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What does meshfree mean?

• Physics compatible FEM spaces defined via differential k-forms:

• For a polygonal mesh in 3D

Zer for o u

JE u dl
fFu dA
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A meshfree method uses only zero-forms as degrees of freedom

• Easy to push points around if you don't care about preserving a mesh

• Exchange nice mathematical setting to get more descriptive models

No Stokes theorems, no natural bilinear forms
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Why meshfree? Large deformation problems
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Trask, N., Maxey, M., Hu, X.
A compatible high-order meshless
method for the Stokes equations with
applications to suspension flows
Journal of Computational Physics (2018)

Hu, W., Trask, N., Hu, X.,Pan,W.
A spatially adaptive high-order meshless
method for fluid—structure interactions.
Computer Methods in Applied Mechanics
and Engineering (2019)

Trivial treatment of large deformation problems — no remeshing + remap
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Why meshfree? Large deformation problems
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Compatible meshfree discretization: A framework for physics compatible
discretization of multiphysics problems that mimics robustness of mimetic methods
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Why meshfree? Automatic geometry discretization

3D Image Data
(X-ray CT)

Segmentation

Labeling Exodus mesh

FEM
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• For engineering problems meshing constitutes 60-70% of time to solution
(SAND-2005-4647), which cannot be improved by moving to larger computers
• Automating geometry discretization is fundamental to developing large
throughput workflows based on either experimental data or UQ/optimization 5



Why meshfree? Automatic geometry discretization
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• Meshfree methods operate directly on the degrees of freedom available
in experiment

• Placing a particle at each voxel of the CT scan is sufficient to obtain a high-
fidelity simulation without human-in-the-loop meshing process 6
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Why meshfree? Differential geometry on evolving manifolds

To solve surface PDE, one may learn mapping between local charts
and tangent space to access metric tensor, curvature, surface
differential operators, etc.
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Trask, Nathaniel, and Paul Kuberry. "Compatible meshfree discretization of surface PDEs."Computational Particle
Mechanics(2019): 1-7.
Gross, B. J., Trask, N., Kuberry, P.,&Atzberger, P. J. (2019).Meshfree Methods on Manifolds for Hydrodynamic Flows on
Curved Surfaces:A Generalized Moving Least-Squares (GMLS)Approach.arXiv preprint arXiv:1905.10469. 8



Why meshfree? Code couplers for E3SM

Horizontal Grid
(tatitude-Longitude)

Vertical Grid
(Height or Pressure)

Physical Processes in a Model
NA, 1•11.O.i

FiK4P4-,

Coupler
(cpl7)

Land Ice
(MPAS-L1).4 ►—

Sea Ice
(MPAS-CICE)
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Outline

■ Generalized moving least squares (GMLS)

■ An approximation theory framework for generating meshfree
methods with rigorous accuracy guarantees

■ Conservative meshless discretization
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■ How can we construct conservative schemes if we don't have access
to discrete Stokes theorems?

■ Meshfree discretizations of nonlocal mechanics

■ Can we construct a meshfree discretization framework for integral

operators for fracture mechanics?

■ Meshfree machine learning

■ For scientific machine learning applications, can we use scattered data
approximation theory to build learning frameworks appropriate for

unstructured scientific data?
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Generalized moving least squares (GMLS) Nebula!
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Given u c V, a fr ework for estimating ope ators T C V* by finding optimal
reco struction over a subspace P C V which best atches unstructur s ples

A fAi(u)li

(u)

)) W
2

rgmin -(p)
pEP

(11) (P*)

Example:
Approximate point evaluation of derivatives:

arget functio rz. = D (Sx. E V*

Reconstruction space P

S pling functional - c V*

Weigh mg f ction W (11 x -11)
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Preliminaries: Quasi-uniform point clouds

Definition 0.1. Fill-Fsepar
de ne dist ces

Definition 0.2.
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c Q,

ty A point cloud X is quasi-un o a with respect to cqu

qx < hx < cquqx

Proposition 0.1. Suppose bounded Q and quasi-lingo X w.r.t. cqu. > O. Then there
exist c2 > 0 such that

ciNA < hx < c2N-
12



Classical MLS: quasi-interpolants
[Wendlanc104]
efinition 1. L poi ornial rep u tion: A process defining Vxi E X

an approximation u(x)
t 611, C2 > O.

1 E -P- =Pj for all P E Vh

2. E.10 < C1 for all x E Q

3- -(x) — iflix x > C2hx and x

Theore For bounded Q, define Q U B(x C2hx) zs a local

polynomial reproduction of order m and f E C   (Q*) then
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-u(x -) Is a local polynomial reproduction zf there

f (x) s f(x)l < C h +11 f

Theo e 2. Consider the GMLS process with T = 6x; Mu) = u(x j), and
V Q is compact and satisfies a cone condition, and X is quasi-
unifo then there ts a constant C > 0 such that supp(W) = C hx where
the GM S problem solvable and fo a local polynomial reproduction.
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Classical MLS: derivative approximation

[Mirzaeil2]
Definition 1 L polynomial rep uction: A process defining vxi c X
an approximation D u(x) — E -u(x ) Is a local polynomial reproduction if
there t C1, C2 > 0.

