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Quantum-dot absorption/gain spectra

Ndot=2x1011cm-2, T=300K
N = 0.1x, 0.5x, 1x,2x,3x1012cm-2

Experiment
(Inhomogeneously broadened)

(measured at Cardiff University)
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Carrier density (1011cm-2)
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Expt: Reversed filamentation

Smowton, et al, APL 81, 3251, 2002
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Underlying physics

Active region

Quantum 
well

Wetting layer

Quantum dots

Free-Carrier effects
(Quantum statistics + Coulomb interaction)

Many-body effects
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Many-body effects

Correlations

System is its own reservoir

Laser field

System
Reservoir

+
_ _

Diagonal
Nondiagonal

εσ’k'-q

εσ’k'εσk

εσα

Carrier-carrier scattering Polarons

Non perturbative carrier-phonon 
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of phonon bottleneck problem
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Hamiltonian

Single-particle

Light-matter

Carrier – carrier

Carrier - phonon



Quantum dot / quantum well comparison
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Quantum dot / quantum well comparison

Intrinsic
M

at
er

ia
l p

ea
k 

ga
in

(1
03 c

m
-1

)

1011 1012 1013

N (1012cm-2)

0

1

2

3

4

QW

Ndot =1011cm-2

300K
1.3µm

QD

Unambiguous scaling of the axii
by eliminating dephasing rate as
free parameter

0

20

40

60

80

102 103 104

QW

0.5

1

2

3

N
do

t
(1

011
cm

-2
)

Max. material gain (cm-1)

J t
ra

ns
pa

re
nc

y
(A

/c
m

2 )

Curves show present status in relation 
to eventual performance and give 
guidance on where improvement can be 
effectively made



Quantum dots and quantum optics



Single electron in quantum dot interacting with microcavity field + phonon bath

Quantum-dot cavity-quantum-electrodynamics (QD-CQED)

QD
Photons

Phonons

Microcavity

, TLO

Same footing 
as light-matter



Initial thermal state
Phonon bath temperature = 3K Phonon bath temperature = 300K
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Initial thermal state
Phonon bath temperature = 3K Phonon bath temperature = 300K
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Experiments



Ph
ot

oc
ur

re
nt

Laser frequency

- +

Photo-
current

QW

p n

Pump

Strong light-matter interaction in experiments
Optically pump

Reithmaier et al., Nature 432, 197 (2004) and others

Electrically pump

Plasmon mediated
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Quantum dots
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Mid-IR emitter using inter-conduction-state transition in InAs quantum dots

Growth direction
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Wavenumber (102cm-1)
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Rabi flopping in an electrically-pumped device



Quantum-dot (QD) 
distribution
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Schrödinger Equation



Intensity spectrum



(a) 9µm device
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Rabi frequency

Dephasing

QD inhomogeneous broadening

Plasmon mode detuning
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Lorke, WWC, Nielsen, 
Seebeck, Gartner and 
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Quantum dot contributions to electroluminescence
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