CSRI Summer Proceedings 2010 1

GPU COMPUTING FOR TENSOR EIGENVALUES

GREY BALLARD*, TAMARA KOLDA', TODD PLANTENGA?#, YANIV GUR §, AND
FANGXIANG JIAOY

Abstract. The tensor eigenproblem has many important applications, and both mathematical
and application-specific communities have taken recent interest in the properties of tensor eigenpairs
as well as methods for computing them. In particular, Kolda and Mayo [2] present a generalization of
the matrix power method for symmetric tensors. We focus in this work on efficient implementation
of their algorithm, known as the shifted symmetric higher-order power method, and on how a GPU
can be used to accelerate the computation for an application with many small tensor eigenproblems.

1. Introduction. The tensor eigenproblem has many important applications,
and both mathematical and application-specific communities have taken recent inter-
est in the properties of tensor eigenpairs as well as methods for computing them. In
particular, Kolda and Mayo [2] present a generalization of the matrix power method
for symmetric tensors. We focus in this work on efficient implementation of their
algorithm, known as the shifted symmetric higher-order power method (SS-HOPM).

The main motivating application for this work involves detection of nerve fibers
in the brain from diffusion-weighted magnetic resonance imaging data. In this appli-
cation, data is gathered for millions of cubic millimeter sized voxels, and determining
the number and directions of nerve fiber bundles within each voxel requires solving a
small tensor eigenvalue problem. Because each voxel can be resolved independently,
the computations are amenable to parallelism, and we focused our implementation on
a GPU using the CUDA programming framework.

We review the definition of the tensor eigenproblem as well as the SS-HOPM
algorithm from [2] in Section 2. All of the tensors discussed here are symmetric, and
exploiting symmetry is the foremost sequential optimization we use to gain perfor-
mance. While symmetric matrices can be stored in half the space and symmetric
matrix computations often require only half the flops of their nonsymmetric coun-
terparts, exploiting symmetry in tensors can save storage and computation by much
larger factors. In Section 3 we discuss a symmetric tensor storage format and how
this compressed format is used in the main computational kernels of SS-HOPM.

Instead of attempting to write an algorithm that offers high parallel performance
for computing eigenpairs of tensors of general order and dimension, we focus the GPU
implementation on small tensors, as in our motivating application. Because of the
inherent parallelism in the problem, we can run many independent threads concur-
rently on the hardware, and we facilitate efficiency of each thread with careful memory
management. We offer an overview of GPU computing in Section 4, describe the moti-
vating application in Section 5, and give the details and results of our implementation
in Section 6.

The main contributions of this work are the introduction of a symmetric storage
format and means of exploiting symmetry to avoid redundant computation and a par-
allel implementation of SS-HOPM. While the implementation is tailored to a specific
application, we believe it will be widely applicable to high performance computations

*UC Berkeley, ballard@cs.berkeley.edu

fSandia National Laboratories, tgkolda@sandia.gov
*Sandia National Laboratories, tplante@sandia.gov
§SCI Institute, University of Utah, yanivg@sci.utah.edu
9SCI Institute, University of Utah, fjiao@sci.utah.edu

SAND2010- 5555P

2 GPU Computing for Tensor Eigenvalues

with symmetric tensors.

2. Symmetric Tensors and Tensor Eigenpairs. We formally introduce the
notion of a symmetric tensor which is invariant under any permutation of its indices.

DEFINITION 2.1 (Symmetric tensor [1]). A tensor A € RI™" is symmetric if

Qi 1y my = Qigoiy, fOT Al A1, iy € {1,...,n} and m € 1,
where Il,,, is the set of permutations of the set {1,...,m}.

The main computational kernels in the shifted symmetric higher-order power
method will be instances of the following definition of symmetric tensor-vector mul-
tiply. Note that there is ambiguity in defining a tensor times the same vector is
some subset of modes, but due to symmetry the choice of indexing below yields the
same result as any other valid definition. Also note that every result of a symmetric
tensor-vector multiply is also a symmetric tensor.

DEFINITION 2.2 (Symmetric tensor-vector multiply [2]). Let A € RI™™ be sym-
metric and x € R™. Then for 1 < p <m, the (m — p)-times product of the tensor A
with the vector x is denoted by Ax™ P € RIP™ and defined by

m— _ . .
(AX™P) o, = g Qiy ooy Ty y - T, forall 1 <idy,... i, <n.

Ipf1seeesbm

We recall the definition of a tensor eigenpair used in [2]. There are other defini-
tions of eigenvalues and eigenvectors in the literature, but the relationships between
the definitions and the many interesting properties of tensor eigenvalues are beyond
the scope of this work.

DEFINITION 2.3 (Symmetric tensor eigenpair [2]). Assume that A is a symmetric
m-order n-dimensional real-valued tensor. Then \ € C is an eigenvalue of A if there
exists x € C" such that

Ax™ 1 =Xx and xTx=1. (2.1)

The vector x is the corresponding eigenvector, and (A, x) is called an eigenpair.

