g SAND2010- 5718P

. Exascale Co-design with Sandia’s

Structural Simulation Toolkit (SST)

Problem

Exascale computing has been identified as a critical enabling technology for
meeting numerous national challenges
The nature of computing will change dramatically: billions of threads, faults,
energy to solution, and time to solution are all critical issues
Applications must be adapted before machines are available

— Cost of adapting applications is high
High cost of machines will require lower design margins

— Provide what the application need but no more

— Coarse measures such as bandwidth per FLOPS not sufficient

Solution

Impact Measures

The SST project is creating a multi-scale computer architecture simulator that will
be used in the design and procurement of large-scale parallel machines as well as
in the design of algorithms for these machines. Our goal is to become the
preeminent simulator for performance prediction and analysis of applications
running on large-scale machines

Facilitate a consortium of industry, government, and academia to implement
components and use them

ASC and ECDC applications team use SST to evaluate algorithms and programming
models and act on results

Leadership machine bids evaluated using SST

Hardware vendors improve architecture in response to SST studies

Sandia
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, National
for the United States Department of Energy’s National Nuclear Security Administration Laboratories
under contract DE-AC04-94AL85000.

Examples of SST usage and impact

SST Impact

Develop acceptance tests and
estimate performance before
machine is built.

Understand performance and
issues for machines several years
from deployment.

Allow co-design of advanced
architectures and applications
many years before deployment.

1OVdINT ANV LH0O443 ¥31V3dD

SST Activity

Obtain traces for applications and
compact applications. Use SST for
parameter studies.

Write skeleton applications for
extreme scale studies.

Simulate new architectural feature
such as extended memory semantics
and transactional memory.

Sandia
National
Laboratories

SST System Architecture

e

SST/macro

Thread

[Skeleton App.]
Trace Reader]

Programming Model

|
[MPI3]
|

Graph Scheduling]

4 SST/core N

Setup
Time
Events
Distribution
\= v/

Common core
to bind components

[Network Topology]

/ SST/elements \\

genericProc

DRAMSim

SeaStar

N J

Fine-grained, cycle

together accurate components
\\ Parallel Component Execution /

Bandwidth Allocation }

|
L

)

Coarse-grained Components

DUMPI

|

MPI (PMPI)

|

Application trace
collection library

Sandia
ﬂ'l National

Laboratories

T,

SST/macro target application space

Degree of parallelism

107
10°
10°
10%
103
102

10t

100 |
I I I 1 Ly
Random Rough Cause Very Exact
number idea and good hardware
generator effect estimates model

.

A

simulation

Coarse-grained

Constitutive
models

Microscale
simulations

Simulation predictivity

Laboratories

SST/macro design goals

Correctly identify causal relationships

— Discrete inputs (network topology, node configuration, etc.)
— Continuous inputs (noise/imbalance, bandwidth, latency, ...)
— Emergent properties (resource contention, middleware

behavior, ...)

Play “what if” games

— Interpolating and extrapolating runtime behavior

— Implementation effects for communication routines

— Multiple networks, perfect/”magic” operations

Test changes to application, middleware, or resource

management
— Reordering code blocks, scheduling effects, etc.
Test novel programming models
— Fault-tolerant or fault-oblivious execution models
— Alternatives to MPI, parallel runtime designs
— Mixed programming models

Sandia
National
Laboratories

SST/macro approach

 To meet our design goals, we need:
— A network model for resource contention
— Very fast processor and memory models
— Realistic middleware models (e.g. MPI)
— Support for complex application models (no direct
manipulation of state machines)

e We don’t need the exact answer, but we need the

correct macroscale behaviors
— ... wWith a deterministic simulator

— ... which must be reasonably fast
* ... for a wide range of simulation system sizes (10%-10° nodes)
* ... and realistic application workloads (10%-10° MPI
messages)

Sandia
National
Laboratories

High-level simulator design

“Process” holds
application process state
— User-space threads

— Private stacks
“Interface” bridges

threads and DES
— Context switching for

blocking calls
— Management of active/

blocked queues
“Simulator” handles DES
— Single-threaded (lock-free)

