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What does meshfree mean?

= Physics compatible FEM spaces defined via differential k-forms:

= For a polygonal mesh in 3D

Zero-form: o0, ou

One-form: / u-dl : | ’2?
JE £ "%0.75
Two-form: / u-dA l05
JF : fo2s
Three-form: / udV y
J i

A meshfree method uses only zero-forms as degrees of freedom
= Easy to push points around if you don’t care about preserving a mesh

= Exchange nice mathematical setting to get more descriptive models
= No Stokes theorems, no natural bilinear forms
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Why meshfree? Large deformation problems 77 Ntora

—V?u+Vp=f
V-u=90

ulg, =U+ (z—X) xQ
J5,0 -dA =0

Trask, N., Maxey, M., Hu, X.

A compatible high-order meshless
method for the Stokes equations with
applications to suspension flows

Journal of Computational Physics (2018)

Hu, W., Trask, N., Hu, X.,Pan,W.

A spatially adaptive high-order meshless
method for fluid—structure interactions.
Computer Methods in Applied Mechanics
and Engineering (2019)

Trivial treatment of large deformation problems — no remeshing + remap




Why meshfree? Large deformation problems ) B
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Compatible meshfree discretization: A framework for physics compatible
discretization of multiphysics problems that mimics robustness of mimetic methods
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Sandia
Why meshfree? Automatic geometry discretization i) feema_

3D Image Data :
(X—ra?/ CT) Labeling Exodus mesh
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» For engineering problems meshing constitutes 60-70% of time to solution
(SAND-2005-4647), which cannot be improved by moving to larger computers
« Automating geometry discretization is fundamental to developing large

throughput workflows based on either experimental data or UQ/optimization .




Sandia
Why meshfree? Automatic geometry discretization ) foor

S 4 ]
« Meshfree methods operate directly on the degrees of freedom available
in experiment

» Placing a particle at each voxel of the CT scan is sufficient to obtain a high-
fidelity simulation without human-in-the-loop meshing process 6
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Why meshfree? Differential geometry on evolving manifolds

To solve surface PDE, one may learn mapping between local charts
and tangent space to access metric tensor, curvature, surface
differential operators, etc.

Wity CusuliMonifde
1 2e04 oB 1 & Nass0D
Y Y

|
|
o

L (—5dvb 4 2Kvb) —~yvP —dp
—ov’ = U,

Trask, Nathaniel, and Paul Kuberry. "Compatible meshfree discretization of surface PDEs."Computational Particle

Mechanics(2019): 1-7.
Gross, B. J., Trask, N., Kuberry, P.,&Atzberger, P. J. (2019).Meshfree Methods on Manifolds for Hydrodynamic Flows on

Curved Surfaces:A Generalized Moving Least-Squares (GMLS) Approach.arXiv preprint arXiv:1905.10469. 8
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Why meshfree? Code couplers for E3SM @ Notore
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Outline Pl et

= Generalized moving least squares (GMLS)

= An approximation theory framework for generating meshfree
methods with rigorous accuracy guarantees

= Conservative meshless discretization

= How can we construct conservative schemes if we don’t have access
to discrete Stokes theorems?

= Meshfree discretizations of nonlocal mechanics

= Can we construct a meshfree discretization framework for integral
operators for fracture mechanics?

= Meshfree machine learning

= For scientific machine learning applications, can we use scattered data
approximation theory to build learning frameworks appropriate for
unstructured scientific data?
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Generalized moving least squares (GMLS)
Given u € V, a framework for estimating operators 7 € V* by finding an optimal
reconstruction over a subspace P C V which best matches unstructured samples

A= {Ai(u)};
T(u) ~ 7"(u)

(p) — A (u)) 2 W7, A5)
™ (u) = 7(p*)

p* = argmin (Z i
peP

Example:
Approximate point evaluation of derivatives:

Target functional 7; = D% 0d,, € V* |

Reconstruction space P = m,, - //\

Sampling functional A\; = 6, € V* : | \
Weighting function W = W (||z; — z;||) | N
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Preliminaries: Quasi-uniform point clouds i) feema_
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Definition 0.1. Fill4separation distances Given point cloud X = {z1,...,zx} C €,
define distances |
hx = sup min||z — z;||?
x = supminllz

1 .
gx = 2 #?Nflfi “%‘W

Definition 0.2. Quasi-uniformity A point cloud X is quasi-uniform with respect to cqy,
if
gx < hx < cqugx

Proposition 0.1. Suppose bounded €} and quasi-uniform X w.r.t. cq, > 0. Then there
exist ¢1,co > 0 such that

etN7d < hx < caN ™4
12




Classical MLS: quasi-interpolants A

[Wendland04]

Laboratories
Definition 1. Local polynomaial reproduction: A process defining Vx; € X
an approzimation u(z) = ). ¢;u(z;) Is a local polynomial reproduction if there
ezxist C1,C2 > 0.