Finally, we present the shifted symmetric higher-order power method (SS-HOPM)
from [2]. This algorithm is a generalization of the matrix power method where the
operation Ax™~! generalizes the matrix-vector product and Ax™ generalizes the
Rayleigh quotient for a unit vector. Choosing a sufficiently large or small shift «
guarantees convergence of the method. The convergence properties of a given eigen-
pair are characterized in [2], but there are still many open problems regarding choice
of starting vector, choice of shift, and finding eigenpairs with certain properties.

3. Exploiting Symmetry.

3.1. Symmetric Tensor Storage. Let A € RI™" be a symmetric tensor.
In general, A has n™ entries, but since it is symmetric, many of the entry values
are repeated and need not be stored redundantly. We define an inder as a number
i €{1,...,n}, we define a tensor index as an array of m indices corresponding to one
entry of the tensor, and we define an index class as a set of tensor indices such that
the corresponding tensor entries all share a value due to symmetry. For example, for
m = 3 and n = 2, the possible indices are 1 and 2, and the tensor indices [1, 1, 2] and
[1,2,1] are in the same index class since aj12 = a121.

G. Ballard, T. Kolda, T. Plantenga, Y. Gur, and F. Jiao 3

Algorithm 1 Shifted Symmetric Higher-Order Power Method (SS-HOPM) [2]

Given a tensor A € RI™,
Require: a € R, x¢ € R™ with ||xo|| = 1. Let A\g = Ax{".
1: for k=0,1,... do

if > 0 then

X1 AxZ’fl + axy, > Assumed Convex
else

X1 < —(Ax] !+ axy) > Assumed Concave
end if

Xi+1 X1/ | Ki1 |
)\k+1 — ‘AXZ/L-i-l
end for

© P NP

We can find a unique representative of an index class by choosing the tensor index
whose indices are in nondecreasing order. We define this nondecreasing tensor index
as the index representation of the index class.

The index classes of A can also be characterized by the number of occurrences of
each index ¢ € {1,...,n} in the tensor indices of the index class. Thus, we can define
the monomial representation of an index class as an array of n integers where the i*?
entry in the array corresponds to the number of occurences of the index 7 in the index
class. Following the example given above, the index class that includes [1,1,2] and
[1,2,1] has monomial representation [2,1] since there are two 1’s and one 2 in every
tensor index in the class.

In order to avoid redundant storage, we store only the unique values of the tensor
(i.e., one value per index class). The following property gives the number of unique
values of a dense symmetric tensor.

PROPERTY 3.1. The number of unique values of a symmetric tensor A € RI™
is given by the binomial coefficient

m!

m+n-—1
m

) = oY),

Proof. Each index class corresponds to a unique value. Counting the number of
possible monomial representations of length m with n possible values is equivalent
to counting the number of ways to distribute m indistinguishable balls into n distin-
guishable buckets, where the balls correspond to the indices of the tensor index and
the buckets correspond to the possible index values. By a “stars and bars” argument’,
this number is

(m+n—1> n+m—-1)---(n+1)n n™

m—1
m - m! ! + O™,
|
Assuming A is dense, we can impose an ordering on the unique entries and avoid
storing any index information. We choose to use a lexicographic order of the index
classes, increasing with respect to the index representation and decreasing with respect
to the monomial representation. That is, the index class with index representation

ISee en.wikipedia.org/wiki/Stars_and bars_(probability), for example.

4 GPU Computing for Tensor Eigenvalues

TABLE 3.1
Set of index classes 934 4y lexicographic order.

index monomial
1 1 1 1|13 0 0 O
2 1 1 22 1 0 O
3 1 1 3|2 0 1 O
4 1 1 4|12 0 0 1
5 1 2 2|1 2 0 O
6 1 2 3|1 1 1 0
7 1 2 4|1 1 0 1
8 1 3 3|1 0 2 O
9 1 3 471 0 1 1
0|11 4 471 0 0 2
1(2 2 2|0 3 0 O
1212 2 3]0 2 1 O
312 2 470 2 0 1
412 3 3]0 1 2 O
512 3 4]0 1 1 1
6|12 4 470 1 0 2
713 3 30 0 3 O
1813 3 40 0 2 1
1913 4 470 0 1 2
2004 4 410 0 0 3
[i1,42,...,0m] is listed before [j1,Ja,...,Jm] if 41 < j1 or if i1 = j; and i3 < ja, and
so on. Equivalently, the index class with monomial representation [kq, ko, ..., ky] is

listed before [l1,ls,...,1,] if k1 > I3 or if k; = I3 and ko > Iz, and so on. This
corresponds to an ordering on monomials in a given polynomial ring (the origin of
the terminology). In this case, the index classes correspond to monomials which all
have total degree m. See Table 3.1 for an example of lexicographic ordering for both
representations in the case m = 3 and n = 4.

While the lexicographic ordering makes storing index information for every unique
value unnecessary, it will be important to compute index information during compu-
tations. Since the index representation requires m integers and the monomial repre-
sentation requires n integers and we expect n > m for most problems, we store the
index representation and compute monomial representation values implicitly. Note
that while the monomial representation will be sparse when n > m, even a compressed
format would require at least m integers.