1. E. D P(x) f®r all P e Vh

2. E < C I for all x c Q

cb-(x) = 0 if ix — x > C2hx and x c Q

Theorem 1 For bounded ti, define Q U B(x, C2hx)

polynomial reproduction of order m and f E C +1011 then

lf(x)-sf(x)i Chx+1 f lc 1(ak)
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s a local

Theorei 2. Co ider the GMLS process with T(u) = D"u(x), Mu) = u(x.),
and V II . If CI is compact and satisfies a cone condition, and X is quasi-
unifo then there ts a constant C > 0 such that supp(W) = C hx where
the GM S problem solvable and fo a local polynomial reproduction.
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An abstract error analysis framework

Basic technique:

ITx(11) (101 ITIc(n) — 0:01 + 1Tx(P) T.! (u) 1, (VP E P)

lrx(u) Tx(A1+11V1:1- t.1)1
Pip

< I lrx E (.4 - Ir. -1- MILS. de-al:A.60ni=1

iTx(u P)1 + max Ai(ti P)1 T,iE

reconstmetion property

E Cw111-xlIpidIA;1 11

Ho1ds for any target functional and approximation space:
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ITx(u) - TITOI P) + llA;1 11 .1iLAcc 19)11 P
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A general abstract framework

• All examples from beginning of talk fall into this framework
• Ex: Data transfer applications

1
— .i.

• Ex: Solving different PDES

T (U)  div(u)

u • n
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Ann) := u(ti) dY
••• • L

f B (z) (x , y)u(y) — u(x)dy (u) (u) • dA

• Ex: Handling divergence/curl constraints in saddle point problems

E (llm)di 0.v = ol

Vh INT E (11,m)di v x v }
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Solving PDEs with or without a mesh

To
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f

— Collocation P2
— Collocation - P4
— Collocation - P6
13-0 FV - P1
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h
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Meshfree foundations for scientific machine learning

• Develop a mathematical framework for scientific machine
learning (SciML) tasks
• Data-driven model development

• Surrogate models for optimization and UQ

• Machine learning tools for solving numerical PDE

• Numerical homogenization of multiscale physics

• Development of closure models from multifidelity data

• Need tools appropriate for SciML setting
• Augment small-data regime with domain expertise

• Need to handle unstructured data characteristic of scientific
computation (e.g. unstructured meshes vs. Cartesian grids)
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Operator regression: Problem statement

Given a collection of functions u E V, a
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nal Tx c V*, and a do am Q
can we infer Tx from obse tons of the for

Example :
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Operator regression: Problem statement
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Given collection of functions ui e V, a functional Tx e V*, and a domain 9
c we infer Tx from observations of the for

fUi (X), Tx

11111

Introduce a parametrized family of operators c V*
th ype

We present le '111

arameter d solve the f2-optimizatio problem

— arg in ll-r End —

ng fr eworks co

2
Ter*

sponding to choice of par

• GMLS-Ne s: Use meshfree approx ation th
characterized by scattered s. ples of data

y to e

it e ization:

s ope tors

• Fourier regressio Ch acterize operators via pa e e on. of ourier
s bol

• N nl cal oper tor regressi n: Characterize nonlocal operators via
parameterization of n nlocal kernel
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GMLS-Nets: SciML architecture for unstructured data
w/ Ravi Patel (SNL), Paul Atzberger (UCSB)

Assum basis (I) so that p E P > p= aT(1)

• GMLS thus provid ti I encoding of
dat in ter s of the coe cient a, oviding a low-
dimensional encoding that may e.g. exploit physics

• Tr tionally, GMLS
suming one has knowl
tio tead we seek
use ent descent to

at r(u) = aTT(4) 
ge of h w the t get lune-

operator qc a
e to 'match data

nctionally identical to convolutional networks - we
get a stencil that reprodu the operator, but o
restriction on e.g. C es data, llar region, etc.

GMLS-Layer

Mapping MLP

cattereddata
processi ng

Scattered Data Inputs
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GMLS-Nets

Classification
ollf-Lso

stack layers
Regression
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Recently submitted to neurolPS ( Ittps://arxiv.org/pdf/1909.05371.pdf)
Open-source software: code and training sets publically available for:
• Tensorflow (https://github.com/rgp62/gmls-nets)
• PyTorch (https://github.com/atzberg/gmls-nets)

21



GMLS-Nets: results

MNIST
Classes

12
M

Input
Image

4,1
GMLS-Layer

a[0]

a[10]

GMLS Features

a[1] a[2] a[3]

a[6] a[7] a[8]

a[11] a[12] a[13]

a[4]

a[9]

Case Conv-2L Hybrid-2L GMLS-2L

MNIST 98.52% 98.41% 96.87%

100 10000
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• Provides similar performance to convNets on
MNIST due to similar feature extraction
capability

• Generalizes convNets to unstructured scientific
data:
• Prediction of drag from cell center

velocity field taken from FV data
• No pressure/viscosity information: drag

characterizated entirely by flow

1e+06
Reynolds number

• Training data
• GMLS-Net test data

1c1-08
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Data driven circuit models
w/ P.Bochev
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When analyzing systems consisting of large numbers of components, costly first principle
PDE models are often abandoned in favor of efficient ODE-based network models

PDE-based drift-diffusion model
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Circuit compact model

As an example, circuit models are empirically generated in a process that
takes -10 years to develop for typical components and has no means to

incorporate radiation effects.

Can we leverage physics from PDE model to inform an automatically
generated compact model? 23



Data driven circuit models
w/ P. Bochev

Physics Priming (PP)
Perfunctory TCAD

01

Region Recognition (RR)
ML + TDA

Topology
Tailoring (TT)

Simulate high fidelity physics.

Identify significant regions (ML+ Topological Data Analysis)

Identify interactions between significant regions.

Prescribe electronics components to physical interactions.

Generate positive feedback in the machine learning process (supervised training).
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Interaction
Identification (II)

(seeded w/ established CM5)

Train and Adapt
(using available

experimental data)
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