1. > 2;0;P;=Pj for adll P €V,
2. > ;o] < Cy for allz € Q
3. ¢j(x) =0 if ||z — zj|l2 > C2hx and x € Q

Theorem 1. For bounded 2, define Q* = gﬁB(IIZ, Cahx). If sy is a local
polynomial reproduction of order m and f € C™T1(Q*) then

|[f (@) = 54(2)| < CRY | flom+r(ar

Theorem 2. Consider the GMLS process with T = 05, Aj(u) = u(z;), and
V = 1l,,. If Q) is compact and satisfies a cone condition, and X is quasi-
uniform, then there exists a constant C > 0 such that supp(W) = C hx where
the GMLS problem is solvable and forms a local polynomial reproduction.
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Classical MLS: derivative approximation A
[Mirzaeil2?]

Definition 1. Local polynomsial reproduction: A process defining Vz; € X
an approzimation D%u(z) = ). ¢;u(z;) Is a local polynomial reproduction if

there exist C1,C2 > 0.
1. 32, ¢iP5 = D*P(z) for all P € Vy

2. 3 |¢il < Cihi® for allz € @
3. ¢j(x) =0 if ||z — xj]|2 > Cohx and x € Q

Theorem 1. For bounded €2, define 0* = gQB(m, Cahx). If sy is a local
polynomial reproduction of order m and f € C™1(Q*) then

(@) — s¢(@)] < CRE T 1 floms e

Theorem 2. Consider the GMLS process with 7(u) = D%u(z), \j(u) = u(z;),
and V = 11,,. If Q) is compact and satisfies a cone condition, and X is quasi-
uniform, then there ezists a constant C > 0 such that supp(W) = C hx where
the GMLS problem is solvable and forms a local polynomial reproduction.
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An abstract error analysis framework ) =

Basic technique:
() = T (u)| < () = 7<(p)| + |7x(p) — X (u)l, (Vp € P)
< |7x(u) — 7x(p)| + |7 (p —u)[, <— reconstruction property

NF' . .
< |melu = p)l + | 0 Ai(u = plas, | <— GMLS definition

=1

< |rx(u = p)| + max [Ni(u = p)| 3 ||

tEfx T

> la% | < Cw Il e+ | ALl
iy

Holds for any target functional and approximation space:
I (u) — Tt ()] < |7(u = p)| + Cw |7l - 1AL max[Ai(u —p)|, p€P

F-
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A general abstract framework

= All examples from beginning of talk fall into this framework

= Ex: Data transfer applications

‘ 1
Af(a) = t; }hf /u n; AV (e :=—[ () dt
W)= o [ v )= @) = | utw)dy

= Ex: Solving different PDES

r(w) =div(w) (W) = [y K@ yhuy) —ulwdy 7(w) = [oo0(w)-dA
= Ex: Handling divergence/curl constraints in saddle point problems

Vi ={ve,? V-v=0}
Vi={vel,)? Vxv=0}

16




Solving PDEs with or without a mesh

To generate mesh free schemes fi

Finite difference
Target functional T Wg&{%} f face V¢-dA
Rﬂmmsmm iction spa Vv P P,
Saum pﬂhmg ﬁmmﬂmmﬂll Aﬁ @@m}:@ Mmjg
Jeighting function W W{|lz; —=il])  W(|lz; — =:l)

—— Collocation P2
—— Collocation - P4
001 —— Collocation - P6
o—o FV-P1
FV-P3
a FV-P5




Meshfree foundations for scientific machine learning

= Develop a mathematical framework for scientific machine
learning (SciML) tasks
= Data-driven model development
= Surrogate models for optimization and UQ
= Machine learning tools for solving numerical PDE
= Numerical homogenization of multiscale physics
= Development of closure models from multifidelity data

= Need tools appropriate for SciML setting
= Augment small-data regime with domain expertise

= Need to handle unstructured data characteristic of scientific
computation (e.g. unstructured meshes vs. Cartesian grids)

18




Operator regression: Problem statement

Given a collection of functions u; € V', a functional 7,, € V*, and a domain {2
can we infer 7,, from observations of the form

(i (), 7o [udl } o 2

Example:
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Operator regression: Problem statement

Given a collection of functions u; € V, a functional 7, € V*, and a domain €2
can we infer 7, from observations of the form

{ui(z), T [ui] } oy ?