3.2. Computational Kernels. The two most computationally intensive kernels
in Algorithm 1 are computing the scalar Ax™ and the vector Ax™~!, where A €
RI™"] is symmetric and x € R™. Both of these are instances of the symmetric tensor-
vector multiply given in Definition 2.2, with p = 0 and p = 1, respectively.

3.2.1. Tensor times same vector in all modes. Consider the case p = 0:

n

n
> iy iy, (3.1)

i1=1 im=1

Ax7n —

For a nonsymmetric tensor, this summation requires at least one multiplication for
each term (corresponding to each entry of A), yielding at least n™ flops. However, we
can exploit symmetry to reduce the computational complexity. Note that the tensor
index matches the indices of the x vector entries for each term in the summation.
Since the product of a set of numbers is also invariant under permutation, all of the

G. Ballard, T. Kolda, T. Plantenga, Y. Gur, and F. Jiao 5

terms in the summation corresponding to the same index class will have the same
value.

For example, for m = 3 and n = 2, the term in the summation corresponding to
the tensor index [1,1,2] is given by ajj2 - 21 - @1 - 22 = allgx%xg, and the term in the
summation corresponding to the tensor index [1,2,1] is given by a1 - 1 - 22 - ¥ =
a12173x5. Any tensor index with monomial representation [2,1] will yield this value.

We can avoid recomputing the redundant value by instead computing the number
of times each unique term appears in the summation, which is given by the following
property.

PROPERTY 3.2. The number of tensor indices of a symmetric tensor A € R
in the index class with monomial representation [k1,ka, ..., ky] is given by the multi-

nomaial coefficient
" _m
kikoyoookn) kilka! oo Kyl

Proof. Consider the monomial representation [k1, ko, ..., k,]. Counting the num-
ber of tensor indices in this class is equivalent to counting the number of ways one
can distribute m distinet balls into n distinct bins such that the " bin has k; balls.
Here the balls correspond to the (ordered) indices of the tensor index and the bins
correspond to the possible index values. One way to solve this problem is to count the
number of ways of filling the first bin (given by the binomial coefficient (;:I)), followed

mfkrl

by the number of ways of filling the second bin (given by (ko

the product rule and after much cancellation, we have

m m—k1 m—(k1+k2+-~~+kn,1) o m!
k1 ko kyn Tkl ko oo k!

)), and so on. Using

0
We can thus rewrite Equation 3.1 as
m k k
Ax™ = Qjyonq,, TyE e X 3.2
Z (kl,kQ,-~-,kn> 11" tm 1 n ()
Igglmml

where 9™ is the set of index classes for a symmetric tensor in RI™" | and (K1, ... k)
and [é1,...,%y,] are the monomial and index representations of the index class I,

respectively. Equation 3.2 yields Algorithm 2.

3.2.2. Tensor times same vector in all modes but one. Now consider
computing the vector Ax™ !, the case p = 1 in Definition 2.2:

n

(Axm_l)il = Z o Z Qg iy Lig "7 Ly (33)
i2=1

=1

Note that the j** component of Ax™ ! does not depend on every tensor entry, only
those tensor entries whose index representation starts with index j. Because of sym-
metry, Equation 3.3 can be rewritten with i; appearing as any index in the tensor
index of the tensor value.

As in the case of computing AX™, we can exploit symmetry to avoid performing
the minimum of n™~! multiplications required to compute each entry of the output

6 GPU Computing for Tensor Eigenvalues

Algorithm 2 Compute y = Ax™ via Equation 3.2, where A € RI™™ is symmetric,
xeR" and y e R
Require: A stores the unique entries of A in lexicographic order

1: function SYMMETRICTENSORVECTORMULTIPLYO(A, X, y)

2: y=20

3: I=11,...,1] > use index representation (length m)
4: for j =1 to (m+£_1) do > iterate over unique entries
5: T=zn T, T, > compute monomial value
6: NumMmOcc0(I,occ) > compute number of occurrences
7 y=y+A; -2 occ > accumulate sum
8: UPDATEINDEX () > See Algorithm 4
9: end for

10: end function

Require: I has length m with entries in nondecreasing order
11: function NuMOccO(I, occ)

12: div=1 > divisor of (klmkﬂ)
13: curr = —1 > current index value
14: mult = —1 > multiplicity of current index value
15: for j =1 tom do

16: if I; # curr then

17: mult =1

18: curr = I

19: else > repeated index
20: mult = mult + 1

21: div = div - mult > only update divisor if mult > 1
22: end if

23: end for

24: occ =m! / div > set occ = (kl,T»kn)

25: end function

vector if we followed Equation 3.3. As before, if a tensor value contributes to the
summation for index k of the output vector, its symmetric counterparts will contribute
the same value to the sum. Following the example given before, where m = 3 and
n = 2, both aj12 and a7 will contribute to the computation of (.Axm_l)l, and
each will contribute the value aj12 - 1 - £9. Note that as1; will not contribute to the
summation for (.Axm’l)l, because its first index is not 1.

