(u, v)

where Probl(u, v) is the probability of random walk starting
at u and ending at v in exactly l steps. If we fix v and look at
the vector R(·, v), it is the vector of personalized PageRank
scores where the reset step always moves to node v.

Recall our setting from the simple model, we assume each
user is associated with a set of tags T based on their movies.
Therefore, the returned items should be as close to those tags
as possible, as well as being close to the user. In order to
define a score for each item, suppose that set of user tags is
ut = {t1, t2, . . . , tl}, we may define:

score(u, i;T ) = β · S(u, i) + (1− β) ·
∑
t∈ut

S(i, t), (2)

where S(j, k) is either of the two graph similarity measures
defined above.

In order to compute pairwise Katz scores between the user
and different items, we use the following approach. The
pairwise Katz score between a user (ui) and all other nodes
including all items is a vector (x) found by x = (I − α ·
A)−1 ·ei, where ei is a standard basis vector vector whose ith

element is set to 1 and all other elements to 0, and A is the
adjacency matrix of the graph. After finding x, we only use
those similarity values that correspond to item nodes and
normalize the vector. Calculating the similarity between
every tag node and every item could be done in the same
way.

Unfortunately, computing Katz score using the previous
formula with matrix inversion is too expensive for large ma-
trices. Instead, we approximate the solution of the linear
system. That is, we define B = (I − α · A), and the Katz
score of all nodes with respect to ui can be computed by
solving the following linear system

B · x = ei.

However, even this is too expensive. In the next section
we describe a technique to approximate the solution of this
system by adapting methods for personalized PageRank [3,
15]. This technique only explores a small set of nodes nearby
vertex ui to approximate the largest results.

Personalized PageRank scores satisfy a similar linear sys-
tem. The PageRank scores between a user (ui) and all other
nodes satisfy

(I − αP ) · x = (1− α)ei,

where the matrix P has entries Pji = 1/di if node i links to
node j, where di is the degree of node i. The algorithms in



[3, 15] efficiently estimate the largest elements in x by only
exploring a small set of nodes nearby ui.

4.3 The Algorithm
To approximate the vector of Katz scores, B · x = ei, the

algorithm we use is described in [8]. We briefly summarize
its features here. Standard iterative methods for large lin-
ear systems employ a sequence of matrix-vector products to
approximate a solution x. The algorithm from [8] employs a
sequence of column queries from B instead. It is inspired by
fast techniques for personalized PageRank computation [15,
3] where column queries correspond to out-link queries for
a node of the graph. When applied to approximating Katz
scores, column queries also correspond to out-link queries.
Results from personalized PageRank computation and Katz
score computation demonstrate that when solutions of the
linear system are localized (meaning only a few entries of
x have non-trivial values), these algorithms only access a
small set of distinct columns, although they may repeatedly
query any particular column. In practice, the computation
time for an approximate solution may be only slightly larger
than a single matrix-vector product [8]. Furthermore, this
algorithm does not involve any preprocessing of the graph.
It can be implemented straightforwardly whenever there is
a technique to access the out-links from a node.

Because the paper proposing this algorithm is still un-
der review, we present the details of the algorithm in Ap-
pendix A.

4.4 Nearest Neighbors Heuristic
Since we are only interested in the items that have not

been rated by the querying user, those items are connected
to the user through paths of at least 3 edges. Therefore,
the contribution of these paths to Katz or PPR scores could
be insignificant and perhaps lost in numerical computations
or approximation. A heuristic method to raise the score of
items of potential interest to the user is adding edges from
the querying user to a few other user nodes. A common mea-
sure for finding these nodes in neighbor-based recommender
systems approaches is Pearson correlation coefficient [25].
We add these edges before calculating the proximity mea-
sure, and remove them afterwards for queries in the future.
The number of non-zeros added to the matrix is negligible,
but it can significantly improve the quality. We only find
nearest neighbors of the user among those users that have
rated at least one common item with the querying user.
Moreover, the number of nearest neighbors should be em-
pirically determined, so we took 10 nearest neighbors based
on smaller experiments.

5. EXPERIMENTS

5.1 Datasets
In order to run experiments to validate our models, we se-

lected Netflix [16] and IMDb [13] datasets. Netflix provides
a collection of user-movie ratings, but it lacks keywords or
tags for each movie. Therefore, we joined movies from Net-
flix to IMDb’s database to find a set of keywords for each
movie. Our final data contains almost 1 million ratings from
175000 users on 5000 movies, and there are 20000 tags linked
to these movies.

We implement two different methods; first the simple method
using Pearson correlation as a similarity measure and use a

weighted average of ratings of 10 most similar users who have
rated the item for predictions. We have also implemented
the proposed model exactly as described in Section 4 using
Katz and PPR scores, both with and without the nearest
neighbors heuristic. We use α = 10−4 as the attenuation
factor of Katz, α = 10−1 for PPR. We vary β from 0 to 1 in
increments of 0.1.

