£
SAND2019- 12384 PE

Quantum Information Science 101

Shaking the foundations of secrecy, sensing, and simulation

Dr. Rick Muller, Sandia National Laboratories

Senior Manager, Advanced Microsystems Group

@ENERGY NISA




Take-Away: Quantum science impacts national security

1. QIS shakes the foundation of secrecy, sensing, and simulation
 Computing: Breaking encryption, simulating physical systems
* Communications: Secure communication
* Sensing: Detecting signals

2. QIS faces challenges along the way

* Quantum computing companies exist and sell products, but only as
technology demonstrations

* QKD companies exist and sell products, but implementation concerns
persist

* Sensing devices exist, but at R&D stage

3. Industry, academia, and other nations are awake to the
Possibilities
* Not clear whether near-term progress will sustain early hype




Quantum mechanics governs the physics of the small

* Physics that governs the small: atoms, molecules, small
devices

* Dramatically different behavior from large-scale effects
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* A single theory resolved a number of paradoxes and led
to transistors, lasers, medical imaging,
superconductors, ...

Werner Heisenberg
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Quantum weirdness has real implications

e Quantum has some celebrated oddities that
aren’t intuitive:

e Schrodinger’s Cat is a thought experiment
demonstrating quantum superpositions: that a
particle could be in multiple states at once.

* Bell’s Theorem considers the implications of
guantum entanglement.

* What is surprising is that superpositions and
entanglement have important implications
when you combine them with information
theory.
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Information science tells us what we can do with information

* The science of quantifying, storing, and communicating
information. Proposed by Claude Shannon in 1948.

* Understand how perfect information can be transmitted
over imperfect channels.

* How we understand data compression, communication
over wired and wireless channels, and the internet.

Claude Shannon

* Information is physical, and therefore obeys physical laws. rather o information

Theory
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Combining quantum with information science is transformative

* QIS considers the implications of quantum mechanics on
information science.

* Computers can be more/differently powerful: “Let the computer
itself be built of guantum mechanical elements which obey
guantum mechanical laws.” — Feynman

* Mathematical functions could be more/differently powerful on Dick Feynman
guantum hardware: Deutsch-Jozsa demonstrates first exponential
speedup.

» Shor’s factoring algorithm (1996): quantum computers could be
used to factor numbers.

Peter Shor
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Quantum science impacts US national security

* “Unbreakable” cryptography based on the
presumed difficulty of certain math problems could
be readily cracked using a sufficiently large quantum
computer

* “Unsolvable” problems in pharmaceuticals and
energy science could be solved using a sufficiently
large quantum computer

* Networked quantum communications are plausible
in the near-term, and could be provably secure

* Quantum sensing and detection devices could “The United States’ large stake i all these
improve SenSitiVity by 10-1000 potential applications warrants a cohesive

national effort to achieve and maintain

* We still don’t know the full landscape of leadership in the rapidly emerging field of

l. . guantum information science.”
d pp |Cat|0n5 -Dr. Jack Marburger, former DOSTP, 1/2009

From A Federal Vision for Quantum Information Science.
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Introduction to Cryptography

LENNY ZANSE JRNXKE BYNFVY KOZATY

* One-time pads can yield unbreakable codes,
provided the keys can be securely distributed.

VRARETH JPCSV RUSYR JUEX&n FLOCL

PODYY JJLVY XFSNKL NPLEA ZXVZY

» Mechanlcal Cypher maChlneS ||ke the Enlgma TSUJIO XBWKI WNESND NPNPI DZVOZ

' = et Part of -ti d.S Wikipedia.

Machine were early attempts to distribute keys 7 77T PR orE EPEEE
more securely.

* Public key cryptography uses a one-way
function to distribute keys:

* Problem like multiplication/factoring:
e Easy to multiply 1000-digit numbers, | | ,
* Hard to factor 1,000,000-digit number Enigma machine, National Cryptologic
. Museum.
e Depends upon hardness of the one-way function:

 If a way to factor numbers quickly is discovered, security
of encryption is jeopardized.
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NIST recommended RSA
key length:

 Classical (black):
Requires trillions of
years on a classical
computer

* Quantum (red-purple):
Could be solved in
seconds-days on a
quantum computer.

A blueprint for building a quantum
computer, R. van Meter & C. Horsman,
Comm. ACM, (2013)
doi:10.1145/2494568




Quantum shakes the foundation of chemistry

* The Haber process converts nitrogen into ammonia,

and consumes roughly 2% of the world’s energy
supply.
PRy N, +3H,—  2NH,
L. ~ - \,—/
AH°=0kJ AH°=-91.8 kJ-mol !

* The Haber process requires large factories with high
temperatures and pressures, but plants perform
nitrogen fixation every day.

* With technology that could be developed in the next
20 years, a quantum computer could unravel
biological nitrogen fixation.

