

Spatially compatible meshfree discretization through
GMLS and graph theory

Nat Trask

Center for Computing Research
Sandia National Laboratories

What does meshfree mean?

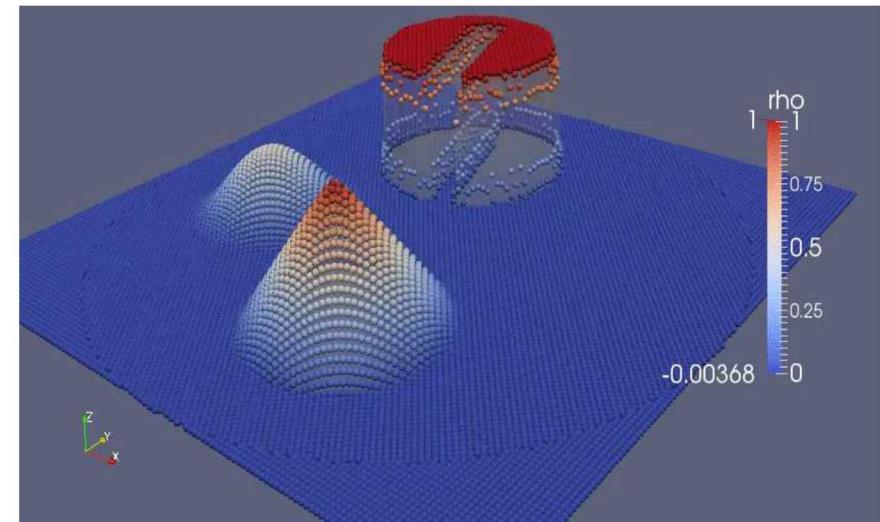
- Physics compatible FEM spaces defined via differential k-forms:
 - For a polygonal mesh in 3D

Zero-form: $\delta_{x_i} \circ \mathbf{u}$

One-form: $\int_E \mathbf{u} \cdot d\mathbf{l}$

Two-form: $\int_F \mathbf{u} \cdot d\mathbf{A}$

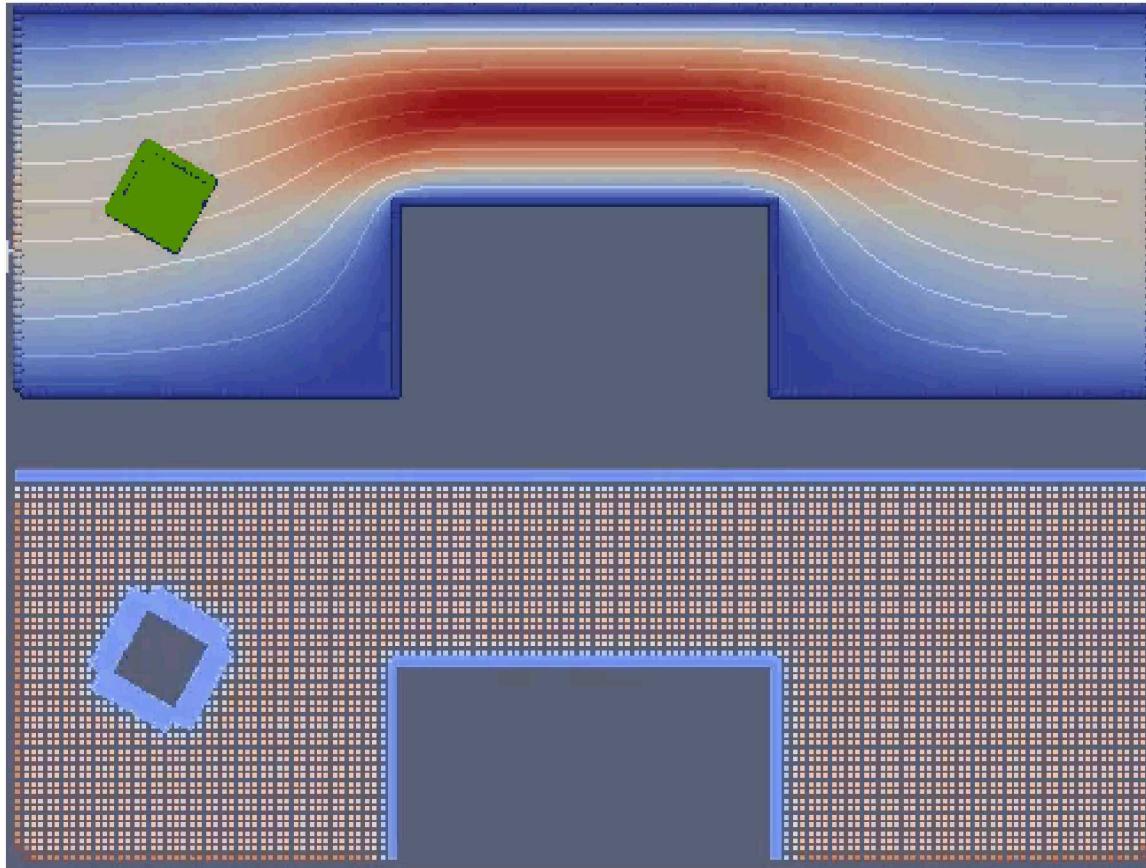
Three-form: $\int_C \mathbf{u} dV$



A meshfree method uses only zero-forms as degrees of freedom

- Easy to push points around if you don't care about preserving a mesh
- Exchange nice mathematical setting to get more descriptive models
 - No Stokes theorems, no natural bilinear forms

