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Quantum-dot absorption/gain spectra

Experiment Calculation
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Relevance to laser operation
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Underlyirig physics
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Free-Carrier effects Many-body effects

(Density of states) (Quantum statistics + Coulomb interaction)
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Many-body effects

Hartree-Fock Correlations
Bandgap renormalization Relaxation and dephasing
Exciton/Coulomb Enhancement Screiening
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Hamiltonian
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Quantum dot / quantum well comparison
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Quantum dot / quantum well comparison
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Quantum dots and quantum optics




Single electron in quantum dot interacting with microcavity field + phonon bath
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Quantum-dot cavity-quantum-electrodynamics (QD-CQED)
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Normalized intensity

Photon number

spectral density
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2nd_order correlation function
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Initial thermal state

Phonon bath temperature = 3K Phonon bath temperature = 300K
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Experiments




Strong light-matter interaction in experiments
Optically pump

Early demonstrations Plasmon mediated

QW ol 38.0
Pump = e )
Photo- 2 40.0
P N Jcurrent 3 w0 05"
- | > "9 0.5
- + 8 [ - ’ 41.0°
o
Laser frequency
Reithmaier et al., Nature 432, 197 (2004) and others o ;\,e.g,égm el
Gomez et al., Nano Lett. 10, 274 (2010)
Electrically pump
QW, 300K Ouantum dots
a Poll_gg‘li;on b A ;:(a} 1=0.8mA 1.0 _T-ga;m (a) - 'é‘::e.:m
C af .08
2t pr 30K
jlc_e %0.6 :
f 50.4 ."
w - ’

- : 4 : 0.2 f
el 131 132 133 134 135 0.0

1.3825 1.3830 1.3835 1.3825 1.3830 1.3835
Enargy (V) Energy (eV) Energy (eV)

Tsintzos et al., Nature Lett. 453 373 (2008); Kistner et al., APL 96, 221102 (2010)
APL 94, 071109 (2009)




Mid-IR emitter using inter-conduction-state transition in InAs quantum dots
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Normalized emission

Rabi flopping in an electrically-pumped device
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Schrodinger Equation
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Intensity spectrum
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Normalized emission
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Normalized emission
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Input parameters
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Quantum dot contributions to electroluminescence
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