5.2 Missing Link Test
We randomly select 1000 users, and for each remove the

edge between the user and a random item that has been
rated 5. We then apply our approaches to the dataset to
retrieve an ordered list of items. For each user, we form
the set of tags of all movies they liked. Then we randomly
permute this set. We perform tests using the first 1, 4, 7,
and 10 tags in the randomly permuted set. By design then,
the test with 7 tags includes all the tags used in the test
with 4.

Ideally, our algorithm will place the removed item into
the top set of results. Thus, we look at the top 10 and
25 items with the highest scores from our method. (These
thresholds were chosen because they are common result set
sizes on the web.) We then calculate the ratio of the number
of times that the removed item appears in the top-k list to
the number of trials and call it the hit rate. We also compare
the run time of different approaches.

5.3 Hybrid Recommender Test
We randomly separate 90% of the ratings for the training

set and the remaining 10% for the testing set. From the
testing set, we choose 1000 users who have more than 20
ratings in the testing set. For each user, we make a query
using all tags of all rated items by the user. We thus have
an ordered list of items rated by the users in the test set,
according to the actual ratings (L1), and retrieve an ordered
list of same items according to the scores (L2).

We take L1 as the ground truth and measure the effec-
tiveness of approaches by comparing L2 to it. An effective
hybrid recommender system should be able to return an L2
list as similar to L1 as possible. Among different measures to
compare these two list, we have used precision@k, mean av-
erage positions (MAP), mean reciprocal ranks (MRR), and
normalized discounted cumulative gain (nDCG). Brief de-
scription of these measures are in the following:

Precision@k This is simply the ratio of relevant items in
the retrieved list to all retrieved items. In calculation
of precision@k, we assume items rated 3 and more are
relevant.

MAP While precision is a well-known metric for evaluating
an ordered list of items returned by a query, MAP
is the average of precision@k values for all possible k
values.

MRR For each user in the test set, the rank of first related
item is desired to be lower. The average of reciprocal
of these ranks is thus a proper metric for this study.
Items rated 3 or more are considered relevant.

nDCG Discounted cumulative gain is defined as:

DCG = rel1 +
n∑

i=2

reli
log2i

,



where reli ∈ 0, 1 indicates if ith item is relevant. Nor-
malized DCG is calculated by dividing DCG by the
maximum DCG score an algorithm could achieve given
the relevancy information beforehand.

5.4 Results
Figure 1 shows that the best β value for combining CF

and IR parts of the score (when query size is 1, at which the
plot is more demonstrative) is neither 0 nor 1. Therefore,
their combination is showing a better performance than the
parts alone.

Figures 2 and 3 report top-k hit rate at k = 10 and 25
for a few query sizes. As is seen in these figures, the algo-
rithm very well captures the removed item when the query
size is around 4 words, but for larger queries, the returned
results may be too broad to include the removed item. In
scarce queries, PPR, enhanced PPR, and especially the sim-
ple model do better than Katz approaches.

Figure 4 shows the run time of different approaches in
seconds. Although PPR has a rather better performance, it
takes more time to reach the same accuracy as Katz does. It
is also obvious that enhancing the algorithm with the near-
est neighbors heuristic does not cause a significantly longer
run time. Please note that shorter run times of the simple
approach is a result of preprocessing the item similarities,
which unlike graph-based models, is not very flexible with
dynamically changing data.
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Figure 1: Hit rate vs. β

Results from the hybrid recommender system experiment
are shown in Table 1. The nearest neighbors heuristic has
slightly improved both Katz and PPR approaches in all the
measures used in the experiment. The difference between
Katz and PPR is significantly large, and thus Katz is show-
ing a much better quality of returned items compared to the
simple model and PPR.

6. OUR VISION: QUERY BASED RECOM-
MENDATION

Improving the usability of recommender systems and user
satisfaction has always been one of the main concerns of
the recommender systems community. The popularity of
search engines suggests that, in general, users prefer easy-
to-use ways of communicating with the system to express
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Figure 2: Hit rate of approaches at top-10
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Figure 3: Hit rate of approaches at top-25
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MAP MRR Precision nDCG

Simple 0.0463 0.1606 0.2077 0.0829
Katz 0.1382 0.5874 0.3306 0.2406
PPR 0.0333 0.1002 0.1693 0.0358
Katz+NN 0.1400 0.5912 0.3330 0.2435
PPR+NN 0.0357 0.1051 0.1713 0.0385

Table 1: Comparison of mean average precision
(MAP), mean reciprocal rank (MRR), precision@k
(k=25), and normalized discounted cumulative gain
(nDCG) for different approaches.

their current preferences. Our original motivation was to
improve the usability of these system by allowing users to
issue keyword queries to a recommender system. For exam-
ple, a user trying to find a family friendly movie would issue
the query “family-friendly.” In our system, we could use the
tag “family-friendly” as the tag portion of the recommenda-
tion instead of the user’s implied set of tags (as discussed
in the previous two sections). Without this explicit infor-
mation, we can only infer the current interests of users by
complex statistical models, which are not necessarily accu-
rate due to possible lack of sufficient information.