Why meshfree? Large deformation problems



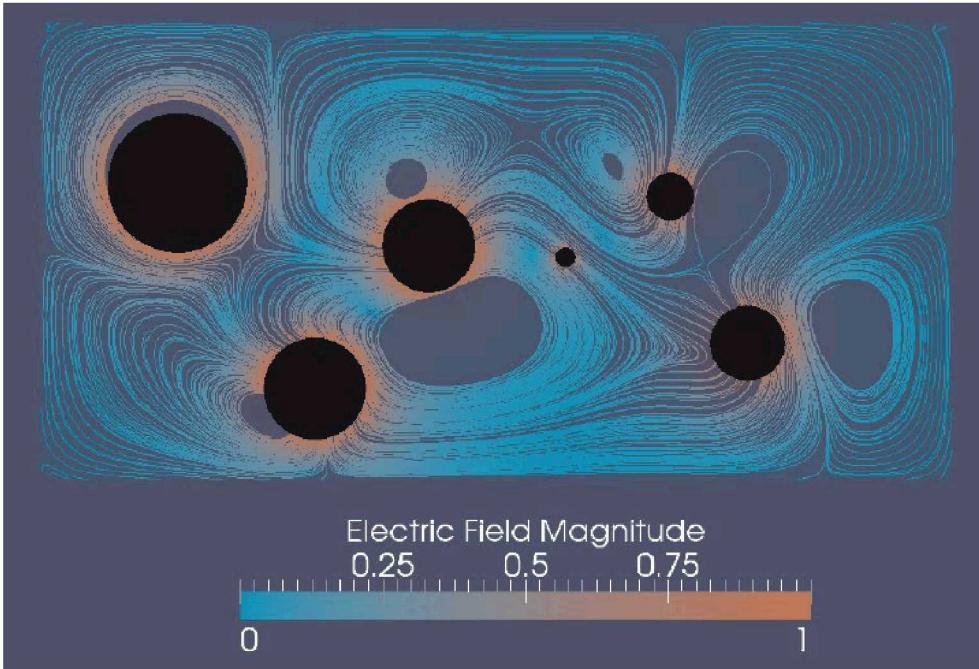
$$\left\{ \begin{array}{l} -\nabla^2 \mathbf{u} + \nabla p = \mathbf{f} \\ \nabla \cdot \mathbf{u} = 0 \\ \mathbf{u}|_{\partial\omega} = \mathbf{U} + (\mathbf{x} - \mathbf{X}) \times \boldsymbol{\Omega} \\ \int_{\partial\omega} \boldsymbol{\sigma} \cdot d\mathbf{A} = 0 \end{array} \right.$$

Trask, N., Maxey, M., Hu, X.
A compatible high-order meshless
method for the Stokes equations with
applications to suspension flows
Journal of Computational Physics (2018)

Hu, W., Trask, N., Hu, X., Pan, W.
A spatially adaptive high-order meshless
method for fluid–structure interactions.
Computer Methods in Applied Mechanics and Engineering (2019)

Trivial treatment of large deformation problems – no remeshing + remap

Why meshfree? Large deformation problems



$$\begin{cases} -\nu \nabla^2 \mathbf{u} + \nabla p = -\rho_e(\phi) \nabla \phi \\ \nabla \cdot \mathbf{u} = 0 \\ \mathbf{u} = \mathbf{w} \\ \mathbf{u} = \mathbf{V}_i + (x - \mathbf{X}_i) \times \boldsymbol{\Omega}_i \end{cases}$$

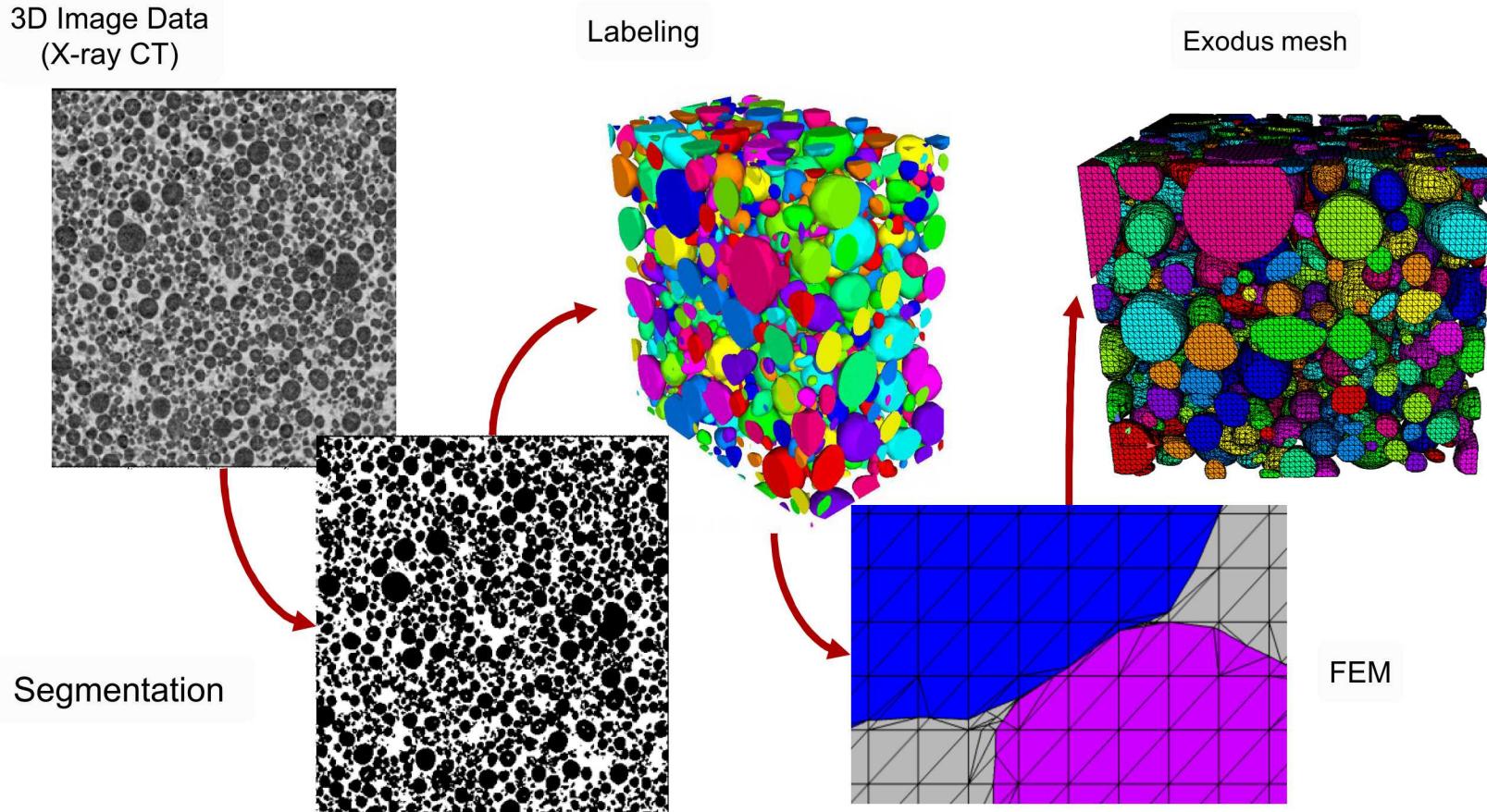
$$-I_c^2 \nabla^4 \phi + \nabla^2 \phi = -\frac{\rho_e(\phi)}{\epsilon}$$

$$\begin{cases} 0 = \int_{\partial \Omega_i} \bar{\bar{\sigma}} \cdot d\mathbf{A} \\ 0 = \int_{\partial \Omega_i} \bar{\bar{\sigma}} \times (x - \mathbf{X}_i) \cdot d\mathbf{A} \end{cases}$$

$$\bar{\bar{\sigma}} = -\epsilon_0 \left(\mathbf{E} \otimes \mathbf{E} + E^2 \mathbf{I} \right) + -\rho \mathbf{I} + \frac{\nu}{2} (\nabla \mathbf{u} + \nabla \mathbf{u}^T)$$

