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Outline

= Zeeman splitting in simple K-shell ions
= theoretical basis
= model implementation & comparisons
= scaling of various broadening mechanisms at Z conditions
= spectral regions with diagnostic potential

= Magnetic field effects in L-shell ions
= strength transfer to forbidden line... probably not useful on Z
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Zeeman splitting: theoretical basis

Recall that atoms create their own internal magnetic fields
- electrons moving in the electric field of the nucleus generate B ~ v x E;
this leads to spin-orbit splitting of nij orbitals into fine structure terms 25*1L
Eso(2p) ~ 1 eV for neon and ~ 80eV for krypton

“Weak” external magnetic fields: uB << Es° (u = 5.8e-5 eV/T)

- destroy degeneracy of magnetic sublevels, which are shifted in energy by uBg;m
Lande factors g, are dependent on the fine structure terms and line intensities are
proportional to squares of 3-j coefficients
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“Strong” external magnetic fields: uB >> ES° (Paschen-Back)

- External field overwhelms internal splitting, giving rise to a simple triplet of lines
with equal intensities at shifts of uBAm; Am = {-1, 0, +1}
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Model approach: add splitting to SCRAM

Weak-field splitting and intensity distributions are determined for pure LS coupling

At intermediate field strengths, comparisons with ab initio Weizmann Institute
calculations are used to correct perturbative energy shifts

High-field limit is enforced through linear interpolation on y = ESC/(ESC+uB)

Cu Lya; B =2x10*T (E® < 0.1 E%°) Cu Lya; B = 2x10°T (E® < 1/3 E%9) Cu Lya; B = 2x10° T (E® > 3 E%9)
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Good match of polarization, line-of sight effects (= is Am=0, o is Am = +/-1), and total splitting.
High-energy wings will be most reliable; internal intensity modulations may be unreliable.
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Comparisons performed for Ar & Cu He- and H-like ions at various field strengths. \
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Weizmann method:
take advantage of differential splitting

Since Lya2 is broadens more than Lya1 but has identical Stark, temperature, motional, and
opacity broadening, the difference between the two widths isolates the effect of B field.
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FIG. | (color online). Zeeman splitting of the %S, -*P
(solid curves) and the zSi/z-zPI/2 (dashed curves) components
of a 25-? P transition, convolved with a small (a) and a dominant
(b) Doppler effect (that is assumed to be the same for the two
components). Profiles of the ¢ and 7 polarizations are given
separately. For the comparison, the intensity of the %S, /2‘2P| /2
component is scaled up by 2 times, to match the intensity of the
28, ,-*P5,, component.
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FIG. 5 (color onling). The Al 4p-4s (5696 & 5722 ;\) dou-
blet. The line shapes of the two components are peak-normalized
and shifted to a common spectral center. The smooth lines
represent best-fit calculations for B=09T, N,=2X

10 cm ™2, and 7, = 10 eV.

Stambulchik, Tsigutken, and Maron,
Phys. Rev. Lett. 98, 225001 (2007).
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Zeeman splitting for magnetic field diagnostics

Relative magnitude of magnetic field splitting vs. other broadening mechanisms:

Al Lya Cu Lya Cu LyB
EPh (ESO): 1730 (1.3) | 8700 (33) | 10300 (10)
Zeeman: AEZ~2uB ~ [0.04-35 | 0.04-3.5 | 0.04-3.5|B=0.3-30kT
instrumental: AE"st ~ EPh/resolution ~ 0.9 4.4 5.1 res = 2000
thermal: AE™ ~ EPV(T./Z )12/2e4 ~ 1-1.3 4 -7 45-8 |T,=1000-3000
motional: SE™ ~ EP(v/ic) ~| 0.5-5 3-30 3.5-35 |v=10-100cm/us
Stark: AES* ~7(40)/Z,(n/1022)0%8 ~ | 0.04 — 2 0.02 -1 0.06 -5 |ne =1020-10%3

Even if Zeeman splitting is not dominant, magnetic field information can be obtained
by comparing lines that respond differently to B — Weizmann method: Stambulchik,
Tsigutken, and Maron, Phys. Rev. Lett. 98, 225001 (2007).