Computing the number of tensor indices in an index class that will contribute
to a given entry of the output vector is a variation on Property 3.2. Consider an
index class that contributes to the j* entry of the output vector (i.e. an index class
whose index representation includes an index j). Let [kq, ko, ..., k] be the monomial
representation, so that k; > 0. In the context of assigning m balls to n bins with
appriopriate multiplicities, we can assign the first ball to the j** bin (enforcing that
the tensor index starts with j). Then we have m —1 more balls to assign to the n bins,
but only k; — 1 more will be assigned to the 4" bin. Using the approach given in the
proof of Property 3.2, we see that the number of tensor indices that will contribute

G. Ballard, T. Kolda, T. Plantenga, Y. Gur, and F. Jiao 7

the same value to the j** element is given by the multinomial coefficient

m—1
ki, kj—1,.. .k,)’

Now we can rewrite Equation 3.3 as

m—1 _ m—1 k1 kj—1 kn
IR o (R R

Ieglmn
kj >0
where 3" is the set of index classes for a symmetric tensor in RI™™ and [ky, ..., k,]
and [i1,...,%y,] are the monomial and index representations of the index class I,

respectively. Equation 3.4 yields Algorithm 3.

Algorithm 3 Compute y = Ax™~! via Equation 3.4, where A € RI™" is symmetric,

and x,y € R”

Require: A stores the unique entries of symmetric tensor A in lexicographic order
1: function SYMMETRICTENSORVECTORMULTIPLY1(A, %, y)

2: y=0

3: I=11,...,1] > use index representation (length m)
4: for j =1 to (m+£—1> do > iterate over unique tensor entries
5: for unique i € I do > skip repeated indices in
6: F=wx oz, xr, [T > compute monomial value (excluding ;)
7: NumMmOccl(I, i, occ) > compute number of occurrences
8: yi =y +A; - &-occ > accumulate sum
9: end for

10 UPDATEINDEX () > See Algorithm 4
11: end for

12: end function

Require: [has length m with entries in nondecreasing order
13: function NuMOcc1(I, i, occ)

14: div=1 > divisor of (kllznjkn)
15: curr = —1 > current index value
16: mult = —1 > multiplicity of current index value
17: for j =1 tom do

18: if j # first index of 7 in [then > ignore one occurence of 4
19: if I; # curr then

20: mult = 1

21: curr = I

22: else > repeated index
23: mult = mult + 1

24: div = div - mult > only update divisor if mult > 1
25: end if

26: end if

27: end for

28: occ = (m —1)! / div > set occ = (klg:}kn)

29: end function

8 GPU Computing for Tensor Eigenvalues

3.2.3. Index array calculations. We can compute the index representation of
an index class quickly by exploiting the lexicographic ordering and computing each
index representation from the previous one. That is, given any index representation we
want to compute the next larger index representation in the lexicographic order, under
the conditions that the indices within the index representation are nondecreasing and
range between 1 and n.

To find the next representation, we seek to increment the least significant possible
index (i.e. the rightmost index not equal to n). In the example given in Table 3.1,
the successor of [1,1,1] is [1,1,2] (the last index is incremented). More generally,
suppose the k*" index is the least significant index not equal to n, so that the in-
dex class is [i1,...,%%,M,...,n]%. Thus, this is the largest representation with prefix
[i1,...,%k,...], so the successor must have prefix [i1,... i, + 1,...]. The smallest
such representation that satisfies the nondecreasing condition is

[il,...,ik+1,ik+1,...,ik+1].

For example, again from Table 3.1, the successor of [2,4, 4] is [3, 3, 3]. See Algorithm 4
for the implementation. In this way, we can store index information in an array of m
integers, and under the lexicographic ordering, and updating the index information
for each term in the summation requires O(m) operations.

A[lgo]rithm 4 Update index representation of unique entry in symmetric tensor A €
R m,n
Require: [has length m with entries in nondecreasing order
1: function UPDATEINDEX(I)
j=m
while I; ==n do > find least significant index # n
J=J3-1
end while
I;=1;+1 > increment least significant index # n
for k=j54+1tomdo > update less significant indices
I, =1;
9: end for
10: end function
Ensure: [is the successor in lexicographic ordering (restricted to nondecreasing)

@D G ey

3.2.4. Computing number of occurrences. The number of occurrences of
each index class is given by a multinomial coefficient in terms of the monomial rep-
resentation of the index class. Since we store the index representation and not the
monomial representation, we compute the multinomial coefficient implicitly. We can
do this by computing the denominator with one pass over the array storing the index
representation. The numerator is constant over all index classes and can be precom-
puted (either m! or (m — 1)! for the two computational kernels).

In the case of computing Ax™, the task is to compute for each index class the
product kq!---k,!, where [ki,...,k,] is the monomial representation which is not
stored explicitly. Note that k; is the number of occurrences of index ¢ in the in-
dex representation which is stored in memory. Since the index representation is

2Note that there may be no instances of index n in the index class, in which case k = m, the
index class is [i1,...,i], and the successor is [i1, ..., + 1].