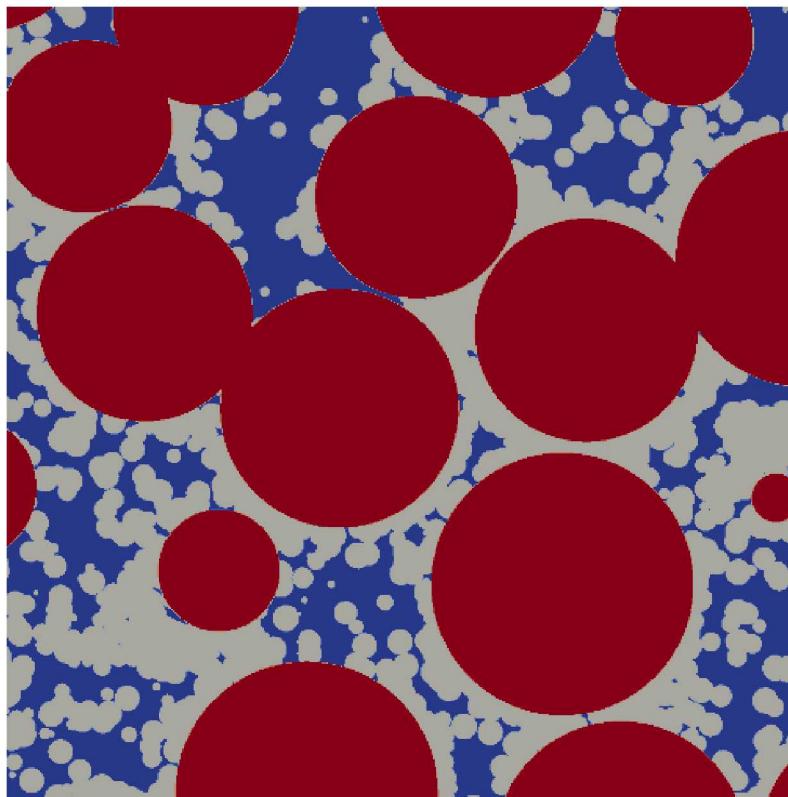
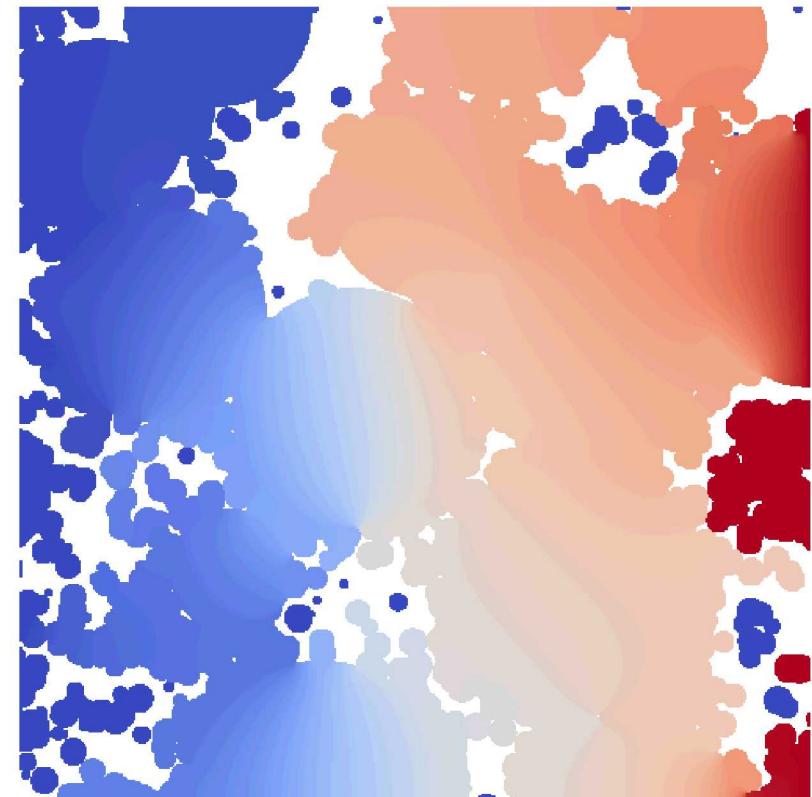
Compatible meshfree discretization: A framework for physics compatible discretization of multiphysics problems that mimics robustness of mimetic methods

Why meshfree? Automatic geometry discretization



- For engineering problems **meshing constitutes 60-70% of time to solution** (SAND-2005-4647), which cannot be improved by moving to larger computers
 - Automating geometry discretization is fundamental to developing large throughput workflows based on either experimental data or UQ/optimization

