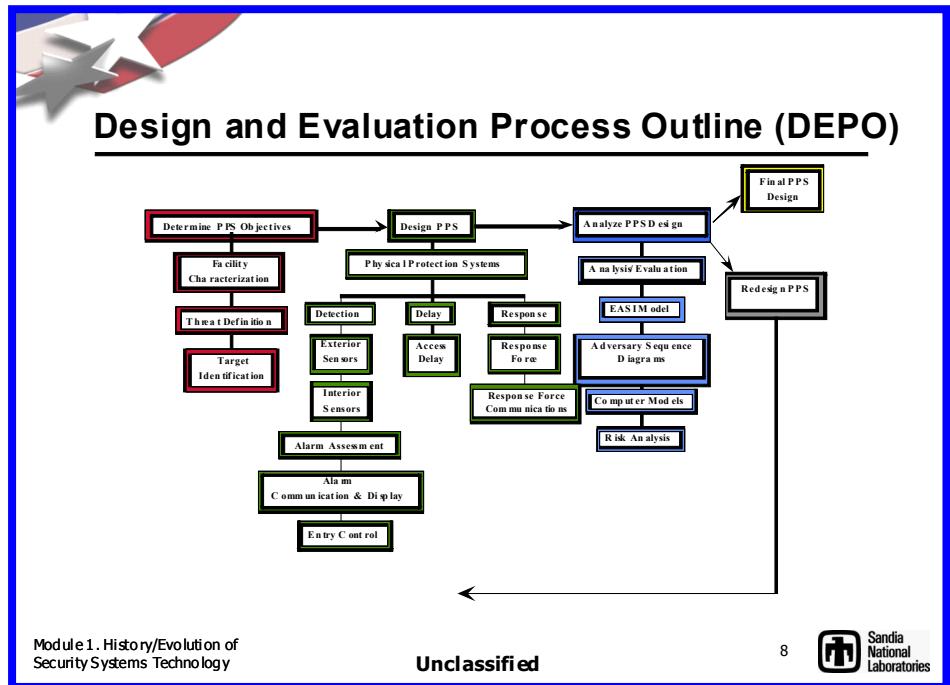


Performance Tests of Physical Security Technologies


How to Test Outline

Principles

- Based on structure of our Design Process for Physical Security Systems
- Three functions of a Physical Security System
 - Detection
 - Delay
 - Response

Planning the Test

- What do you hope to accomplish
- Test objectives (Requirement Driven)
- Input from all stakeholders is ideal
 - Vulnerability Analysts
 - Site Test Group
 - CAS Operators (people that monitor the alarms)
 - Response Force
- Depends on Maturity Of Technology
 - Prior to Deployment
 - Just after Installation
 - Post Installation – annual, bi-Annual, and after significant maintenance changes
- Scope
 - important to state/acknowledge what you are going to include
 - what you are not going to include
 - Sensors
 - Communications—wireless, verbal
 - Barriers
 - Alarm Monitoring
 - Response Force
 - Operability Tests
 - Performance Tests
 - Nuisance Alarm Rates

ID assumptions

- Threat
 - No Knowledge
 - Partial Knowledge
 - Full Knowledge
- Safety
- Environmental Limitations
- Cost limitations
- Test Location – actual site vs. a test bed