Application (Lightweight Threads)

Process

Requests

Interface

Kernels — Servers

JUBAZ
e —
22|dwo)
JuaAl
4—’—
319|dwo)

Simulator

Discrete Event Simulator

Sandia
National
Laboratories

————

Example process control flow

THREAD O

MP| Recv -=

Yield until data available

MPI_Recv completes
MPI Send Oto 1
Schedule data sent
Schedule data recd
Yield until data sent

MPI_Send completes
Continue processing

<

ouljlsWll}
JU=A °@3012SI(J

THREAD 1

MPI Send 1to O

Schedule data sent
Schedule data recd
Yield until data sent
MPI1_Send completes
Begin computation
Schedule completion
Yield until complete

Computation completes
MPI|_Recv
Yield until data available

MPI_Recv completes
Continue processing

Two simulated processes exchanging data via MPI send/recv pairs

Sandia
National
Laboratories

Example inheritance diagram

kernel

1

computekernel

mpikernel

A

mpicollective

mpirecvengine

mpisendengine

A

mpibarrierengine

mpibcastengine

mpidirectgatherv

Sandia
m National

Laboratories

———
Partial collaboration diagram for MPI

mpicorebarrier mpicoresend
mpibarrierstrategy mpisendstrategy
A -7
I [BN BN _ - -
L -
mpistrategy thread
A
I
|
mpiapi mpiapp
A % N\
' ~ -~ -
l ~ o T~
mpipingpong minimd mpitrace

Sandia
ﬂ" National

Laboratories

Networks

* Currently supports simplified network routing/

sharing

1. Contention-free

2. Circuit with fair sharing for concurrent flows
 Multiple topologies supported

network

A

clos

gamma

fattree

hypercube

product

T

torus

Sandia
ﬂ" National

Laboratories

———

MPI trace example: AMG2006

w 16 |

£ 12 | ¢
-

C 10 |

©

o 8 t

S 6

3 L

jS

) 4

4 6 8 10 12 14 16
Observed Runtime (s)

AMG2006 on a variety of node counts and decompositions.

Sandia
ﬂ" National

Laboratories

MPI trace example: CTH

2200

2000 ¢}
1800
1600
1400
1200 |
1000
800
600

Observed Runtime (s)

® Sim.vs. Obs. Time

—— Ideal

—— +H- 15% of ideal

600

800 1000 1200 1400 1600

Simulated Runtime (s)

1800

2000

45
40 +
35
30 ¢t
25
20 |
15
10
5 |
0

SST/macroscale execution time (

600

- 9 | |
800 1000 1200 1400 1600

CTH execution time (s)

1800

2000

CTH runson 1, 2, and 16 nodes courtesy of Courtenay Vaughan i Natora

Laboratories

Skeleton applications

void mpipingpong::run() {
this->mpi_->init();
mpicomm world = this->mpi_->comm_world();

mpitype type = mpitype::mpi_double;
int rank = world.rank().id;

int size = world.size().id;
if(! ((size % 2) && (rank+1 >= size))) {
/I With an odd number of nodes, rank (size-1) sits out
mpiid peer(rank A 1); // partner nodes 0<=>1, 2<=>3, etc.
mpiapi::const_mpistatus_t stat;
for(int half_cycle = 0; half cycle<2*n|ter ++half_cycle) {
if((half_cycle + rank) & 1)
mpi_->send(count_, type, peer, mpitag(0), world);
else

mpi_->recv(count_, type, peer, mpitag(0), world, stat);

}

mpi_->finalize();

Sandia
ﬂ'l National

Laboratories

Simulator performance

11

Walltime for each send/recv pair (us)

4 | Lo | | | | | Lo | | | |
10° 10" 10®° 10® 10* 10
Number of Processors

MPI ping-pong on a contention-free network. Total of 4M messages.