Why meshfree? Automatic geometry discretization

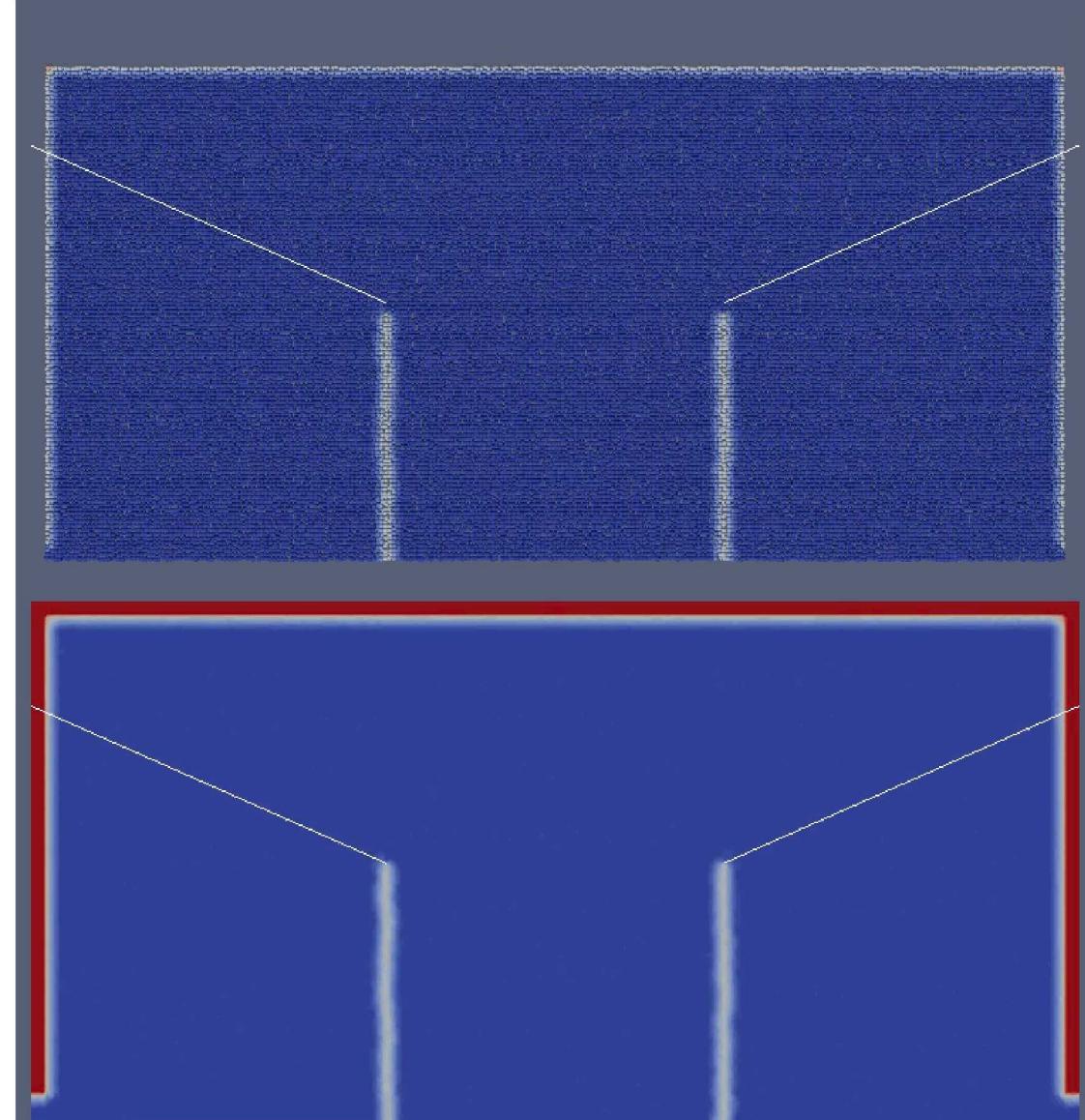


- Meshfree methods operate **directly on the degrees of freedom available in experiment**
- Placing a particle at each voxel of the CT scan is sufficient to obtain a high-fidelity simulation without human-in-the-loop meshing process

Automatic treatment of
topology changes:
No need to reconnect
elements, manage mesh
quality, etc. as topology
evolves as a function of
solution

Task, N., et al.
"An asymptotically compatible
meshfree quadrature rule for
nonlocal problems with
applications to peridynamics."
Mechanics and Engineering
343 (2019): 151-165.

Why meshfree? Fracture mechanics



Why meshfree? Differential geometry on evolving manifolds

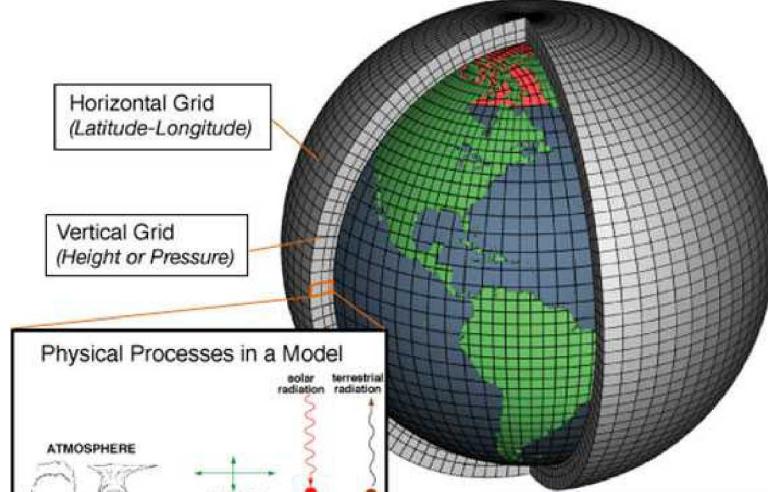
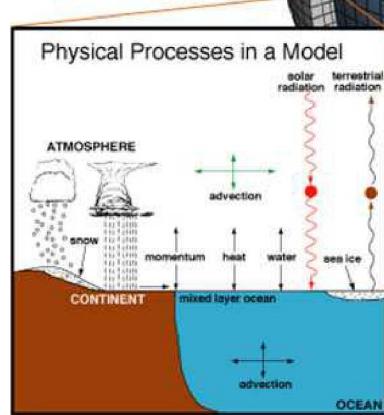
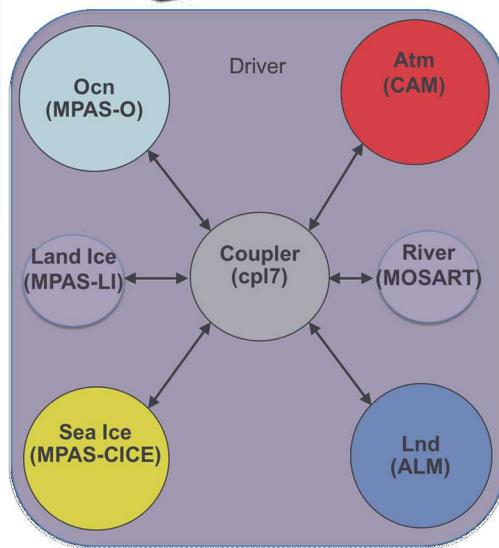
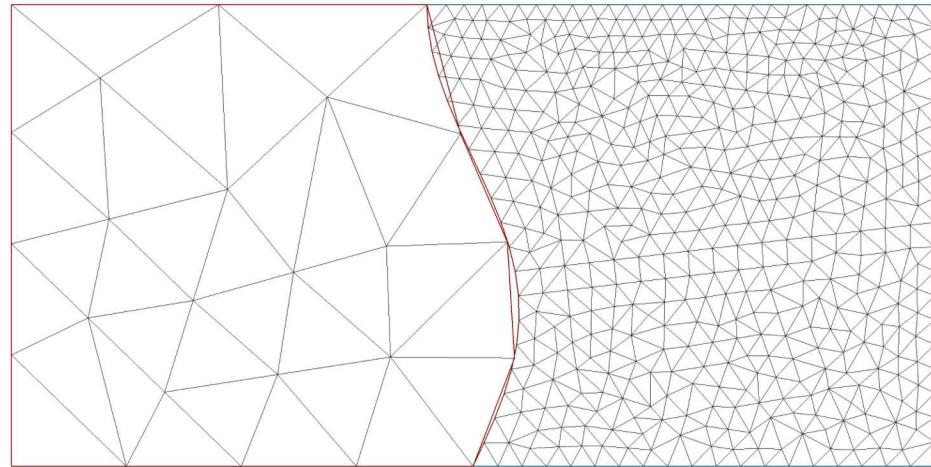
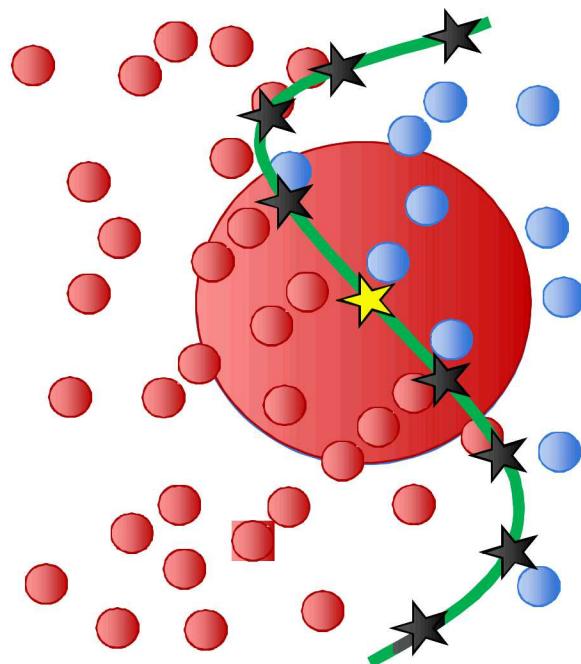
To solve surface PDE, one may learn mapping between local charts and tangent space to access metric tensor, curvature, surface differential operators, etc.