G. Ballard, T. Kolda, T. Plantenga, Y. Gur, and F. Jiao 9

nondecreasing, repeated occurrences of an index will be contiguous. Thus, as we
pass over the index array, we can multiply the accumulated product by 1 for the
first occurrence of an index, by 2 for the second occurrence, and so on. For exam-
ple, given the index representation [1,2,2,5,5,5, 5], the accumulated product will be
1-1-2-1-2-3-4 = 1!-21.4l. This approach yields the function NumMOccO in
Algorithm 2.

In the case of computing Ax™~!, we take the same approach to compute the
denominator, but we ignore one occurrence of the index corresponding to the entry of
the output vector being computed. Following the preceding example, in the case of
computing the 5 element of Ax™ !, the index representation [1,2,2,5,5,5,5] would
yield to the accumulated product 1-1-2-1-2-.3 = 1!-2!.3!. This approach yields
the function NumMOccl in Algorithm 3.

In order to avoid redundant computation (at the expense of extra storage), we
can precompute the multinomial coefficient (kl,k;‘_,kn) for each index class. This
is the coefficient used in the computation of Ax™, and the coefficients needed in
the computation of Ax™~ ! can be obtained by dividing the stored value by m and
multiplying by k; for appropriate j. One could possibly store the monomial coefficient

(k1 ;’;71 &) so that no divisions are necessary in the course of the iterations, but this
seoeskin o

requires handling the fact that (k1 Kook) is not an integer in general.

3.2.5. Computational costs. All the computations in the main loop of Al-
gorithm 2 are done in O(m) operations (floating point and otherwise). Thus, the

computational complexity of computing Ax™ is O (m . "m) =0 (n”)

‘ml (m—1)!
There are nested loops in Algorithm 3, and the inner loop requires m iterations
in the worst case. All the computations in the inner loop are done in O(m) operations
(floating point and otherwise), so the computational complexity of computing Ax™~*

is O (m? - 27) = O (e

4. GPU Computing Overview. Graphical processing units (GPUs) were orig-
inally developed and optimized to offload and accelerate graphics rendering compu-
tations from the more general purpose microprocessor (CPU) on a host computer.
Graphics processing consists largely of data parallel computations, and GPU hard-
ware is designed to exploit this data parallelism via single instruction/multiple data
(SIMD) instructions. GPUs also exploit instruction level parallelism: instruction
streams for several threads of execution are pipelined in order to hide the latency
of memory operations for each thread (this requires that the threads be mutually
independent).

The functional units on a GPU are organized into groups which concurrently
execute SIMD instructions. In nVidia terminology, each functional unit is known as
a “processor” or “core”, and each group of processors resides on a “multiprocessor.”
On the GeForce 9800 GT, there are 14 multiprocessors each with 8 processors.

GPU architecture is rapidly developing to meet the demands of new applications
and users. Many of these applications require high graphics rendering performance,
but a growing number of users are interested in exploiting the computing power of
GPUs for scientific computing or one of many other purposes. To this end, nVidia has
invested in the development of Compute Unified Device Architecture (CUDA) which
is used for general purpose programming of GPUs. Most programmers use CUDA as
an extension of the C language which gives access to a set of virtual instructions for
accessing the memory spaces and functional units on a GPU.

10 GPU Computing for Tensor Eigenvalues

Along with making CUDA freely available, nVidia also offers a software develop-
ment kit including programming guides, example programs, and other documentation
for programmers. Much of the information in the following sections is available in more
detail in the CUDA documentation, particularly in [3, 4].

4.1. CUDA Programming Model. The simplest CUDA programming model
treats the GPU as a coprocessor to the host CPU. That is, a single thread of execution
works on the CPU sequentially until it calls a “kernel” function on the GPU which
is run by many CUDA threads in parallel, and after the kernel returns, the single
CPU thread resumes execution until it calls another kernel or terminates. Multiple
CPU threads can be used in order to overlap CPU and GPU computation, but we
only consider one CPU thread in this work. Kernel functions may call other functions
to be run on the GPU (which will also run in parallel); these other functions cannot
be called from host code. When a kernel function is launched from the host code,
the host specifies the number of thread blocks, the number of threads per block, and
optionally the amount of shared memory to allocate to each thread block (all of which
can be determined at run time).

Thread blocks are groups of threads which are all run on the same multiprocessor.
They have a common memory space residing in the physical shared memory through
which the threads can communicate and synchronize. Thread blocks are logical en-
tities and the number of threads per block is unrestricted up to a certain maximum;
however, threads are physically grouped into warps (the physical unit of SIMD in-
structions) during execution, so the number of threads per block should be a multiple
of the warp size (typically 32).

