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Project Objective

• Provide an improved fundamental understanding of the 
physical features (flexibility, shape and charge motifs) of 
proteins and ligands that determine their binding  
specificity; demonstrate that this understanding can be 
used to predict and control specificity in new ligand and 
mutant  protein structures.

• Designer enzymes and small molecule recognition 
materials play an important role in the science of: WMD 
sensing ( thrust 1), protection (thrust 3), and securing 
WMD (thrust 5)

• More broadly it is important in pharmaceutical drug target 
identification and development, and enzyme engineering 
for applications such as bioenergy

:
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WMD Sensing: Conservation of Structural and 
Functional Motifs

Practical Problem: Replace antibodies in 
detection assays with ligands that have 
“guaranteed” defined species specificity.

Solution: Make ligands that bind to structural 
features of proteins that are evolutionarily 
conserved across a given species or 
functional class, but not shared with other 
species.

Background and Significance
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Sequence similarity does not 
predict binding affinity

Example 1: SEB-binding  peptide

SEB TSST

Abs
280 nm

Time (minutes)
0.0 60.0

TSST1

SEC1

SEA

SEB

1 M NaCl 2% acetic 
acid

Load

SEB  and TSST are 
structurally homologous but have low 

sequence homology (28%)

% identity

100%

56%

68%

28%

Wang, G., De, J. Schoeniger, J.S., Roe, D.C. and Carbonell, R.G. 
(2004) Journal of peptide research 64, 51-64
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Ex 2: Docked Molecule binds to botulinum and 
tetanus toxins 

Chem. Res. Toxicol. (2002), 15(10), 1218-1228. 
Chem Res Toxicol 13(5):356-62. 2000. 

• Virtual screen against 
tetanus toxin

• 15 (out of ~30 tested) 
confirmed 
experimentally

• Top compound 
(doxorubicin) bound  to 
BoNT B as well (38% 
identity)

Dock-predicted binding of 
doxorubicin to TeNT

Crystal structure binding to 
BoNT(S. Swaminathan)

Sequence similarity does not 
predict binding affinity
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Countermeasures: Conserved Binding Motifs

Practical Problem: For a given set of target 
organisms and target proteins, determine 
when it might be possible discover a drug 
candidate that has broad spectrum activity 
against the class, or which subsets might 
be logical co-targets.

Solution: Classify proteins based on their 
potential ligand interactions.

Background and Significance
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Clustering Using Ligand Binding 
Profiles from Docking