$$\begin{cases} \mu_m (-\delta \mathbf{d}v^b + 2Kv^b) - \gamma v^b - \mathbf{d}p &= -\mathbf{b}^b \\ -\delta v^b &= 0. \end{cases}$$

Trask, Nathaniel, and Paul Kuberry. "Compatible meshfree discretization of surface PDEs." *Computational Particle Mechanics* (2019): 1-7.

Gross, B. J., Trask, N., Kuberry, P., & Atzberger, P. J. (2019). Meshfree Methods on Manifolds for Hydrodynamic Flows on Curved Surfaces: A Generalized Moving Least-Squares (GMLS) Approach. *arXiv preprint arXiv:1905.10469*.

Why meshfree? Code couplers for E3SM



Outline

- Generalized moving least squares (GMLS)
 - An approximation theory framework for generating meshfree methods with rigorous accuracy guarantees
- Conservative meshless discretization
 - How can we construct conservative schemes if we don't have access to discrete Stokes theorems?
- Meshfree discretizations of nonlocal mechanics
 - Can we construct a meshfree discretization framework for integral operators for fracture mechanics?
- Meshfree machine learning
 - For scientific machine learning applications, can we use scattered data approximation theory to build learning frameworks appropriate for unstructured scientific data?

Generalized moving least squares (GMLS)

Given $u \in V$, a framework for estimating operators $\tau \in V^*$ by finding an optimal reconstruction over a subspace $P \subset V$ which best matches unstructured samples

$$\Lambda := \{\lambda_i(u)\}_i$$

$$\tau(u) \approx \tau^h(u)$$

$$p^* = \operatorname{argmin}_{p \in P} \left(\sum_j \lambda_j(p) - \lambda_j(u) \right)^2 W(\tau, \lambda_j)$$

$$\tau^h(u) := \tau(p^*)$$

Example:

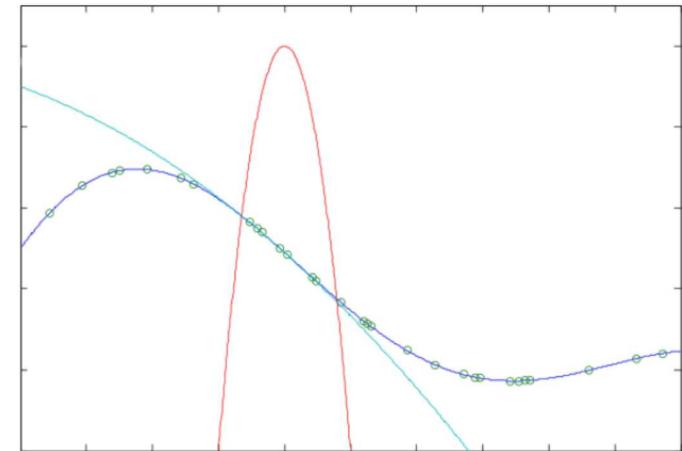
Approximate point evaluation of derivatives:

Target functional $\tau_i = D^\alpha \circ \delta_{x_i} \in V^*$

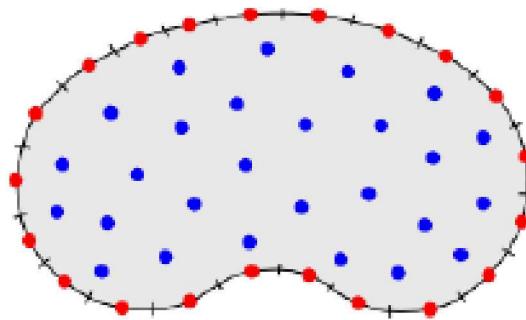
Reconstruction space $P = \pi_m$

Sampling functional $\lambda_j = \delta_{x_j} \in V^*$

Weighting function $W = W(\|x_i - x_j\|)$



Preliminaries: Quasi-uniform point clouds



Definition 0.1. Fill+separation distances Given point cloud $X = \{x_1, \dots, x_N\} \subset \Omega$, define distances

$$h_X = \sup_{x \in \Omega} \min_{j \in X} \|x - x_j\|^2$$

$$q_X = \frac{1}{2} \min_{j \neq i} \|x_i - x_j\|^2$$

Definition 0.2. Quasi-uniformity A point cloud X is *quasi-uniform with respect to c_{qu}* if

$$q_X \leq h_X \leq c_{qu} q_X$$

Proposition 0.1. Suppose bounded Ω and quasi-uniform X w.r.t. $c_{qu} > 0$. Then there exist $c_1, c_2 > 0$ such that

$$c_1 N^{-\frac{1}{d}} \leq h_X \leq c_2 N^{-\frac{1}{d}}$$

Classical MLS: quasi-interpolants [Wendland04]

Definition 1. *Local polynomial reproduction:* A process defining $\forall x_i \in X$ an approximation $u(x) = \sum_j \phi_j u(x_j)$ Is a local polynomial reproduction if there exist $C_1, C_2 > 0$.

1. $\sum_j \phi_j P_j = P_j$ for all $P \in V_h$
2. $\sum_j |\phi_j| \leq C_1$ for all $x \in \Omega$
3. $\phi_j(x) = 0$ if $\|x - x_j\|_2 > C_2 h_X$ and $x \in \Omega$

Theorem 1. For bounded Ω , define $\Omega^* = \bigcup_{x \in \Omega} B(x, C_2 h_X)$. If s_f is a local polynomial reproduction of order m and $f \in C^{m+1}(\Omega^*)$ then

$$|f(x) - s_f(x)| \leq C h_X^{m+1} |f|_{C^{m+1}(\Omega^*)}$$

Theorem 2. Consider the GMLS process with $\tau = \delta_x$, $\lambda_j(u) = u(x_j)$, and $V = \Pi_m$. If Ω is compact and satisfies a cone condition, and X is quasi-uniform, then there exists a constant $C > 0$ such that $\text{supp}(W) = C h_X$ where the GMLS problem is solvable and forms a local polynomial reproduction.