Lyo. seems to be the most promising candidate for K-shell B diagnostics:

- Stark broadening is significantly less for o than for 8 lines

- Satellites of Lya tend to be better separated than those of Hea

- Simple spin-orbit splitting enables use of Weizmann method for weak fields,
eliminating need for independent characterization of p, T, opacity, Stark line shape...
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Lyl line fwhm (eV)

A generic 1 mg/cm pinch illustrates competitive
broadening mechanisms In accessible regimes

Plots show Zeeman, Stark, thermal, and opacity broadening of Al and Cu Lya at a fixed
linear density imploded to form a uniform plasma with varied column radius.
Temperatures vary as diagnosed for Cu wire array plasma ~3 ns before peak emission.

1 mg/cm aluminum: E™Y® = 1729 eV, E*°=1.3eV, T =1
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low Z: Mg Lya B-field diagnostics
(2% in Al wire array)
Plasmahas T = 1 keV, ne = 1.3x10%%/cc, r = 800 um, ~ 2% Mg (res = 2000)
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Mg Lya is barely sensitive to nominal field of B~5 kT and Weizmann method cannot be used --
so Stark, thermal, and opacity broadening all need to be well characterized by diagnostics
in a different spectral range (1.8-2.1 keV for Mg Lyy, Al Hej3, and edge would work).
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mid Z: Cr Lyo B-field diagnostics
(impurity level in wire array)
Plasmahas T = 2 keV, ne = 1.3x10%%/cc, r = 300 um, ~0.1% Cr (res = 3000)
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Although other broadening mechanisms compete, Cr Lya is sensitive to nominal field of
B~10 kT. Well-separated satellites provide thermometer and Weizmann method could be used.
No other spectral range must be measured and required temperatures are moderate.
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mid Z: Cr Li Lo B-field diagnostics
(impurity level in wire array)
Plasmahas T = 2 keV, ne = 10%/cc, r<1 cm, ~ 0.1% Cr (res = 2000)
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Li-like Cr La (a direct analogue to hydrogen-like) is sensitive to B < 10 kT. No satellites;
Weizmann method could be used. No other spectral range must be measured and required
temperatures are low to moderate. Might be difficult to measure in Al with other impurities.
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mid Z: Ar Lyo B-field diagnostics
(dopant in gas puff or MagL.iF)
Plasmahas T = 1-2 keV, ne = 1-6x10%'/cc, r = 800-300 um, < 0.1% Ar
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— B=1e4T Ar
Lya
3,
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Ar Lya is sensitive to nominal B fields at various stages of implosion. Weizmann method could
be used. No other spectral range must be measured and required temperatures are moderate.
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high Z: Cu Lyo B-field diagnostics
(impurity level in wire array)
Plasma has T = 3 keV, ne = 3x10%3/cc, r = 150 um, 0.1% Cu

P,
B=1e4T

— B=5e4T

Cu
Lyay
3
ESC ~33eV P
AEZ ~ 58¢eV
AEinst~ 2 9 gV
AEN ~ 4.4 eV

AESk~ 1.8 eV

8550 8570 8590 8610 8630 8650 8670 8690 8710

photon energy (eV)
Although thermal broadening dominates, Cu Lya is sensitive to field of B>30 kT. Satellites
provide thermometer and Weizmann method could be used on blue line wings.
No other spectral range must be measured (but high Te is required).
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_"deféman splitting can give reasonable global broadening
for time-integrated data (off-center lineout from z2120)
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This is NOT a careful analysis: opacity, density, temporal broadening,
and bulk motion probably all contribute differently than modeled
here... but B ~ 10 kT is as reasonable as T, ,, ~ 200 keV.
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L-shell diagnostics discovered on EBIT*
are sensitive to lower fields

B-field causes mixing of
these levels, transferring
strength from 3F to @
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FIG, 1. Grotrian diagram showing the lowest four excited
levels in AT, Caleulated radiative transition rates (in units
of 571y are indicated in square brackets. The rate for the
magnetic field induced line labeled B assumes o 3-T field,

