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. Exascale Co-design with Sandia’s

Structural Simulation Toolkit (SST)

Problem

Exascale computing has been identified as a critical enabling technology for
meeting numerous national challenges
The nature of computing will change dramatically: billions of threads, faults,
energy to solution, and time to solution are all critical issues
Applications must be adapted before machines are available

— Cost of adapting applications is high
High cost of machines will require lower design margins

— Provide what the application need but no more

— Coarse measures such as bandwidth per FLOPS not sufficient

Solution

Impact Measures

The SST project is creating a multi-scale computer architecture simulator that will
be used in the design and procurement of large-scale parallel machines as well as
in the design of algorithms for these machines. Our goal is to become the
preeminent simulator for performance prediction and analysis of applications
running on large-scale machines

Facilitate a consortium of industry, government, and academia to implement
components and use them

ASC and ECDC applications team use SST to evaluate algorithms and programming
models and act on results

Leadership machine bids evaluated using SST

Hardware vendors improve architecture in response to SST studies
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Examples of SST usage and impact

SST Impact

Develop acceptance tests and
estimate performance before
machine is built.

Understand performance and
issues for machines several years
from deployment.

Allow co-design of advanced
architectures and applications
many years before deployment.
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SST Activity

Obtain traces for applications and
compact applications. Use SST for
parameter studies.

Write skeleton applications for
extreme scale studies.

Simulate new architectural feature
such as extended memory semantics
and transactional memory.
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SST System Architecture
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SST/macro target application space
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SST/macro design goals

Correctly identify causal relationships

— Discrete inputs (network topology, node configuration, etc.)
— Continuous inputs (noise/imbalance, bandwidth, latency, ...)
— Emergent properties (resource contention, middleware

behavior, ...)

Play “what if” games

— Interpolating and extrapolating runtime behavior

— Implementation effects for communication routines

— Multiple networks, perfect/”magic” operations

Test changes to application, middleware, or resource

management
— Reordering code blocks, scheduling effects, etc.
Test novel programming models
— Fault-tolerant or fault-oblivious execution models
— Alternatives to MPI, parallel runtime designs
— Mixed programming models
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SST/macro approach

 To meet our design goals, we need:
— A network model for resource contention
— Very fast processor and memory models
— Realistic middleware models (e.g. MPI)
— Support for complex application models (no direct
manipulation of state machines)

e We don’t need the exact answer, but we need the

correct macroscale behaviors
— ... wWith a deterministic simulator

— ... which must be reasonably fast
* ... for a wide range of simulation system sizes (10%-10° nodes)
* ... and realistic application workloads (10%-10° MPI
messages)
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High-level simulator design

“Process” holds
application process state
— User-space threads

— Private stacks
“Interface” bridges

threads and DES
— Context switching for

blocking calls
— Management of active/

blocked queues
“Simulator” handles DES
— Single-threaded (lock-free)

Application (Lightweight Threads)

Process

Requests

Interface

Kernels — Servers
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Discrete Event Simulator
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Example process control flow

THREAD O

MP| Recv -=

Yield until data available

MPI_Recv completes
MPI Send Oto 1
Schedule data sent
Schedule data recd
Yield until data sent

MPI_Send completes
Continue processing

<

ouljlsWll}
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THREAD 1

MPI Send 1to O

Schedule data sent
Schedule data recd
Yield until data sent
MPI1_Send completes
Begin computation
Schedule completion
Yield until complete

Computation completes
MPI|_Recv
Yield until data available

MPI_Recv completes
Continue processing

Two simulated processes exchanging data via MPI send/recv pairs
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Example inheritance diagram

kernel
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Partial collaboration diagram for MPI
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Networks

* Currently supports simplified network routing/

sharing

1. Contention-free

2. Circuit with fair sharing for concurrent flows
 Multiple topologies supported

network
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MPI trace example: AMG2006
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AMG2006 on a variety of node counts and decompositions.
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MPI trace example: CTH
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Skeleton applications

void mpipingpong::run() {
this->mpi_->init();
mpicomm world = this->mpi_->comm_world();

mpitype type = mpitype::mpi_double;
int rank = world.rank().id;

int size = world.size().id;
if(! ((size % 2) && (rank+1 >= size))) {
/I With an odd number of nodes, rank (size-1) sits out
mpiid peer(rank A 1); // partner nodes 0<=>1, 2<=>3, etc.
mpiapi::const_mpistatus_t stat;
for(int half_cycle = 0; half cycle<2*n|ter ++half_cycle) {
if((half_cycle + rank) & 1)
mpi_->send(count_, type, peer, mpitag(0), world);
else

mpi_->recv(count_, type, peer, mpitag(0), world, stat);

}

mpi_->finalize();
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Simulator performance
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MPI ping-pong on a contention-free network. Total of 4M messages.
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Simulated traffic congestion
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MPI ping-pong on fat-tree network. Fixed total of 65536 messages.
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Example parameter sweep: Latency
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Example parameter sweep: Bandwidth
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DUMPI: The MPI tracer

PMPI link-time library for trace file generation

Full fingerprints for all MPI-2 functions

Writes a (reasonably compact) binary trace file
Negligible runtime overhead
Reasonably portable C code

libdumpi

PMPI bindings

Type mapping
Call tree tracing (gcc/icc)

common

libundumpi

MPI type identifiers
MPI function identifiers
Trace file 10
Timers
Performance counters

Parsing of trace files

)
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Example of data output by DUMPI

(converted using dumpi2ascii)

MPI_Allgatherv entering at walltime 1274314439.744512000, \
cputime 0.201756000 seconds in thread 0.

int commsize=16

1nt sendcount=1024

MPI_Datatype sendtype=14 (MPI_DOUBLE)

int recvcounts[16]=[1024, 1024, 1024, 1024, 1024, 1024, 1024, \
1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024]

int displs[16]=[0, 1024, 2048, 3072, 4096, 5120, 6144, 7168, \
8192, 9216, 10240, 112064, 12288, 13312, 14336, 15360]

MPI_Datatype recvtype=14 (MPI_DOUBLE)

MPI_Comm comm=2 (MPI_COMM_WORLD)

MPI_Allgatherv returning at walltime 1274314439.749554000, \
cputime 0.202159000 seconds in thread 0.
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Callback-driven parsing of DUMPI files

* Each MPI call is assigned a callback function

typedef int (*dumpi_allﬁatherv_call)gconst dumpi_allgatherv *prm,
fl | uintlo_t thread, const dumpi_time *cpu, const dumpi_time
wall,

const dumpi_perfinfo *perf, void *userarg);

* The full set of arguments to the MPI function is passed to the callback in a
struct

typedef struct dumpi_allgatherv é _ _
‘) /** Not an MPI argument. Added to index relevant data in the struct.
int commsize;
/** Argument value before PMPI call */
int sendcount;
/** Argument value before PMPI call */
dump1_datat¥pe sendtype; .
/** Argument value betore PMPI call. Array of length [commsize] */
int * recvcounts; _
/** Argument value before PMPI call. Array of length [commsize] */
int * displs;
/** Argument value before PMPI call */
dumpi_datatype recvtype;
/** Argument value before PMPI call */
dumpi_comm comm;
} dumpi_allgatherv; r-l,‘ Sandia

National _
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