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Outline

 Zeeman splitting in simple K-shell ions

 theoretical basis

 model implementation & comparisons

 scaling of various broadening mechanisms at Z conditions

 spectral regions with diagnostic potential

 Magnetic field effects in L-shell ions

 strength transfer to forbidden line… probably not useful on Z
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weak-field Zeeman splitting 
in hydrogenlike ions 

(from Wikipedia)

Recall that atoms create their own internal magnetic fields
- electrons moving in the electric field of the nucleus generate B ~ v x E; 

this leads to spin-orbit splitting of nlj orbitals into fine structure terms 2S+1LJ

Eso(2p) ~ 1 eV for neon and ~ 80eV for krypton

Zeeman splitting: theoretical basis

“Weak” external magnetic fields: B << Eso (= 5.8e-5 eV/T)
- destroy degeneracy of magnetic sublevels, which are shifted in energy by BgJm 

Lande factors gJ are dependent on the fine structure terms and line intensities are 
proportional to squares of 3-j coefficients

“Strong” external magnetic fields: B >> Eso (Paschen-Back)
- External field overwhelms internal splitting, giving rise to a simple triplet of lines 

with equal intensities at shifts of Bm; m = {-1, 0, +1}

Eso
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Weak-field splitting and intensity distributions are determined for pure LS coupling 

At intermediate field strengths, comparisons with ab initio Weizmann Institute 
calculations are used to correct perturbative energy shifts 

High-field limit is enforced through linear interpolation on  = ESO/(ESO+B)

Model approach: add splitting to SCRAM

Comparisons performed for Ar & Cu He- and H-like ions at various field strengths. 
Good match of polarization, line-of sight effects ( is m=0,  is m = +/-1), and total splitting.

High-energy wings will be most reliable; internal intensity modulations may be unreliable.

Eso

Eso
Eso



Weizmann method:
take advantage of differential splitting

Since Ly2 is broadens more than Ly1 but has identical Stark, temperature, motional, and 
opacity broadening, the difference between the two widths isolates the effect of B field.

Stambulchik, Tsigutken, and Maron, 
Phys. Rev. Lett. 98, 225001 (2007).
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Relative magnitude of magnetic field splitting vs. other broadening mechanisms:

Al Ly Cu Ly Cu Ly
Eph (ESO):                                               1730 (1.3)     8700 (33)     10300 (10)
Zeeman:                       Ez ~ 2B    ~   0.04 – 3.5      0.04 – 3.5     0.04 – 3.5 B = 0.3-30kT 
instrumental:  Einst ~ Eph/resolution ~          0.9                4.4                5.1 res = 2000
thermal:        Eth ~ Eph(Ti/Zn)

1/2/2e4 ~        1 – 1.3           4 – 7          4.5 – 8 Ti = 1000-3000 
motional:                   Em ~ Eph(v/c)  ~     0.5 – 5              3 – 30        3.5 – 35 v = 10-100cm/s 
Stark:    EStk ~ 7(40)/Zn(ne/1022)0.58 ~    0.04 – 2         0.02 – 1       0.06 – 5 ne = 1020-1023

Even if Zeeman splitting is not dominant, magnetic field information can be obtained 
by comparing lines that respond differently to B – Weizmann method: Stambulchik, 
Tsigutken, and Maron, Phys. Rev. Lett. 98, 225001 (2007).

Ly seems to be the most promising candidate for K-shell B diagnostics:

- Stark broadening is significantly less for  than for  lines
- Satellites of Ly tend to be better separated than those of He
- Simple spin-orbit splitting enables use of Weizmann method for weak fields,

eliminating need for independent characterization of , T, opacity, Stark line shape…

Zeeman splitting for magnetic field diagnostics
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1 mg/cm aluminum: E
Ly = 1729 eV, E

so
 = 1.3 eV, T = 1 

keV

T ~ 1 keV

ni ~ 1021cm-3

B ~ 5e3 T

A generic 1 mg/cm pinch illustrates competitive
broadening mechanisms in accessible regimes

Plots show Zeeman, Stark, thermal, and opacity broadening of Al and Cu Ly at a fixed 
linear density imploded to form a uniform plasma with varied column radius.