The logical memory hierarchy is tightly coupled to the physical memory. Registers
are local to threads, shared memory is restricted to threads within a thread block,
and global memory (which resides in “device” memory) is accessible by all threads
and by the host code. Communication between thread blocks using global memory
is possible but rare because thread blocks may be scheduled on any multiprocessor
in any order. Textures and constant memory are also globally accessible and are
read-only; textures are accessed via special texture fetches. Another memory space
known as “local” memory is logically local to each thread, but the name is misleading
because local memory physically resides in device memory. In general, local memory
is used to handle register spilling and can be costly.

4.2. Physical Memory Hierarchy. GPUs have a complicated memory hier-
archy; see Figure 4.2 for nVidia’s graphical representation. Note that the memory
hierarchy discussed here is only representative of nVidia GPUs of Compute Capability
1.x; newer architectures of Compute Capability 2.x have fundamental differences. The
largest memory is known as “device memory” and is accessible to all multiprocessors
on the GPU. It is also accessible from the host device (CPU) (usually via the PCI
bus) and is the means through which the CPU and GPU communicate data. Except
for “integrated” cards, this memory resides on the graphics card itself. The memory
access latency for device memory to one of the GPU’s computational units is two
orders of magnitude greater than the latency of the on-chip memory.

There are four types of on-chip memory: registers, shared memory, constant
cache, and texture cache. The register file is relatively large but must be divided up
among all threads resident on the multiprocessor; it has the smallest memory access
latency (one or two cycles). The shared memory is the next fastest memory. It is
smaller than the register file but can be shared among threads in a thread block.

G. Ballard, T. Kolda, T. Plantenga, Y. Gur, and F. Jiao 11

Register file 8192 registers
Shared memory 16 KB
Texture cache 6-8 KB
Constant cache 8 KB
TABLE 4.1

On-chip memory sizes per multiprocessor for GeForce 9800 GT (Compute Capability 1.1)

F1G. 4.1. nVidia GPU Hardware Model with Memory Hierarchy (graphic from [4])

Shared memory can be dynamically allocated and can be used as a local store (i.e.
there is no hardware-managed caching system).

Some of device memory can be statically allocated as “constant” memory, and
accesses to constant memory will be cached by the hardware. Constant memory
is read-only for a given GPU kernel function but can be written by the host CPU
between kernel calls. A “texture” can be bound to an array in device memory such
that the result of a texture “fetch” will be cached. The texture caches on a GPU
are shared by two or three multiprocessors. The texture caching system is designed
to exploit 2D spatial locality, and texture fetches include other features designed to
improve the performance of certain relevant graphics operations.

5. Detecting Nerve Fiber Direction in the Brain. Diffusion-weighted mag-
netic resonance imaging (DW-MRI) is a tool used to detect nerve fibers in the brain.
It is a non-invasive procedure that uses magnetic resonance to measure how quickly
water diffuses in a certain direction. Nerve fibers, which are organized in bundles,
allow water to diffuse more quickly along the longitudinal axis of the fiber bundle
than in any transverse or axial direction. DW-MRI measurements are taken from
many different orientations for a discrete set of voxels in the brain. For each voxel, a
diffusion function D : ¥ — R which maps an orientation to its rate of diffusion (here
¥ denotes the unit sphere in R3) is approximated using the measurement data. For
a unit vector g, D(g) is known as the “apparent diffusion coefficient” (ADC) [7].

When a voxel includes only one fiber orientation, the longitudinal direction should
(globally) maximize D (it will exhibit the largest ADC). When a voxel includes more
than one fiber orientation (in the case of crossing fibers), each fiber orientation should
correspond to a local maximum of D.

According to [5, 6, 7], a common way to approximate the diffusion function is as a

12 GPU Computing for Tensor Eigenvalues

finite sum of spherical harmonic functions (which form a basis for complex functions
on the unit sphere). The 2°¢ order series (with 6 terms) corresponds to a quadratic
form

D(g) ~ g' Mg

where M is a symmetric positive definite 3 x 3 matrix. In this case, at least six
measurements are required to determine the unique entries in the matrix M (or the
six coefficients of the first spherical harmonic functions). In the case of a voxel with
one principal fiber orientation, this approach is usually sufficient for resolving the
correct orientation. However, in the case of fiber crossings or other complications
such as bending or fanning fiber bundles, the approximation is often unable to resolve
the fiber directions.

In order to handle such cases, more accurate measurements and approximations
are necessary. The approach is to use higher order spherical harmonic series approx-
imations which can be represented not as quadratic forms, but more generally as
homogeneous forms. The homogeneous forms correspond to higher order tensors:

D(g) ~ Ag™

for some symmetric tensor A € RI™3l Note that m must be even since D(g) is
a positive physical quantity for all g (if m is odd then A(—g)™ = —Ag™). More
DW-MRI measurements are required to determine the greater degrees of freedom in
tensors of order m > 2, and the higher order polynomial can better approximate the
true diffusion function. Orders m = 4 and m = 6 are most commonly used (m = 8
requires 120 measurements). The correspondence between coefficients of spherical
harmonic functions with the entries in the associated symmetric tensor are given in
[7].
As described in [2], the critical points of the function f(x) = Ax™ and their
function values are exactly the eigenpairs of the tensor A. Thus, in order to deter-
mine the principal fiber orientations in a given voxel, we can compute the principal
eigenvectors of the associated tensor.
Note: Specific instances of Properties 3.1 and 3.2 for n = 3 appear in the DW-MRI
literature. See Equations 17 and 19 in [5], for example.