Sandia
National
Laboratories

Simulated traffic congestion

3.4
3.2 -
3.0 -
28 |
26
2.4
22
2.0 -
1.8
16
1.4 |

@ @ L 4 L 4

12 | I I I | I I I S
1 10 100 1000

Total Processors

Simulated runtime (s)

MPI ping-pong on fat-tree network. Fixed total of 65536 messages.

Sandia
’11 National

Laboratories

———
Example parameter sweep: Latency

6.2
—&— Torus (8x8x8)
6.0 L —e— Fat-tree (radix 24)
' —»— (Crossbar
5.8 +
w 56
£
- 54 r
5.2 +
5.0 +
’.__
48 I N N I I | I I I A
10°® 107 10
Latency (s)
AMG2006 on 128 nodes. Bandwidth constant at 1 GB/s. Sandia

ﬂ" National

Laboratories

Example parameter sweep: Bandwidth
5.8

Torus —8B—
Fat-tree —e—
Crossbar —¢—

5.6

5.4

Time ()

5.2

5.0

4.8
108 10° 10'°
Bandwidth (bytes/s)

AMG2006 on 128 nodes. Latency constant at 3 ps. @ N ong

DUMPI: The MPI tracer

PMPI link-time library for trace file generation

Full fingerprints for all MPI-2 functions

Writes a (reasonably compact) binary trace file
Negligible runtime overhead
Reasonably portable C code

libdumpi

PMPI bindings

Type mapping
Call tree tracing (gcc/icc)

common

libundumpi

MPI type identifiers
MPI function identifiers
Trace file 10
Timers
Performance counters

Parsing of trace files

)

Sandia
National
Laboratories

——

Example of data output by DUMPI

(converted using dumpi2ascii)

MPI_Allgatherv entering at walltime 1274314439.744512000, \
cputime 0.201756000 seconds in thread 0.

int commsize=16

1nt sendcount=1024

MPI_Datatype sendtype=14 (MPI_DOUBLE)

int recvcounts[16]=[1024, 1024, 1024, 1024, 1024, 1024, 1024, \
1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024]

int displs[16]=[0, 1024, 2048, 3072, 4096, 5120, 6144, 7168, \
8192, 9216, 10240, 112064, 12288, 13312, 14336, 15360]

MPI_Datatype recvtype=14 (MPI_DOUBLE)

MPI_Comm comm=2 (MPI_COMM_WORLD)

MPI_Allgatherv returning at walltime 1274314439.749554000, \
cputime 0.202159000 seconds in thread 0.

Sandia
National
Laboratories

Callback-driven parsing of DUMPI files

* Each MPI call is assigned a callback function

typedef int (*dumpi_allﬁatherv_call)gconst dumpi_allgatherv *prm,
fl | uintlo_t thread, const dumpi_time *cpu, const dumpi_time
wall,

const dumpi_perfinfo *perf, void *userarg);

* The full set of arguments to the MPI function is passed to the callback in a
struct

typedef struct dumpi_allgatherv é _ _
‘) /** Not an MPI argument. Added to index relevant data in the struct.
int commsize;
/** Argument value before PMPI call */
int sendcount;
/** Argument value before PMPI call */
dump1_datat¥pe sendtype; .
/** Argument value betore PMPI call. Array of length [commsize] */
int * recvcounts; _
/** Argument value before PMPI call. Array of length [commsize] */
int * displs;
/** Argument value before PMPI call */
dumpi_datatype recvtype;
/** Argument value before PMPI call */
dumpi_comm comm;
} dumpi_allgatherv; r-l,‘ Sandia

National _
Laboratories

SST/macro Team Members

Contributors
Curtis Janssen (PI)
Helgi Adalsteinsson (Everything)
Scott Cranford (I/O modeling)

Damian Dechev (Skeleton app. generation)
David Evensky (Data collection, param. studies)
Joseph Kenny (Proc. models, prog models)
Jackson Mayo (Interested observer)

Ali Pinar (Network models)