Temperatures vary as diagnosed for Cu wire array plasma ~3 ns before peak emission.
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1 mg/cm copper: E
Ly = 8700 eV, E

so
 = 33 eV, T = 3 keV

T ~ 3 keV

ni ~ 1022cm-3

B ~ 2e4 T
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low Z: Mg Ly B-field diagnostics
(2% in Al wire array)

Plasma has T = 1 keV, ne = 1.3x1022/cc, r = 800 m, ~ 2% Mg (res = 2000)

Mg Ly is barely sensitive to nominal field of B~5 kT and Weizmann method cannot be used --
so Stark, thermal, and opacity broadening all need to be well characterized by diagnostics

in a different spectral range (1.8-2.1 keV for Mg Ly, Al He, and edge would work).

ESO ~ 1.0 eV
Ez ~  0.6 -1.2 eV
Einst ~ 0.7 eV
Eth ~  0.7 eV
EStk ~ 0.7 eV
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mid Z: Cr Ly B-field diagnostics
(impurity level in wire array)

Plasma has T = 2 keV, ne = 1.3x1022/cc, r = 300 m, ~0.1% Cr (res = 3000)

Although other broadening mechanisms compete, Cr Ly is sensitive to nominal field of 
B~10 kT. Well-separated satellites provide thermometer and Weizmann method could be used. 

No other spectral range must be measured and required temperatures are moderate.

ESO ~ 15 eV
Ez ~  1.2 -2.4 eV
Einst ~ 1.8 eV
Eth ~  2.5 eV
EStk ~ 1.3 eV
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mid Z: Cr Li L B-field diagnostics
(impurity level in wire array)

Plasma has T = 2 keV, ne = 1020/cc, r < 1 cm, ~ 0.1% Cr (res = 2000)

Li-like Cr L (a direct analogue to hydrogen-like) is sensitive to B < 10 kT. No satellites; 
Weizmann method could be used. No other spectral range must be measured and required 
temperatures are low to moderate. Might be difficult to measure in Al with other impurities.

ESO ~ 3.0 eV
Ez ~  1.2 eV
Einst ~ 0.5 eV
Eth ~  0.5 eV
EStk ~ <0.1 eV
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mid Z: Ar Ly B-field diagnostics
(dopant in gas puff or MagLiF)

Plasma has T = 1-2 keV, ne = 1-6x1021/cc, r = 800-300 m, < 0.1% Ar

Ar Ly is sensitive to nominal B fields at various stages of implosion. Weizmann method could 
be used. No other spectral range must be measured and required temperatures are moderate.

lower density

higher density

ESO ~ 8 eV
Ez ~  1.2-3.6 eV
Einst ~ 1.1 eV
Eth ~  1.5 eV
EStk ~ <0.3 eV
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high Z: Cu Ly B-field diagnostics
(impurity level in wire array)

Plasma has T = 3 keV, ne = 3x1023/cc, r = 150 m, 0.1% Cu

Although thermal broadening dominates, Cu Ly is sensitive to field of B>30 kT. Satellites 
provide thermometer and Weizmann method could be used on blue line wings.

No other spectral range must be measured (but high Te is required).

ESO ~ 33 eV
Ez ~  5.8 eV
Einst ~ 2.9 eV
Eth ~  4.4 eV
EStk ~ 1.8 eV
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Zeeman splitting can give reasonable global broadening 
for time-integrated data (off-center lineout from z2120)  

This is NOT a careful analysis: opacity, density, temporal broadening, 
and bulk motion probably all contribute differently than modeled 

here… but B ~ 10 kT is as reasonable as Tion ~ 200 keV.