* Beiersdorfer, Scofield, and Osterheld,

Phys. Rev. Lett 90, 235003 (2003)
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Densities on Z are probably too

large for L-shell B diagnostics to work

Argon at n, = 10'8/cc, T = 50 eV (Bnom~ 1KT, Bsens~ 3kT)

1 — B =0 (total)

1 — B =0 (Ne-like)
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|

Iron at n, = 10%%cc, T = 250 eV (Bnom~ 2kT, Bsens~ 30kT)
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\
% |

“M2”

<
[ i
————

249 250 251

252 253 254 255 715 720 725 730 735
photon energy (eV) photon energy (eV)

740

Ne-like ions only exist at relatively low temperatures — large radii — small B fields.
Low photon energies from the L-shell ions where # is distinguishable from 3F (Z <26 — hv < 1 keV)

may be difficult to measure, and satellites may complicate marginal cases.

Note: calculations use weak-field coupling to estimate strength transfer
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Summary

= Zeeman splitting in simple ions
= We have the modeling tools we need:
« Simple estimates of various broadening mechanisms

* In-house computational capability for rough lineshapes including all motional & opacity effects
as well as Zeeman, thermal, instrumental, & density broadening

» Collaborations developing for detailed line shape calculations
= Care must be taken to maximize relative magnitude of expected B-field broadening
(axial LOS or radial resolution; low density, low opacity by using dopant/impurity)
=  Weizmann method applicable for mid-Z elements elegantly isolate B-field effects even
when they are far from the dominant broadening mechanism

= Let's propose candidate plasmas and instruments
« AlI7075/5052 (~0.1% Cr/Ti) wire array (dedicated side-on instrument)?
* ~0.2% Ar dopant in gas fill (high-res GRAPHIC configuration?)
» how difficult is high-res for < 1 keV photons (minimize instrumental and thermal broadening)
and can we preserve low opacity while retaining signal (impurity in Be)?

= Magnetic field effects in L-shell ions

= unlikely to be useful as a diagnostic (but it's worth checking for emission 1-2 eV below
3F line that can’t be explained by satellites on L-shell spectra we’'d measure anyway)
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Temporally and spatially resolved spectra
give information beyond temperature and density

Imploding Cu plasma shell 21975 L-shell data, t ~ -4 ns

photons from shell edge
are unshifted (v, = 0)

photons from shell
center are maximally
shifted (v, = v)

Me-like Mi Me-like Cu
2p-3s 2p-3

2p-3% 2p-ds

, plasma conditions:

radial dirmesnsion —

photan energy — SCRAM L'She” CU

60 cm/us, T, ~ 3 keV, n, ~10%'cm™3
decreasing over ~ 5mm

|
|
\ nion = ion density :
1 |
1 Te = electron temperature !

Radially resolved spectra from an imploding plasma yield
information about implosion velocities and gradients
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mid Z: Cr Lyo B-field diagnostics
(impurity level in wire array)
Plasmahas T = 2 keV, ne = 9x10%%/cc, r = 300 um, < 0.5% Cr

B=5e3T

—B=3e4T

5860 5870 5880

5890 5900 5910 5920 5930 5940 5950 5960
photon energy (eV)

Although other broadening mechanisms compete, Cr Lya is sensitive to nominal field of
B~10 kT. Well-separated satellites provide thermometer and Weizmann method could be used.

No other spectral range must be measured and required temperatures are moderate.
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high Z: Cu Lyo B-field diagnostics
(impurity level in wire array)
Plasma has T = 3 keV, ne = 3x10%3/cc, r = 150 um, 0.1% Cu

8550 85‘70 85‘90 Sé 10 8630 8650 8670 86‘90 87‘1 0 87‘30 8750
photon energy (eV)
Although thermal broadening dominates, Cu Lya is sensitive to nominal field of B~20 kT.
Satellites provide thermometer and Weizmann method could be used on blue line wings.
No other spectral range must be measured (but high Te is required).
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