Classical MLS: derivative approximation [Mirzaei12]

Definition 1. *Local polynomial reproduction:* A process defining $\forall x_i \in X$ an approximation $D^\alpha u(x) = \sum_j \phi_j u(x_j)$ Is a local polynomial reproduction if there exist $C_1, C_2 > 0$.

1. $\sum_j \phi_j P_j = D^\alpha P(x)$ for all $P \in V_h$
2. $\sum_j |\phi_j| \leq C_1 h_X^{-|\alpha|}$ for all $x \in \Omega$
3. $\phi_j(x) = 0$ if $\|x - x_j\|_2 > C_2 h_X$ and $x \in \Omega$

Theorem 1. For bounded Ω , define $\Omega^* = \bigcup_{x \in \Omega} B(x, C_2 h_X)$. If s_f is a local polynomial reproduction of order m and $f \in C^{m+1}(\Omega^*)$ then

$$|f(x) - s_f(x)| \leq C h_X^{m+1-|\alpha|} |f|_{C^{m+1}(\Omega^*)}$$

Theorem 2. Consider the GMLS process with $\tau(u) = D^\alpha u(x)$, $\lambda_j(u) = u(x_j)$, and $V = \Pi_m$. If Ω is compact and satisfies a cone condition, and X is quasi-uniform, then there exists a constant $C > 0$ such that $\text{supp}(W) = C h_X$ where the GMLS problem is solvable and forms a local polynomial reproduction.

An abstract error analysis framework

Basic technique:

$$\begin{aligned} |\tau_{\mathbf{x}}(u) - \tau_{\mathbf{x}}^h(u)| &\leq |\tau_{\mathbf{x}}(u) - \tau_{\mathbf{x}}(p)| + |\tau_{\mathbf{x}}(p) - \tau_{\mathbf{x}}^h(u)|, \quad (\forall p \in P) \\ &\leq |\tau_{\mathbf{x}}(u) - \tau_{\mathbf{x}}(p)| + |\tau_{\mathbf{x}}^h(p - u)|, \quad \leftarrow \text{reconstruction property} \\ &\leq |\tau_{\mathbf{x}}(u - p)| + \left| \sum_{i=1}^{N_p} \lambda_i(u - p) a_{\tau_{\mathbf{x}}}^i \right| \quad \leftarrow \text{GMLS definition} \\ &\leq |\tau_{\mathbf{x}}(u - p)| + \max_{i \in I_{\mathbf{x}}} |\lambda_i(u - p)| \sum_{i \in I_{\mathbf{x}}} |a_{\tau_{\mathbf{x}}}^i|. \end{aligned}$$

$\sum_{i \in I_{\mathbf{x}}} |a_{\tau_{\mathbf{x}}}^i| \leq C_W \|\tau_{\mathbf{x}}\|_{P^*} \|\Lambda_{\mathbf{x}}^{-1}\|$

Holds for any target functional and approximation space:

$$|\tau_{\mathbf{x}}(u) - \tau_{\mathbf{x}}^h(u)| \leq |\tau_{\mathbf{x}}(u - p)| + C_W \|\tau_{\mathbf{x}}\|_{P^*} \|\Lambda_{\mathbf{x}}^{-1}\| \max_{i \in I_{\mathbf{x}}} |\lambda_i(u - p)|, \quad p \in P$$

A general abstract framework

- All examples from beginning of talk fall into this framework
 - Ex: Data transfer applications

$$\lambda_i^e(\mathbf{u}) := \frac{1}{|e_i|} \int_{e_i} \mathbf{u} \cdot \mathbf{t}_i \quad \lambda_i^f(\mathbf{u}) = \frac{1}{|f_i|} \int_{f_i} \mathbf{u} \cdot \mathbf{n}_i \quad \lambda_i^v(u) := \frac{1}{|V_i|} \int_{V_i} u(\mathbf{y}) d\mathbf{y}$$

- Ex: Solving different PDES

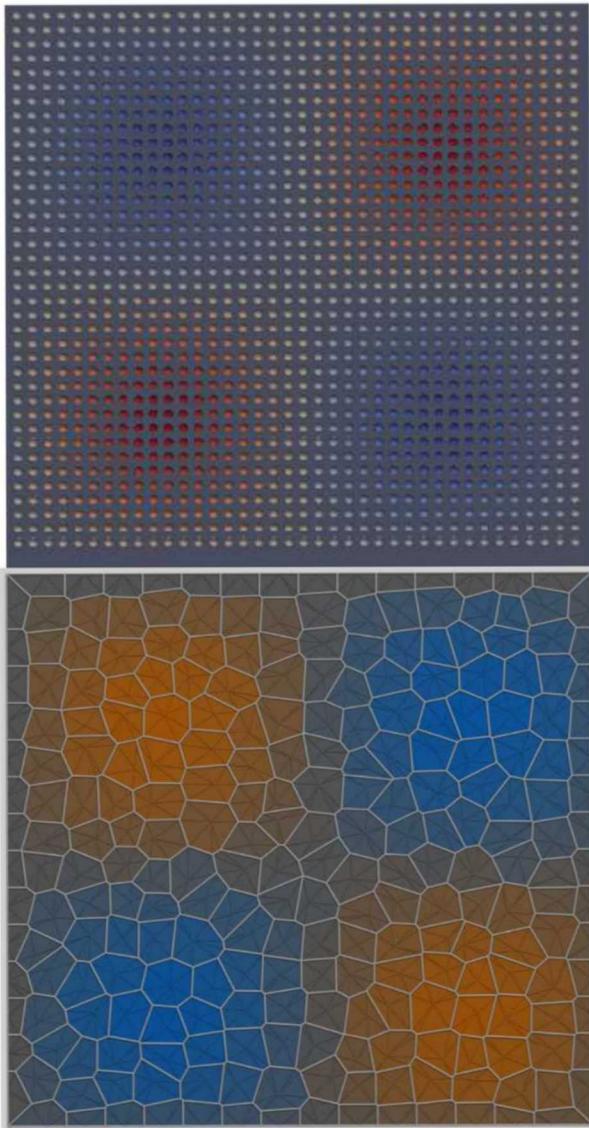
$$\tau(u) = \operatorname{div}(u) \quad \tau(u) = \int_{B(x)} K(x, y)u(y) - u(x)dy \quad \tau(u) = \int_{\partial\Omega} \sigma(u) \cdot d\mathbf{A}$$