L-shell diagnostics discovered on EBIT*
are sensitive to lower fields

Polarized calculations with 

Ebeam = 350 eV, ne = 7x1010/cc
EBIT measurements

B = 1.1 T

B = 3 T

* Beiersdorfer, Scofield, and Osterheld, 
Phys. Rev. Lett 90, 235003 (2003)

B-field causes mixing of 
these levels, transferring 

strength from 3F to B

Intensity of B increases as ~ B2 / (B2 + C ne );

B is most sensitive to B fields ~ (10-11 ne )1/2 Tesla

48 49 50

48 49 50
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Densities on Z are probably too 
large for L-shell B diagnostics to work

Ne-like ions only exist at relatively low temperatures → large radii → small B fields. 
Low photon energies from the L-shell ions where B is distinguishable from 3F (Z < 26 → hv < 1 keV) 

may be difficult to measure, and satellites may complicate marginal cases. 

Note: calculations use weak-field coupling to estimate strength transfer

Argon at ne = 1018/cc, T = 50 eV (Bnom~ 1kT, Bsens~ 3kT)

B

3F
3G

Iron at ne = 1020/cc, T = 250 eV (Bnom~ 2kT, Bsens~ 30kT)

B

3F3G

“M2”
“M2”
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Summary

 Zeeman splitting in simple ions
 We have the modeling tools we need:

• Simple estimates of various broadening mechanisms

• In-house computational capability for rough lineshapes including all motional & opacity effects 
as well as Zeeman, thermal, instrumental, & density broadening

• Collaborations developing for detailed line shape calculations

 Care must be taken to maximize relative magnitude of expected B-field broadening
(axial LOS or radial resolution; low density, low opacity by using dopant/impurity)

 Weizmann method applicable for mid-Z elements elegantly isolate B-field effects even 
when they are far from the dominant broadening mechanism

 Let’s propose candidate plasmas and instruments
• Al 7075/5052 (~0.1% Cr/Ti) wire array (dedicated side-on instrument)?

• ~0.2% Ar dopant in gas fill (high-res GRAPHIC configuration?) 

• how difficult is high-res for < 1 keV photons (minimize instrumental and thermal broadening)
and can we preserve low opacity while retaining signal (impurity in Be)?

 Magnetic field effects in L-shell ions
 unlikely to be useful as a diagnostic (but it’s worth checking for emission 1-2 eV below 

3F line that can’t be explained by satellites on L-shell spectra we’d measure anyway) 
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Temporally and spatially resolved spectra 
give information beyond temperature and density

SCRAM L-shell Cu

z1975 L-shell data, t ~ - 4 ns 

photons from shell edge 
are unshifted (v|| = 0)

plasma conditions:
nion = ion density
Te = electron temperature

photons from shell 
center are maximally 
shifted (v|| = v)

Radially resolved spectra from an imploding plasma yield 
information about implosion velocities and gradients

60 cm/s, Te ~ 3 keV, ne ~1021cm-3

decreasing over ~ 5mm

Imploding Cu plasma shell



mid Z: Cr Ly B-field diagnostics
(impurity level in wire array)

Plasma has T = 2 keV, ne = 9x1022/cc, r = 300 m, < 0.5% Cr

Although other broadening mechanisms compete, Cr Ly is sensitive to nominal field of 
B~10 kT. Well-separated satellites provide thermometer and Weizmann method could be used. 

No other spectral range must be measured and required temperatures are moderate.
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high Z: Cu Ly B-field diagnostics
(impurity level in wire array)

Plasma has T = 3 keV, ne = 3x1023/cc, r = 150 m, 0.1% Cu

Although thermal broadening dominates, Cu Ly is sensitive to nominal field of B~20 kT. 
Satellites provide thermometer and Weizmann method could be used on blue line wings.

No other spectral range must be measured (but high Te is required).