Dengue

West Nile Yellow Fever

langat

correlated docking score with representative structure

sequence dengue WNV langat YF Modoc

cluster1 WNV_rot 0.863 1 0.602 0.606 0.786

Kunjin_6695_12.2ijo_B 0.864 0.98 0.595 0.602 0.785

WN_6695_9.2ijo_B 0.864 0.968 0.587 0.597 0.782

Zika_6695_8.2ijo_B 0.874 0.878 0.718 0.706 0.756

Alfuy_6695_15.2ijo_B 0.838 0.876 0.52 0.526 0.759

MVE_6695_17.2ijo_B 0.829 0.871 0.503 0.502 0.757

2fom_rot 1 0.863 0.627 0.628

Usutu_6695_19.2ijo_B 0.793 0.859 0.42 0.42 0.752

Kedougou_6695_6.2ijo_B 0.885 0.852 0.697 0.691 0.751

Ilheus_6695_7.2ijo_B 0.8 0.836 0.674 0.682 0.708

SLE_6695_14.2ijo_B 0.785 0.832 0.518 0.532 0.732

Dengue4_6695_4.2ijo_B 0.847 0.814 0.626 0.578 0.702

Rocio_6695_10.2ijo_B 0.781 0.814 0.73 0.7 0.691

Dengue1_6695_2.2ijo_B 0.877 0.809 0.582 0.575 0.706

Dengue3_6695_3.2ijo_B 0.896 0.809 0.744 0.741 0.72

Yokose_6695_21.2ijo_B 0.8 0.76 0.789 0.774 0.701

cluster2 YF_rot 0.628 0.606 NA 1 NA

langat_rot 0.627 0.602 1 0.849 0.612

Omsk_6695_26_2snv.2fom_B 0.628 0.596 0.975 0.849 0.609

TBE_6695_27_2snv.2fom_B 0.624 0.59 0.975 0.853 0.603

LoupingIll_6695_29_1df9_A.2fom0.624 0.598 0.956 0.849 0.605

Entebbebat_6695_20.2ijo_B 0.719 0.691 0.869 0.863 0.631

Sepik_6695_5.2ijo_B 0.7 0.677 0.863 0.867 0.603

Karshi_6695_28_1df9_A.2fom 0.693 0.687 0.846 0.769 0.712

JEE_6695_18.2ijo_B 0.764 0.756 0.818 0.832 0.683

RioBravo_6695_22.2ggv_B 0.68 0.673 0.806 0.883 0.635

cluster3 Modoc_6695_24_2snv.2fom_B 0.773 0.786 0.612 0.581 1

MontanaMyotisLeukoE_6695_23_1df9_A.2fom0.721 0.721 0.728 0.697 0.846

outliers Powassan_6695_30_1qy6_A.2fom0.251 0.298 NA 0.22 0.432

Bagaza_6695_13.2ijo_B 0.52 0.591 0.117 0.122 0.494In silico binding scores were found for a 
test set of 1000 diverse molecules docked 
as ligands to modeled structures.  
Sequences were re-clustered based on 
cross-correlation of scores

Clustering by MSA Yields 4 Groups

Clustering by Ligand Binding Yields 
3 Groups, with Dengue & WNV now 

together in one group

Common motifs
Other Active Site

Catalytic Triad
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Background and Significance

What is a binding motif?

• Interface between protein 
(macromolecule) & small molecule
• enzyme-substrate,  antibody-antigen, 

drug-target, etc.

• Mathematically ill-defined (as a 
geometric entity) for purposes of 
clustering 
• Surface painted with scalars & vectors

• Actually dynamic (Non-rigid geometry)

• Must be analyzed across a vast 
space of ligands and receptors



UNCLASSIFIED

UNCLASSIFIED

• GOAL: Find specificity-determining features (SDFs) 
across protein target and ligand spaces

• Identify Promising Target Families
• Lots of protein variants known, lots of ligand data available

• Applications potential: Primarily infection & immunity (drug targets)

Technical Approach

Test System Enzyme 
Source

Experimental Ligand Binding 
Data Available in literature

Protein Kinases Human >40,000

DHFR Bacterial / 
fungal / protist

> 4000

HIV / HCV Proteases Viral >14,000 / >300
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Binding Data (Ki, Kd)

Find specificity determining 
features (SDFs)

Extract SDFs

Ligands

P
ro

te
in

s Table of 
Binding 

Data

Simulation
(Docking, MD)

Classify

Ligands

P
ro

te
in

s

Experimental Validation New predictions
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Ligands
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PCR out gene segment around 
the binding site (~ 70 bp)

Amplify with Error-prone PCR to get 
all single, double and triple mutants

Reintegrate into gene & 
Express  in phage protein 
display system (<= 1 
protein copy per phage) to 
produce a library of triple 
(bp not aa) mutants.

Affinity chromatography 
versus immobilized 
ligands sorts out weak, 
medium and strong 
binders

Illumina Sequencing of 
each fraction determines 
which mutants are in it.   
1-2 Million reads (~$200)  
provides >4x coverage of 
ALL triple mutants.  Since 
coverage is complete, can 
be repeated for additional 
ligands.

Generating experimental binding data 
for ALL Triple Mutants of Binding Site
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Technical Approach

Benefit and uniqueness of SDF Approach
• Classifying across both protein and ligand space

• Can include all interesting ligands and targets (ex: off-target receptors)

• Can incorporate other  data (e.g. toxicity)

• Can include whatever binding data available. Clustering sorts out 
weighting for you

• Framework for integrating computational & experimental
• Not depending on high fidelity simulations

• Allows statistical analysis

Technical scope and limitations 
• Intelligently sampling protein/ligand space

• >1060 possible small molecules

• >20300 possible proteins

• Ligands: choose diverse, biologically relevant, commercially available

• Proteins: Families within a species, homologs, mutations
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Strategy/Risk Mitigation

Difficulties:

• Hard to get complete data set for large 
protein/ligand space. Lots of “missing” data
• Missing data sensitivity analysis

• Selectively fill in experimentally

• Phage display to generate all triple  mutants

• Hard to get accurate simulations of binding data 
(real structures are dynamic)
• High-fidelity: Perform selective high-fidelity simulations and use 

information for related systems

• Low-fidelity: Perform simulations on data sets large enough for 
statistical analysis
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Research Progress

• The human kinome

• 40 atypical PKs

• 478 classical PKs. 
• 388 serine/threonine

kinases, 

• 90 tyrosine kinases

• 50 sequences which lack a 
functional catalytic sites. 

Manning et al., Science, 6 
December 2002
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Results: Starting TBD for the 
human kinome

Values for Kinase/Ligand TBD taken from a 
comprehensive experimental study in the 
literature.

Karaman MW, et al, Nat. Biotechnol, 2008. 26 127-132.

