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Relevant phenomena for Si devices

MeV ion or neutron source

|

ions collide with Si atoms
forming damage cascades

!

cascades in Si evolve and
catalyze carrier recombination

!

Mechanistic
description

Y

carriers flow in BJT with recom-
bination at damage cascades

ionizing energy in Si
creates photocurrent
in devices

High-fidelity models

Compact models

circuit function altered
by BJT gain degradation

circuit function altered
by photocurrent in
BJTs, diodes, FETs

Empirical
treatment

A 4

ionization in Si02 creates
space charge leading to
threshold shifts in FETs

circuit function altered
by FET threshold shifts
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efect and carrier reactions in atomistic model

Primal species Reacted Secondary
in recoil cascade species reacted species
- T By (+,0.-) BB (+,0)
Sylterstltlal (Sip) (+2,+1,0,-1,-2)
N Cy (+,0,7)
) Y  Annihilation L B0 (0-)
4 o Siy displaces
Annihilation VP (+,0,-) dopant/impurity
| 8
Vacancy (V) (+2,+1,0,-1,-2) VO (©0,-) =——= Vbindsto
Not observed dopant/impurity

experimentally Divacancy (VV) (+1,0,-1,-2) VB (+,0)

t |

® Assessment of relevant defects and associated physical parameters based on literature.

. —
Carrierse & h

® Knowledge gaps addressed using density-functional-theory (DFT).
® Final parameter refinement using model-development irradiation experiments.
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DFT results for the Si vacancy

Supercell-size effects addressed by computing formation energies in 216-, 512-, and 1000-
atom supercells and fitting to the Makov-Payne expression:
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Extracting energy levels
and diffusion activation energies

Energy levels are the crossing points in plots

of the ground-state formation energies versus
Fermi level for charge states differing by 1

Formation energy (eV)

Ef[Vs%;EF] = Ef[Vs%;L QOO] +gEq

Vacancy formation energy vs. Fermi level
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Diffusion activation energies are the differences
in the extrapolated saddle-point (SP) and ground
state (GS) formation energies

E*[V¢] = E/[VE:SPiL — o] - E/[VE:GS;L — 0]



Comparison with experiments
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[Phys. Rev. B 74, 165116 (2006)] for vacancy results
[Phys. Rev. B 74, 205208 (2006)] for divacancy results
[J. Appl. Phys. 103, 083517 (2008)] for vacancy diffusion results




Atomic displacement damage in GaAs

» Current work is focusing on defects in GaAs

* The need for DFT results for GaAs is more urgent because less is known about
defects in GaAs than defects in Si

* Also, DLTS is unlikely to shed light on the energy levels or populations of individual
defects following MeV ion irradiation



formation energy (eV)

An aside: estimating a value for ¢ of GaAs

Unrelaxed arsenic antisite
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The fits were constrained to use the same value
of ¢ yielding 11.0.

Published values are:
DFT:10.9-14.4
Experiment: 10.6, 10.9




Results for the relaxed arsenic antisite

Relaxed arsenic antisite
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A shift was computed by aligning the computed 0/1+ level with
the measured 0/1+ value. The computed 1+/2+ level then differs
from the measured 1+/2+ level by 10 meV.




DFT results for the As interstitial in GaAs

[110] Split Interstitial : C,, symmetry Bridging : C,; symmetry

i G

-1 charge state 0 charge state +1 charge state

Tetrahedral : T, symmetry

+2 charge state +3 charge state
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As, thermal diffusion pathways

Ground State

Saddle Point

Ground / Metastable State

0.72 eV

0.44 eV

0.06 eV

-1 charge state: barrier = 0.72 eV

0 charge state: barrier = 0.36 eV

+1 charge state: barrier = 0.44 eV
(metastable state — on the right hand
side — is traversed in the diffusion path)
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Carrier assisted diffusion

| Step 2: +1 Metastable State

Step 4: +1 Ground State Step 6: 0 Ground State
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Summary

Sandia is undertaking to develop a multiscale model of atomic displacement
damage in Si and GaAs-based circuits

DFT is being used to provide information about defect properties when these are
not available from experiments

Current state-of-the-art DFT energy levels appear to differ from measured values
by 0.1-0.2 eV

Additional activities:
« The same protocals are being applied to the Ga vacancy in GaN

« We are exploring the use of exact exchange via an optimized effective
potential
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Supplementary material:
Treating charged defects in DFT calculations

A significant challenge is treating the long-ranged R R R
electrostatic potentials arising from charged defects

when using supercells and periodic boundary conditions N N N
We have considered two methods for doing this: + 4 N
1) uniform background charge (UBC) method

2) local-moment counter charge (LMCC) method + + +
UBC Method: Introduce a uniform charge distribution .

to nullify the long-ranged electrostatic interactions

LMCC Method: Introduce a gaussian counter charge at the defect site
that produces the correct electrostatic potential up to the cell boundary



i Supplementary material:
Comparison of the UBC and LMCC methods

* It can be shown analytically that both methods give the same formation energy
as L goes to infinity [Phys. Rev. B 74, 235209 (2006)]

* This is illustrated below where results obtained in 64-, 216-, 512-, 1000-, and

1728-atom supercells are fit to the expression E(L)= E (L — )+ Afl + % + 755
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s#.‘ Supplementary material:

Are analytic corrections viable?

* In the UBC method, a simple expression is available for the linear
2.8373¢°

eL
dependence where q is the charge and ¢ is the dielectric constant

E =-

* In the LMCC method, an approximate expression for the polarization

e
g € (RJost _/3) * 3

energy of the surrounding bulk material can be added to the formation
where f is an empirical parameter usually taken to be 0.8 a.u.

e Our tests indicate that these corrections are not adequate for our purposes