6. Implementation Details. The computation problem for the nerve fiber data
is to take as input a three dimensional array of symmetric tensors and output one
or more eigenpairs for each tensor. The three dimensional array corresponds to the
set of voxels which discretize the volume of a brain. The entries of each tensor
correspond to the coefficients of the homogeneous polynomial which approximates the
diffusion function for a given voxel. The eigenpairs which define local maxima of the
approximate diffusion function should correspond to principal nerve fiber directions
within the voxel.

In order to find multiple eigenpairs, Algorithm 1 must be executed with different
starting vectors. Because there is not much theory to direct the choice of starting
vectors to find all eigenpairs corresponding to local maxima, we use many randomly
chosen starting vectors in order to get reasonable coverage of the unit sphere.

The computational problem consists of executing Algorithm 1 with many different
tensors and many different starting vectors each. Since the voxel size for DW-MRI is
on the order of one cubic millimeter, the number of voxels in a data set for a human
brain can be in the millions. In order to cover the sphere, we use somewhere between

G. Ballard, T. Kolda, T. Plantenga, Y. Gur, and F. Jiao 13

32 and 128 starting vectors for each tensor. With this much inherent parallelism in
the problem, we can easily saturate the computational units on a GPU. The main
data structures involved in the computation include the unique entries of each tensor,
an array of randomly generated starting vectors, an array of output eigenvectors, and
an array of output eigenvalues.

6.1. Synthetic Test Set. We experimented with a synthetic test set provided
by the Scientific Computing and Imaging Institute at the University of Utah. It
consists of 1024 tensors corresponding to a 2D array of voxels which includes some
with one and some with two principal fiber directions Each tensor is 4*" order, so
each has 81 total entries with 15 unique values. We chose to use 128 starting vectors
for each tensor in the hope of not missing any eigenvectors and also because it is a
multiple of 32, the physical warp size on the GPU.

6.2. Thread Organization. Because of the number of independent problems,
we are able to map the computation to the GPU in a straightforward way with minimal
synchronization. We organize the CUDA threads in the following way: assign a thread
block to each tensor and assign each thread in a thread block to a different starting
vector. Since the number of starting vectors is greater than the warp size, each
thread block will utilize all the processors on its multiprocessor. Similarly, as long as
the number of tensors is at least 50 or so, all of the multiprocessors will be utilized
with three or four thread blocks each (multiple thread blocks are necessary to fill the
instruction pipelines).

6.3. Data Structures. Because the small size of the tensors and vectors in this
problem, we can fit all the data for each thread block in the on-chip memory and
minimize the accesses to device memory. Let T be the number of tensors, U be the
number of unique entries in each tensor, and V be the number of starting vectors.
Recall that for this problem, m =4, n =3, T = 1024, U = 15, and V = 128. For real
data, we expect T to grow into the millions but the rest of the parameters will remain
constant, though V' could be varied experimentally. The tensor data is of size T - U,
the array of starting vectors is n x V', the array of output eigenvectors is n x (T - V),
and the array of output eigenvalues is of size T'- V. Note that every thread block can
use the same set of starting vectors, but each has its own set of output vectors.

In addition to the main data structures, we pre-compute and store the index
and multinomial coefficient information required in Algorithms 2 and 3. The index
information is stored as an array of size m x U and can be shared by all threads.
We store the multinomial coefficient (klmkn) for each unique tensor value, where
[k1, ..., k] is the monomial representatidn of the index class of the unique entry. In
this way, finding the number of occurrences of an entry in Algorithm 2 is just a look-
up, and computing the related multinomial coefficients used in Algorithm 3, which

are of the form <k1 ,T:} ok) for some i, can be done by reading the stored value,

multiplying by k; and dividing by m.? Thus the array of multinomial coefficients is
of size U. All threads can share this information.

6.4. Memory Management. We use both the shared memory and constant
cache to minimize the memory accesses to device memory. Because the index array
and multinomial coefficients are read only and can be shared by all the threads in
the computation, we store designate them as constant memory which resides in global
m—1

k1y.skn
update the stored value for each kernel, but note that this value is not an integer in general.

30ne might consider storing the “coefficient” () so that only one multiply is needed to

14 GPU Computing for Tensor Eigenvalues

(device) memory. However, because that information can fit into the constant cache of
each multiprocessor, they will be read from device memory to the cache only once per
multiprocessor for the entire computation. Because the tensor entries can be shared
by the threads within one thread block, we store them in the shared memory. In this
way, the tensor entries are read from device memory to the on-chip shared memory
only once per thread block.

