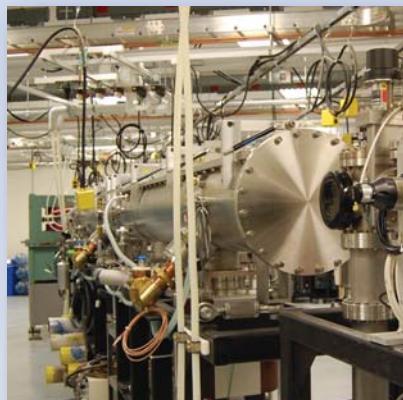

Ion Beam Laboratory Capabilities and Applications

The management and staff of the Ion Beam Laboratory (IBL) at Sandia National Laboratories (SNL) aspire to make the IBL one of the best applied-nuclear-physics labs in the world. The facility is designed to take advantage of six particle accelerators, two of them new, that can provide beams of virtually any element to endstations in open areas, high radiation areas, and target rooms where classified experiments can be performed. Quantitative isotopic measurements are made in addition to the simulation of radiation effects.

Ion Beam Laboratory (IBL)

The principal mission of IBL is basic and applied research on topics critical to national security, primarily for nuclear weapons and homeland defense. Examples from an extensive list of applications include measurements of hydrogen isotope concentrations in nuclear weapon triggers, neutron-tube certification, and radiation-effects microscopy (invented by IBL staff), which is used to understand radiation-effects problems in weapon electronics.


IBL building layout

The accelerators in the IBL generate ions ranging from a few electron volts (eV) to almost one billion eV. At a few eV, a Pulsed-Laser Deposition (PLD) system can modify materials at the atomistic scale to increasing surface hardness through nanostructure self-assembly. At 100 kiloelectron volts (keV), the first nanolmplanter in the U.S. Department of Energy (DOE) can create structures in semiconductor devices in the 10 nanometer feature sizes.

Silicon ions at megaelectron volt (MeV) energies are used to simulate neutron effect in transistors, and 400 MeV gold ions are used to simulate cosmic-ray effects in integrated circuits. Other ion-beam analysis techniques include backscattering, elastic recoil, and nuclear-reaction analysis.

High-Voltage Tandem-Pelletron Accelerator

- 6 megavolt (MV) terminal voltage (*maximum energy $[Z+1]*6$ MeV*)
- Up to milliampere (mA) current to single ions (*same for all IBL accelerators*)
- Practically every ion in periodic table
- Focused nuclear microprobe
 - Routinely achieves < 1 micron (μm) resolution
 - 200 μm scan distance electrostatically; up to several inches mechanically (100 nanometer [nm] precision)
 - Collocated scanning electron microscope with Electron BackScatter Diffraction (EBSD)
 - 100 nm resolution navigation based on GDS II files
 - On-demand 100 nanosecond beam blanking
- Radiation damage systems (semiconductors and metals)
 - Simulation of neutron-induced displacement damage in semiconductor devices and metals
 - Equivalent neutron fluxes comparable to pulse-burst reactors
 - Mixed (neutron/gamma) programmable radiation simulation exposure system

Radio Frequency Quadrupole (RFQ) LINAC (1.9 MeV/amu)

- Highest-possible linear energy transfers (charge injection)
- Greater ion range
- Ion-photon emission microscopes (single event upset-imaging)
- Focused nuclear microprobe
 - Approximately 1 μm
 - Used with RFQ or Lawrence Berkeley National Laboratory Cyclotron

350 keV Implanter

- Highly controlled deuterium/tritium (DT) neutrons for calibrations
- Implantations of virtually any element
- Single-ion 100 nanometer implants for quantum computers

3 MV Pelletrons

- Beams of hydrogen, deuterium, helium-3, and helium-4
- Backscattering, nuclear reaction analysis, channeling
- Nuclear microscopy
 - Oxford Microprobe
 - microPIXE
 - eXternal PIXE

Pulsed-Laser Deposition (PLD)

- eV energy ion-assisted deposition
- Thin films
- Nanoidentation system

nanoImplanter (nI)

- 100 keV isotope-selectable implants
- 10 nanometer resolution
- Single-ion capable
- Reactive ion etching and deposition

For more information about IBL capabilities, please call or send an email message to Barney L. Doyle, Manager | Telephone: (505) 844-7568 | Email: bldoyle@sandia.gov