7. CONCLUSION AND FUTURE WORK
In this paper we proposed the idea of combining tags and

collaborative filtering in order to improve usability of recom-
mender systems. We first described a simple model and then
proposed a graph-based model. We empirically evaluated
the approaches in terms of their capacities of performing
as hybrid recommender systems using a combination of two
real-world datasets and two common proximity measures.
We identified the weaknesses and strengths of our approach
and provided concrete ideas in order to improve them for
the future based on our observations. Finally, we described
a vision for recommender systems with keyword queries.

This area is ripe for future work. The current paper is a
stepping stone on the path towards the vision for a query
enabled recommender system. However, we could refine the
current ideas further. Currently, we use all of the tags in
the user profile (via the liked movies) as tags used for rec-
ommendation. There are certainly better ways of choosing
a subset of the most important tags for every user in or-
der to design a better system. One possible way of doing
this would be grouping items into two different categories
for the user, like and dislike. We could as well group them
into multiple categories according to rating levels. Having
done this, each of the categories could be considered as a
class and the mutual information between every tag and
every class could be used in order to select the most impor-
tant tags of the user for every class. Using tags that have
a high mutual information with “like” class should improve
the performance.

Similarly, we can define the keyword query in such a way
that results in diversification of recommendations. In order
to do this, first we can either cluster the tags or alternatively
discover some topics in tags using their co-occurrences in
items. Then tag selection could be done again based on the
mutual information between the tag and different topics or
clusters. Defining a keyword query that contains the best
representatives from each topic has the effect of giving items

of different types (according to their contents) the opportu-
nity to get the chance of being recommended to the user.
On the other hand, the collaborative filtering component of
the scoring function will only assign high scores to the items
that the user will like and altogether a diverse set of items
which are also of user’s interest will be returned.

A final limitation of the current system is that there is no
way to incorporate information on the movies that a user
dislikes. Such information is easy to include in our formula-
tion by subtracting graph proximity scores associated with
disliked movies.

We hope to investigate all of these ideas in the future.
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APPENDIX
A. TOP-K KATZ SCORES

This section summarizes an efficient algorithm to compute
the largest Katz scores with respect to a target node from
[8]. Let us begin by stating two conflicting pieces of notation.
We use ei as the vector with a 1 in the ith component and 0
elsewhere. Also, for a vector v, the notation vi is the scalar
in the ith component of v.

Our efficient algorithm for computing the top-k entries
of a linear system of the form B · x = ei is based on the
Richardson iteration. To solve B ·x = ei using the Richard-
son method, we iterate

x(k+1) = x(k) + (ei −Bx(k)).

As an aside, we note that the Richardson iteration corre-
sponds with a gradient descent procedure on the problem of
minimizing (1/2)xT ·A · x− xT · ei over x. If we call r(k) =

ei−B · x(k), which is nothing more than the kth residual or
negative gradient, then the iteration is x(k+1) = x(k) + r(k).
Rather than taking the entire step along the gradient, a set
of PageRank algorithms [15, 3] propose

x
(k+1)
i =

{
x
(k)
i if i 6= j

x
(k)
i + r

(k)
i if i = j

where j is picked on a criteria discussed below. With this

update, r(k+1) = r(k) − r(k)j Bj and Bj is the jth column of
B. Thus, we can solve this linear system by only accessing
individual columns of the matrix. As long as the spectral
radius of B < 1, then this algorithm converges when j is
chosen to be the largest magnitude element in r(k). Conse-
quently, we keep the elements of r organized in a heap to
permit fast queries of the largest elements.

For the Katz problem, we have B = I − αA where A
is a symmetric adjacency matrix of a graph. This matrix
produces an especially nice update to the residual. We set

r(k+1) = r(k) − r(k)j ej + αr
(k)
j Bj or

r
(k+1)
i =


r(k) + αr

(k)
j if i is connected to j

0 if i = j

r(k) otherwise.

Thus, the work involved here is proportional to the degree
of vertex j. A similar result holds in the PageRank case [15,
3].



We empircally observe that this procedure is fast and effi-
cient at producing approximations of the top-k nodes nearest
a target node for the Katz measure [8].