Elucidating Reaction Mechamisms on a Quantum
Computer. Reiher et al., PNAS (2017)
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Important to separate quantum hype from

* Creating, distributing, and maintaining quantum
coherence remains a major challenge to all areas of
guantum information sciences.

* Quantum states are fragile: with the power of
guantum applications comes sensitivity to noise, and
quantum decoherence.

* Quantum error correction is possible, but requires
large overhead.

* Finding applications that can make use of non-error-
corrected hardware is a major priority.

Quantum Information Science 101

reality

| l Tiny part that
i goes to the
‘ moon.

The vast majority of what a
guantum computer will do is
correct its own errors.




I Examples of qubits

Tomorrow Future

Superconducting Trapped atoms Photonic




Quantum is growing worldwide

Publications Patent Applications
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Quantum Computing: Progress and Prospects. Quantum Technology is Beginning to Come Into
National Academy of Sciences, 2019 Its Own. Economist, 2017
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Take-Away: Quantum science impacts national security

1. QIS shakes the foundation of secrecy, sensing, and simulation
 Computing: Breaking encryption, simulating physical systems
* Communications: Secure communication
* Sensing: Detecting signals

2. QIS faces challenges along the way

* Quantum computing companies exist and sell products, but only as
technology demonstrations

* QKD companies exist and sell products, but implementation concerns
persist

* Sensing devices exist, but at R&D stage

3. Industry, academia, and other nations are awake to the
Possibilities
* Not clear whether near-term progress will sustain early hype




Backup slides
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Requirements for building a quantum computer

The DiVincenzo criteria (simplified)
1.A scalable, high-fidelity qubit processing | Tiny part that

i goes to the

technology 1 hoon.

2.A computer architecture for organizing the
components

3.Methods for suppressing runtime errors

The vast majority of what a

. . guantum computer will do is
Atomic  Electron Photon  Superconducting B ——

state spin  polarization current
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Current qubits: ions and superconductors

%, * Trapped-ion chip
. * RF, DC control electrodes confine ions

Be, Ca, Sr, Yb ions are common

E Demos: Q. error correction, qg. algorithms,
S

~

2 Scale: 219 entangled, only 14 controllable
D
n\“ Expertise: Sandia, NIST, lonQ, Honeywell

* Superconducting Josephson junctions
* Microwaves travel in aluminum transmission lines
Charge, flux, or phase used as the qubit
Demos: Q. error correction, g. algorithms
Scale: 20 entangled and controllable
Expertise: Google, IBM, Intel

Quantum Information Science 101




e Silicon quantum chip
* Quantum dots or donors trap individual electrons
* Leverages S3T silicon chip industry
* Expertise: Sandia, Intel, UNSW

* Trapped-atom chip
e Cs atoms trapped in an optical lattice above the chip
e 3,000-atom entanglement demonstrated
* Expertise: Harvard, Wisconsin, Sandia

e Diamond-defect chip
* Nitrogen vacancies (NVs) form qubits
e Operates at room temperature
e Expertise: Chicago, Harvard, Melbourne
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Disruptive qubit technology: topological and photonics

* Topological qubit chip
* “Anyons” interact topologically in semiconductors
* May require multiple Nobel Prize discoveries
* Drastic reduction in QEC anticipated
* Expertise: Microsoft, Purdue

* Photonic chip
 All-optical quantum computing
 New modes of QEC may be required
 Eliminates matter/photon qubit transducers
* Expertise: Psi-Quantum
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Quantum Teleportation
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BB84 (Measurement-Based) QKD

* Quantum information encoded in photon
polarization
* Commercially available

* id Quantique, MagiQ, SmartQuantum
Rectilinear Basis Diagonal Basis Q 9 8iQ Q

N = length of key

4*N photons, random bases

On average, Bob got 50% right.

Measure photons
using randomly
selected bases




Quantum factoring in five easy steps

Integer N 1 (Need a quantum

Compute the smallest r such .
that x” + N has remainder 1. computer for this
step!)

(4) Gary Miller, PhD 1975

No

2 is a factor

Compute the gcd of N and x7/2-1.

v

m is a factor

dis a fact
Compute the greatest common (5) Bl ]

divisor (gcd) of N and a random E.g., gcd(15,10) =5
number between 1 and N.

No

(3) ged is a factor ] Probability of failing is less than 50%!




Deploying QKD: Fiber, free space, and networks

PHYSICAL REVIEW LETTERS 120, 030501 (2018)

* State of the art
* 500-1400 km ground-satellite

QKD and state teleportation —aETme

(Pan, 2017) - Ny
e ...used to distribute QKD keys ' W 3’-"3’ s *"5"" ,

between Europe-China (Pan, |

MIT Lincoln Laboratory -a
Lexlngton, MA

2017 ) S T S, I

* On-chip silicon photonics used
for Metropolitan Boston QKD
(SNL,BYU,MIT, 2018)

* 100 MHz QKD rate

Quantum Information Science 101 43 km BOStOﬂ fiber QKD Ilnk