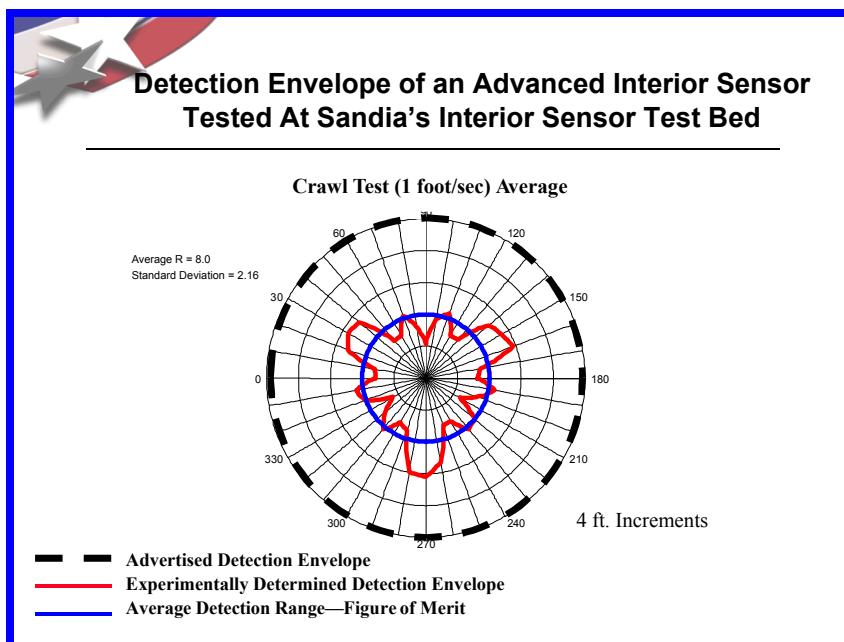
Requirements

- Operational Requirements
- Performance requirements
- Policy Considerations

Planning the Test

- How you will meet you objectives/Design the Tests
- Non-Destructive vs. Destructive
- Performance Metrics (what are you going to measure)
 - Probability of Sensing (P_s —30/30 -- .9 at 95%-- from Binomial Tables – Cooke, 1964)
 - Probability of Assessment (P_a 4-6 pixels per sq ft – Johnson Criteria)
 - Probability of Communication (P_c)
 - Probability of Detection ($P_d = P_s * P_c * P_a$)
 - Delay Time (barriers—assuming given set of tools)
 - Barrier Penetration (K-12 – 15,000 pound at 50 mph)
 - LOD (Limit of Detection – nanograms -Explosive Trace Detection 95 out of 100 trials)
 - Nuisance Alarm Rate (1/hr, 1/day, for one sensor, for a system)
- Identify Variables – things that will influence performance
 - Type of intruder—crawler, walker, ATV, SUV
 - Speed
 - Knowledge of Intruder—Full, Partial, No Knowledge
 - Weather affects – rain, wind, snow, ...
 - Foliage
 - Terrain
 - Distance from sensor (effective range or detection envelop)
 - Sensor settings – sensitivity, threshold crossings, filters, ...
- Design of Experiment
 - Especially useful on new technologies
 - Identifies dominant factors/variables – screening tests
 - Can produce response surface as a function factors/variables, ex: $P_a = a(\text{distance}) + b(\text{size}) + c(\text{light intensity}) \dots$
- Test Matrix
 - Summarizes tests planned and variables to be included in test
 - Look for gaps, over emphasis, under emphasis

Table 1. Summary of Radial Test Sets


Radial Tests*	Unit #1		Unit #2		Total Number of Test Sets
	Small Stature	Large Stature	Small Stature	Large Stature	
0.5 ft/sec Slow Walk	10 sets	5 sets	4 sets	2 sets	21 sets
1.0 ft/sec Walk	10 sets	5 sets	4 sets	2 sets	21 sets
1.0 ft/sec Crawl	10 sets	5 sets	4 sets	2 sets	21 sets

* One set of radial tests consists of 1 test along each of the 36 radial transects, giving 36 data points.

Review of Test Plan

- Stakeholders
- Technical Subject Matter Experts
- Safety Office
- Execution of the Tests

Analysis of Test Results

Reporting the Results

- Objective
- Scope
- Necessary Limitations and Assumptions
- Configuration of test equipment
- Results
- Conclusions – did you meet your objectives

Performance Facts

Performance Facts

Installation	
Height	8 feet
Angle	45° below Horiz.
Detection Parameters	
Lens Type	Wide Angle
Maximum Range	30 feet (\pm 6 inches)
Horizontal Coverage	80° (\pm 2°)
Vertical Coverage	70° (\pm 2°)
Probability of Detection	
Across Field	
Far Field (@ 28')	0.92
Mid Range (@15')	0.99
Towards Sensor	0.95
Nuisance Alarms	
External Lighting	0 per 30 cycles
Small Animals	0 per 30 cycles
Localized Heating	2 per 30 cycles
Environmental	
Max. Operating Temp.	120° F
Min. Operating Temp.	0° F
Relative Humidity	95%

Working for
a safer world

Sandia
National
Laboratories

In Summary:

Performance Testing Allows Designers, Site Security Managers, and Decision Makers to make “Informed Decisions”