- Ex: Handling divergence/curl constraints in saddle point problems

$$V_h = \{\mathbf{v} \in (\Pi_m)^d \mid \nabla \cdot \mathbf{v} = 0\}$$

$$V_h = \{\mathbf{v} \in (\Pi_m)^d \mid \nabla \times \mathbf{v} = 0\}$$

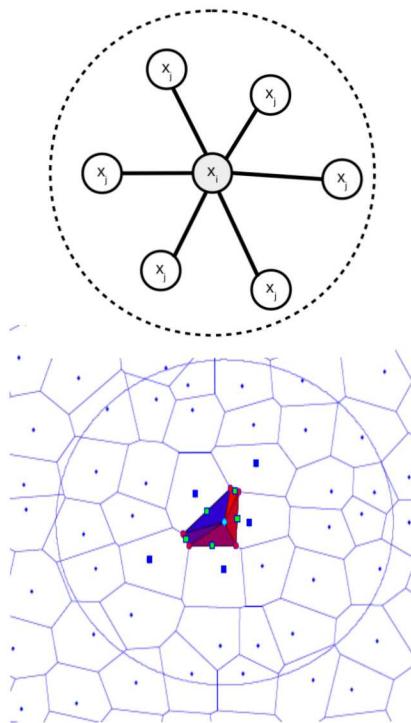
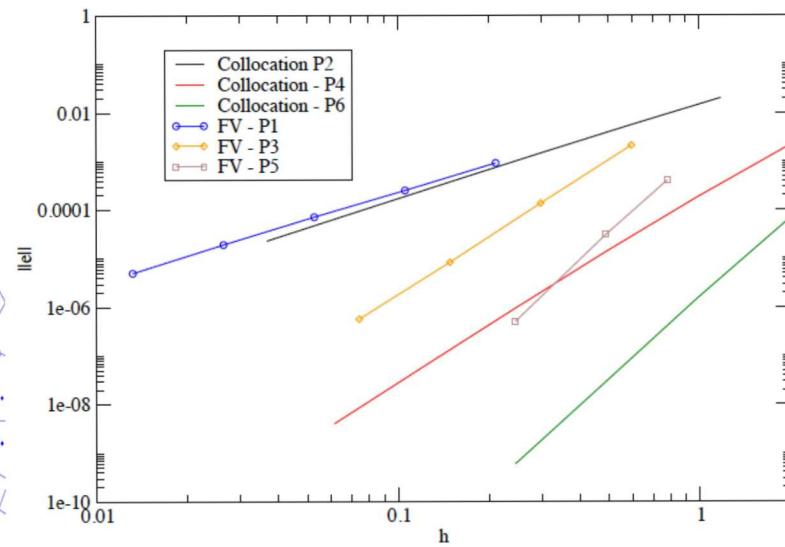
Solving PDEs with or without a mesh



To generate mesh free schemes for $\nabla^2\phi = f$:

Target functional
Reconstruction space
Sampling functional
Weighting function

	Finite difference	Finite volume
τ_i	$\nabla^2\phi(\mathbf{x}_i)$	$\int_{face} \nabla\phi \cdot d\mathbf{A}$
\mathbf{V}	P_m	P_m
λ_j	$\phi(\mathbf{x}_j)$	$\phi(\mathbf{x}_j)$
W	$W(\ \mathbf{x}_j - \mathbf{x}_i\)$	$W(\ \mathbf{x}_j - \mathbf{x}_i\)$



- Develop a mathematical framework for scientific machine learning (SciML) tasks
 - Data-driven model development
 - Surrogate models for optimization and UQ
 - Machine learning tools for solving numerical PDE
 - Numerical homogenization of multiscale physics
 - Development of closure models from multifidelity data
- Need tools appropriate for SciML setting
 - Augment small-data regime with domain expertise
 - Need to handle unstructured data characteristic of scientific computation (e.g. unstructured meshes vs. Cartesian grids)

Operator regression: Problem statement

Given a collection of functions $u_i \in V$, a functional $\tau_x \in V^*$, and a domain Ω
can we infer τ_x from observations of the form

$$\{u_i(x), \tau_x[u_i]\}_{i=1}^N ?$$

Example:

$$\left\{ \begin{array}{c} \text{Figure 1: Four oscillatory functions (red, green, blue, orange) on the interval } [0, 1]. \\ \text{Figure 2: The same four functions scaled by a factor of 10, with axes ranging from -30 to 30. } \end{array} \right\} \implies \tau_x = \frac{\partial u}{\partial \hat{x}} \Big|_{\hat{x}=x}$$

Operator regression: Problem statement

Given a collection of functions $u_i \in V$, a functional $\tau_x \in V^*$, and a domain Ω
can we infer τ_x from observations of the form

$$\{u_i(x), \tau_x[u_i]\}_{i=1}^N ?$$

Introduce a parametrized family of operators $\mathcal{L}_\xi \in V^*$
with hyperparameter ξ and solve the ℓ_2 -optimization problem

$$\mathcal{L} = \underset{\xi}{\operatorname{argmin}} \sum_i \|\tau_x[u_i] - \mathcal{L}_\xi[u_i]\|_{V^*}^2$$

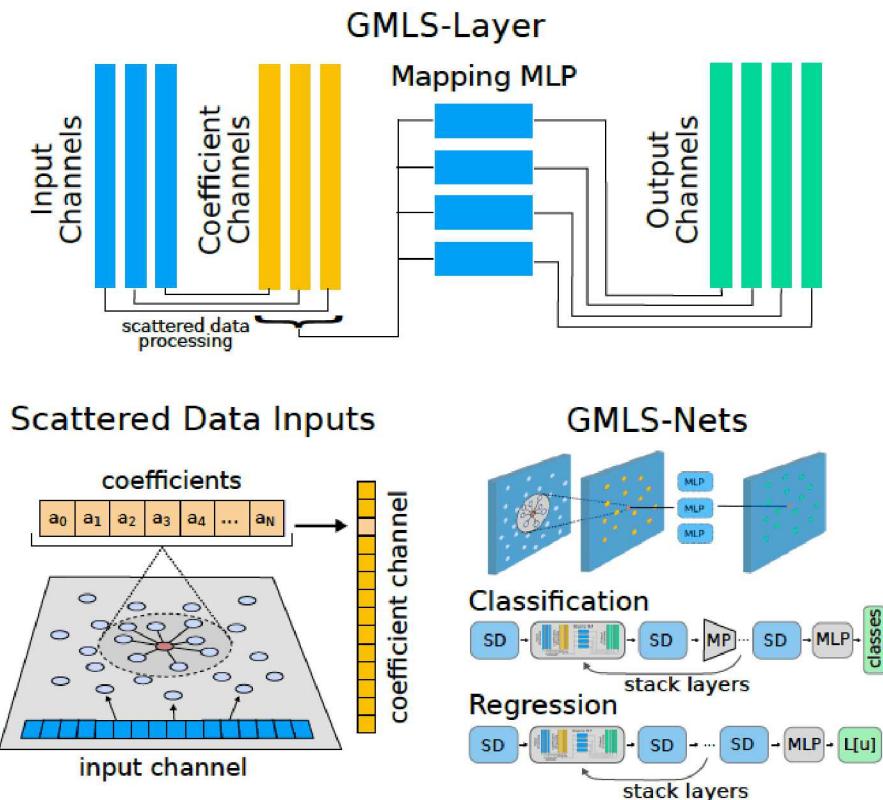
We present learning frameworks corresponding to choice of parameterization:

- **GMLS-Nets:** Use meshfree approximation theory to regress operators characterized by scattered samples of data
- **Fourier regression:** Characterize operators via parameterization of Fourier symbol
- **Nonlocal operator regression:** Characterize nonlocal operators via parameterization of nonlocal kernel

GMLS-Nets: SciML architecture for unstructured data

w/ Ravi Patel (SNL), Paul Atzberger (UCSB)

- Assume a basis Φ , so that $p \in P \rightarrow p = a^\top \Phi$
- GMLS thus provides an *optimal local encoding* of data in terms of the coefficient a , providing a low-dimensional encoding that may e.g. exploit physics
- Traditionally, GMLS estimates $\tau(u) = a^\top \tau(\Phi)$, assuming one has knowledge of how the target functional. Instead we seek an operator $q_\xi : a \rightarrow \mathbb{R}$, and use gradient descent to tune ξ to match data
- Functionally identical to convolutional networks - we get a stencil that reproduces the operator, but no restriction on e.g. Cartesian data, collar region, etc.



Recently submitted to neurIPS (<https://arxiv.org/pdf/1909.05371.pdf>)

Open-source software: code and training sets publically available for:

- Tensorflow (<https://github.com/rgp62/gmls-nets>)
- PyTorch (<https://github.com/atzberg/gmls-nets>)

GMLS-Nets: results

MNIST Classes	Input Image	GMLS Features				
0	4	a[0]	a[1]	a[2]	a[3]	a[4]
1		a[5]	a[6]	a[7]	a[8]	a[9]
2		a[10]	a[11]	a[12]	a[13]	a[14]
3						
4						
5						
6						
7						
8						
9						
Case	Conv-2L	Hybrid-2L	GMLS-2L			
MNIST	98.52%	98.41%	96.87%			

- Provides similar performance to convNets on MNIST due to similar feature extraction capability
- Generalizes convNets to unstructured scientific data:
 - Prediction of drag from cell center velocity field taken from FV data
 - No pressure/viscosity information: drag characterized entirely by flow

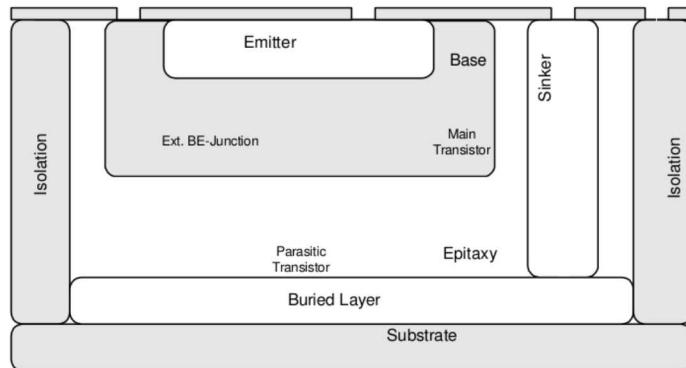


Data driven circuit models

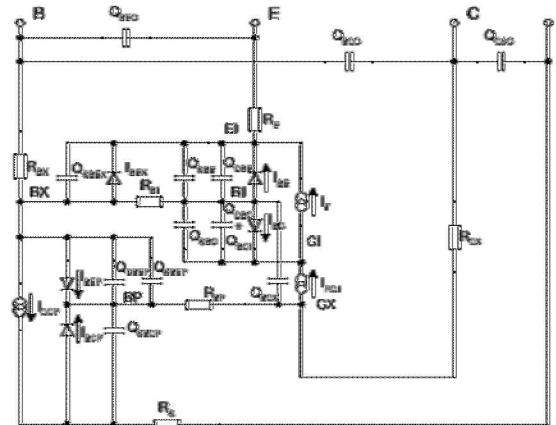
w/ P.Bochev

When analyzing systems consisting of large numbers of components, costly first principle PDE models are often abandoned in favor of efficient ODE-based network models

PDE-based drift-diffusion model



Circuit compact model



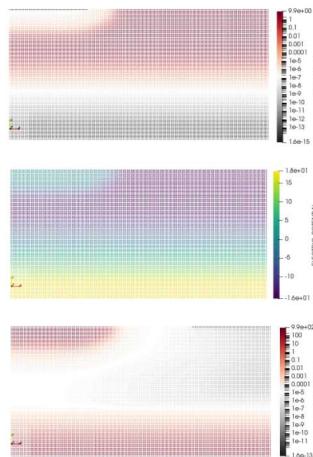
As an example, circuit models are empirically generated in a process that takes **~10 years** to develop for typical components and has no means to incorporate radiation effects.

Can we leverage physics from PDE model to inform an automatically generated compact model?

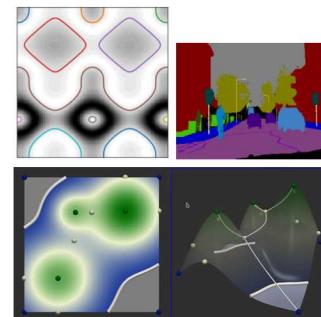
Data driven circuit models

w/ P. Bochev

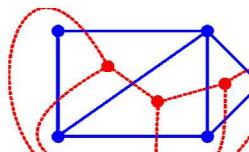
Physics Priming (PP) Perfunctory TCAD



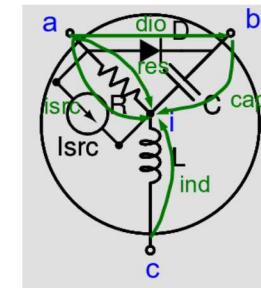
Region Recognition (RR) ML + TDA



Topology Tailoring (TT)



Interaction Identification (II) (seeded w/ established CMs)



Simulate high fidelity physics.

Identify significant regions (ML+ Topological Data Analysis)

Identify interactions between significant regions.

Prescribe electronics components to physical interactions.

Generate **positive feedback** in the machine learning process (supervised training). 24

Train and Adapt
(using available
experimental data)