38 Ligands

3
3
8
 P

ro
te

in
s Table of 

Binding 
Data
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Human Kinome Results: 
Cluster by ligand binding data

Protein Clustering

Ligand Clustering

Kinase ID

K
in

a
se

ID

Ordered Heatmap showing 
kcenters clusterings

•All “type-2” inhibitors in 
ligand cluster 1
•All broad binders in 
ligand cluster 4
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Human Kinome Results: 
Binding Data Ordered by Clusters

Unordered 
Binding Matrix

Binding Matrix Ordered 
by Ligand Clusters

Binding Matrix Ordered by 
Ligand and Protein Clusters
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Robustness of Classifications

Leave 1-out analysis shows 
clustering robust for both 
ligands and proteins

• Variation of information (VOI) 
Mathematical method to 
measure distance between 2 
clusterings. 

• Clustering by sequence or 
structure do not capture the 
patterns in experimental data.

• VOI of random cluster is 3.7

• VOI for clustering by 
sequences is  2.57

• VOI for clustering by structure 
motifs is 2.73

18

Cluster Degradation with respect to 
protein and ligand removal

# of Proteins
Removed

# of Ligands 
Removed
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Docking to kinases and extracting 
specificity determining features (SDFs)

19

• Docked 38 ligands to 113 kinase
structures using autodock 4 with 
flexible ligands

• Validated docking poses with 
crystallographic ones for those 
with co-crystals (figure)

• Features (h-bonds, polar, 
hydrophobic) extracted from 
docked poses using 
experimentally determined 
clusterings.

• Statistical approach to feature 
extraction– insenstive to “noise” 
from mis-docked features RMSD of Lowest-Energy Ligand Docking Pose 

Relative to Crystal Structure Ligand (Å)
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% in cumulative range
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SDFs: Broad Binding  Features
(common among all clusters)

Ligand-space hbond regions with 
flavopiridol

Ligand-space hbond regions Protein-space hbond and 
hydrophobic regions     

Protein-space hbond and hydrophobic 
regions with flavopiridol
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Docked Conformations Agree With 
Extracted SDFS

ITK, quercetin MEK6, BMS-509744        ITK, U0126        KIT, PD98059

ZAP70, CP-724714     JNK1, sunitinib LYN, GW-2580    CLK1, flavopiridol
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SDFs Unique to a Cluster
unique set of 

hbond acceptors

unique set of 
hbond acceptors

Ligand space; cluster L3, 
hbond acceptors

Ligand space; cluster L4, 
hbond acceptors

Protein space; cluster P2, hbond donors Protein space; cluster P7, hbond donors
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Summary of Kinase Study

23

• Using ligand binding data is a robust way to 
cluster proteins and ligands and useful 
patterns of binding emerge from these 
clusterings.

• We can turn combine these clusters with 
docked poses to extract SDFs

• These SDFs match specificity features in 
ligands outside our initial data set.

• Next step: experimental validation
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• Kinases:  Several Commercially Available Purchased

• DHFR
• High yield of active DHFRs expressed in E. coli

• E. coli DHFR : 42 mg from 250 ml culture 
• P.carinii DHFR: 33 mg from 250 ml culture

• Active DHFRs displayed on T7 phages 

• HCV protease
• Constructed  HCV NS3 protease and NS4A cofactor peptide as a 

single-chain 

• High yield of the active protein: expressed in E. coli with Sumo tag

• HIV Protease
• Expressed in E. coli with Sumo tag gave high yield but not active

• Need to refold the protein from inclusion body

Experimental Progress: Proteins
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High yield of pure target proteins

DHFR Sumo-HCV

25

M     CL   FT    W    E     CL   FT    E M     CL   FT    W1    W2    W3   E

M: MARK12, CL: cell lysate, FT: flow through, W: wash, and E: elution fractions
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DHFRdd

The expressed target proteins 
are active

DHFR HCV
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We implemented an Ultrasensitive DHFR 
Activity Assay

Improved sensitivity: 
monitor  THF formation .
Activity detected
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Typical activity assay monitors DHFR ability to catalyze the 
reversible NADPH-dependent reduction of DHF to THF  

Standard assay: DHF depletion 
by absorbance at 340 nm.  
No perceivable change



UNCLASSIFIED

UNCLASSIFIED

Experimental Progress: Ligands

• Kinases: 

• purchased several commercially available ligands

• Mass Spec-based activity assay identified 

• DHFR

• purchased several commercially available ligands

• Mass Spec-base binding Screening method 
implemented

• Viral Proteases

• Sensitive Fluorogenic substrate-based activity 
assay implemented in micro-titer plates
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Direct observation of 
free and bound substrate

Peak intensities 
correlate to

bound:free ratio

Kd = 10-9 Molar

E. Coli DHFR

LIGANDS
P

R
O

T
E

IN
S

TABLE 
OF 

BINDING 
DATA

Mass Spec of Non-Covalent 
Complexes for Measuring Kd
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Program Lifecycle

Year1                    Year2                Year3

Change in work plan;
Began Task 7 at start FY02 
instead of Q3
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Conclusions 

• This study supports our hypothesis that studying protein/ligand 
binding can provide more insight into SDFs than structure or 
sequence alone 

• Classifications based on structure/sequence lose information

• Dual treatment of ligands &proteins enables features of both that 
contribute to specificity to be extracted.