Finally, we store the input and output vectors, which are private to each thread,
in shared memory. Although this data will not be shared with other threads in
the thread block, we use the shared memory because it is the only on-chip memory
that can be dynamically allocated and overwritten. There are two main drawbacks
from using shared memory this way. First, allocating 2n words of shared memory
per thread requires a lot of memory per thread block, and since the physical shared
memory is shared by all thread blocks on a multiprocessor, fewer thread blocks can
be scheduled simultaneously on each multiprocessor. The amount of oversubscription
(known as “occupancy” in nVidia’s terminology) allows for pipelining instruction
streams and hiding memory latency. Second, the register file is faster to access than
shared memory. Since the number of thread blocks per multiprocessor is limited by
the shared memory requirements, the size of the register file is not being exploited.

In order to exploit the register file for storing the input and output vectors, we
statically allocate register variables corresponding to input and output vector entries.
In addition, we would unroll the inner loops of the main computation kernels. This
is possible for small problems (in fact we can completely unroll the loops in the case
m = 4 and n = 3), but to scale to larger problems we would need a blocked approach.

6.5. Results. Compared to the prototyped implementation of SS-HOPM, the
CUDA code achieves speedups which transform a computational problem involving
millions of tensors which is practically infeasible to one that can be resolved in a few
minutes. Figure 6.5 shows performance results comparing the GPU performance to
a sequential implementation for sets of various numbers of tensors of order 4 and
dimension 3. Executing SS-HOPM for 1024 tensors with 128 starting vectors each
achieves a flop rate of 133 Gflops per second on the GPU and 1.7 Gflops per second
on the CPU for a speedup of over 76x. The sequential implementation is coded in C
and exploits symmetry as described in Section 3. The processor used is one core of
an Intel Bloomfield (Core i7). The GPU used is an nVidia GeForce 9800 GT which
nVidia classifies as Compute Capability 1.1.

For both implementations, the loops of the computational kernels were completely
unrolled. In the case of Algorithm 2, the summation involves 15 terms, and in the case
of Algorithm 3, the summation for each output vector entry has 10 terms. In both
cases the multinomial coefficients are stored as constants in the instructions. Although
completely unrolling the loops is infeasible for larger problems, this optimization on
the GPU results in a 13x improvement (and a 3x speedup on the sequential code),
and so either using a code generator or an efficient blocked approach which does allow
loop unrolling will be important for achieving high performance for tensors of general
orders and dimensions.

7. Conclusions. In this paper we present an implementation of SS-HOPM tar-
geted for a GPU. We describe how to save both storage and computation in the two
main computational kernels of the algorithm, and for the case of solving many small
tensor eigenproblems we show how to map the computation onto a GPU. For our
experimental data set, we achieved a parallel speedups of up to 76x over a sequential
code using the same optimizations.

G. Ballard, T. Kolda, T. Plantenga, Y. Gur, and F. Jiao 15

140 T T T T

120

100

w 80]
w
§ GPU
= CPU
) 1

40 -

20 1

0 : . ‘ . ,
(] 200 400 600 800 1000 1200

Number of Tensors

FIG. 6.1. Performance results for running SS-HOPM on a set of 4™ order 3-dimensional tensors
with 128 starting vectors each. The CPU performance is measured on one core of an Intel Bloomfield
and the GPU performance is measured on an nVidia GeForce 9800 GT. For 1024 tensors, the GPU
implementation achieves 133 Gflops/s and the CPU implementation achieves 1.7 Gflops/s.

We believe that the techniques for exploiting symmetry may be extended to other
computations involving symmetric tensors, but many open questions remain about
how to write sequential or parallel implementations of the computational kernels that
scale to higher order and higher dimension tensors. We are also interested in how to
map these computations onto different computing platforms, including more recent
GPUs which offer fundamentally different hardware features.

Acknowledgments. We would like to thank Chris Johnson of the Scientific Com-
puting and Imaging Institute at the University of Utah for the motivating application
and for providing the sample data.

REFERENCES

[1] P. ComoN, G. GoLuB, L.-H. Lim, AND B. MOURRAIN, Symmetric tensors and symmetric tensor
rank, SCCM Technical Report 06-02, Stanford University, 2006.

2] T. G. KoLpAa AND J. R. Mavo, Shifted power method for computing tensor eigenpairs.
arXiv:1007.1267v1 [math.NA], July 2010.

[3] NViDIA, NVIDIA CUDA programming guide version 3.0.

[4] , PTX: Parallel thread execution ISA version 2.0.

5] E. OzARSLAN AND T. H. MARECI, Generalized diffusion tensor imaging and analytical rela-
tionships between diffusion tensor imaging and high angular resolution diffusion imaging,
Magnetic Resonance in Medicine, 50 (2003), pp. 955-965.

[6] ———, Generalized scalar measures for diffusion mri using trace, variance, and entropy, Mag-
netic Resonance in Medicine, 53 (2005), pp. 866—876.

[7] T. ScuuLTz AND H.-P. SEIDEL, Estimating crossing fibers: A tensor decomposition approach,
IEEE Transactions on Visualization and Computer Graphics, 14 (2008), pp. 1635-1642.