Introduce a parametrized family of operators L € V*
with hyperparameter £ and solve the £s-optimization problem

£ = argmin > lImsfui] — Leluil |-

We present learning frameworks corresponding to choice of parameterization:

¢ GMLS-Nets: Use meshfree approximation theory to regress operators
characterized by scattered samples of data

e Fourier regression: Characterize operators via parameterization of Fourier
symbol

e Nonlocal operator regression: Characterize nonlocal operators via
parameterization of nonlocal kernel
20




GMLS-Nets: SciML architecture for unstructured data 7| Neoora

w/ Ravi Patel (SNL), Paul Atzberger (UCSB)

e Assume a basis ®,sothat pe P > p=4aT®

e GMLS thus provides an optimal local encoding of
data in terms of the coefficient a, providing a low-
dimensional encoding that may e.g. exploit physics

o Traditionally, GMLS estimates 7(u) = aT7(®), as-
suming one has knowledge of how the target func-
tional. Instead we seek an operator g : a — R, and
use gradient descent to tune £ to match data

e Functionally identical to convolutional networks - we
get a stencil that reproduces the operator, but no
restriction on e.g. Cartesian data, collar region, etc.

Input
Channels
Coefficient
Channels

I

scattered data h'—"

processing

GMLS-Layer
Mapping MLP
—mE:
—l— | 35
- || 32
—-T

Scattered Data Inputs

coefficients

(oo oo on oo for] s
| |

input channel

OTTTTTTTTITTITT]

coefficient channel

GMLS-Nets

pp:p

CIaSS|ﬁcat|on

||
06 ) ()00

stack layers
Regression

e )@

stack Iayers

Recently submitted to neurolPS (htips://arxiv.org/pdf/1909.05371.pdf)

Open-source software: code and training sets publically available for:
» Tensorflow (https://github.com/rgp62/gmlis-nets)
« PyTorch (https://github.com/atzberg/gmls-nets)
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GMLS-Nets:

MNIST
Classes

IEH

Input
Image

results

GMLS Features

a[1] a[2]

al3]

GMLS-Layer
Case Conv-2L | Hybrid-2L | GMLS-2L
MNIST 98.52% 98.41% 96.87%
i IR R L [ LB Rl I IR R Rl ﬁ LA LLL
25 « Training data _
% ® GMLS-Net test data
L -}\ L

77 Ntora

Provides similar performance to convNets on
MNIST due to similar feature extraction
capability
Generalizes convNets to unstructured scientific
data:
e Prediction of drag from cell center
velocity field taken from FV data
* No pressure/viscosity information: drag
characterizated entirely by flow

| L i i pautip

| 10 i uia

l L L i il II AL i iiinil

10000

le+06 le+08

Reynolds number
4 22




Data driven circuit models 7| Neorat
Laboratories
w/ P.Bochev

When analyzing systems consisting of large numbers of components, costly first principle
PDE models are often abandoned in favor of efficient ODE-based network models

PDE-based drift-diffusion model Circuit compact model

ic Hs
g
i
i

Isolation

Isolation

Parasitic Epitaxy
Transistor

Buried Layer

N
[ Substrate

As an example, circuit models are empirically generated in a process that
takes ~10 years to develop for typical components and has no means to
incorporate radiation effects.

Can we leverage physics from PDE model to inform an automatically
generated compact model? 23




Data driven circuit models 71 Mo
w/ P. Bochev

: — . — Interaction
Physics Priming (PP) Region Recognition (RR) Topology Identification (II)
Perfunctory TCAD ML + TDA Tailoring (TT) (seeded w/ established CMs)

Simulate high fidelity physics. Train and Adapt

(using available

Identify significant regions (ML+ Topological Data Analysis)

experimental data)

Identify interactions between signiﬁcant regions.

Prescribe electronics components to physical interactions.

Generate positive feedback in the machine learning process (supervised training). 24