• This study provides multiple new hypotheses that we can test 
experimentally:

• Hypotheses for features that determine broad and narrow binding 
within a protein family  

• We can add new features such as protein dynamics/water 
interactions and test them

• We can test for features that may cause drug resistance

• We can also test the ability of SDF models for features between 
different protein families to categorize unknown enzymes
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Project Deliverables

• Publications: 2 journal articles in preparation

• Presentations:  

“Conserved Motifs to Examine the Effects of Sequence Variation in 

Pharmaceutical Chemical and Biological Defense Science and 
Technology Conference, Nov. 16-20, Dallas, TX. 9292, 
Livermore, CA  94551

"Classifying proteins by common, conserved motifs";  ACS Spring 

Meeting March 21-25

• People supported (partials included):
• 3 postdocs 

• 2 interns (undergraduate)

• 2 technicians

• 3 technical staff
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Future Directions

• Immediate next steps:
• SDF analysis of new test systems: DHFR, HCV/HIV

• Experimental validation of kinases, DHFR, HCV/HIV

• Improving our SDFs: incorporating protein dynamics, waters, ligand 
fragments rather than drugs; 

• Further directions in basic research:
• Correlating (SDFs) with functional pathways

• Evolutionary Predictions

• Enzyme Function predictions- use SDFs to categorize families and 
identify functions for new/unknown enzymes.

• Potential Applications
• Countermeasure (drug) design - target selection/resistance analysis

• Designer enzymes for protection

• Molecular recognition materials for detection/protection
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Questions

“We are all agreed that your theory is crazy.  My 
own feeling is that it is not crazy enough.”

Niels Bohr
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Backup Slides
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Genomic or Structural Classification 
Reveals Four Groups of Flaviviruses

• Structural models for all 
sequences are aligned using 
substrate contacts

• Distance cutoffs to key residues 
define discontiguous sequence 
motifs

• These motifs are subjected to 
multiple sequence alignment

Clustered by Flavivirus Genome Clustered by MSA of motifs

MSA of motifs close to Active Site

Bad News: Dengue and WNV are never in the same group!
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• GOAL: Find specificity-determining features

• Identify Promising Target Families
• Lots of protein variants known, lots of ligand data available

• Applications potential: Primarily infection & immunity (drug targets)

• Assemble Table of Binding Data (TBD)
• Gather as much as possible from literature

• Express proteins and buy ligands, test binding & fill in missing data

• Also try to simulate/predict TBD

• Use statistical methods and docking to extract features that 
correlate with specificity.

• Predict new binding interactions using these features

• Validate predictions on test systems

Technical Approach Steps
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Ligand/Protein Specificity Design using 
CCM

Table of 
binding data

Identify data 
gaps Express 

proteins & 
screen ligands

fragments)

Extract specificity 
features 

(pharmacophores, 
fragments)

Predict tailored 
ligands & 
proteins Validated 

mechanistic models 
for features that 

determine binding 
specificity

Cluster ligands and 
proteins by 

binding specificity

Simulated 
binding data
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• T7 select system (Novagen)

• Protein (not peptide) display system based on 
bacteriophage T7

• Can control expression to display one molecule of 
protein per phage

• Expression level is stochastic, so get 0.1 to 1 molecule 
of protein per phage on average using low level 
promoter

Phage Display Particulars
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Tyrosine-protein kinase (ZAP-70)
PDB: 1U59

Protein tyrosine kinase 2 (PYK2)
PDB: 3ET7

KD Greis, et al., J Am Soc Mass Spectrom 2006, 17, 815–22

M Bantscheff, et al., Nature Biotech, 2007, 25, 1035-44

Cell division protein kinase 2 (CDK2) 
PDB: 3LFN

Kinase activity

Kinase activity
in presence of ligand

Mass Spec for Kinase Assays
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Clustering by Structure vs 
Binding Data

41

Clustering by 
structure does not 
capture experimental 
binding patterns
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Coordination & Collaboration

• Please list internal or external collaborative 
efforts


