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Motivation: 3D imaging for a 3D world ) Mo

Laboratories

Challenge: 2D imaging or point-wise measurements cannot resolve 3D flow
phenomena

= Experimental repetition needed to capture spatial statistics
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) - digital holographic measurement
In an air-stream

(Gao, Guildenbecher et al, 2013, Opt. Lett.)
Holography is an optical technique to record and reconstruct a 3D light field

=  SNL applications include sprays, high-speed particle fields, fluid-flow
measurements, droplet combustion, etc...
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What is holography? ) e,

Laboratories
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Optical method first proposed by Gabor in 1948
1. Coherent light scattered by particle field forms the object wave, E,
2. Interference with a reference wave, E,, forms the hologram: h = |E_+E,|?
3. Reconstruction with E, forms virtual images at original particle locations
h-E.=(|E,|?+ |E|?)E, + |E |%E, + E2E,S
(N ~  Semiad’ S
DC term virtual real
image image
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Digital in-line holography (DIH) ) i
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Holographic plate and cumbersome wet-chemical processing replaced with
digital sensor (CCD or CMOS)

= Resolution of digital sensors (order 100 line pairs/mm) is much less than
resolution of photographic emulsions (order 5,000 line pairs/mm)

= For suitable off axis angles, 6, the fringe frequency, f, is typically too large to
resolve with digital sensors (f = 2sin(6/2)/A)

= Rather, the in-line configuration (&= 0) is typically utilized

= Reference wave is that portion of the beam which passes through the particle
field undisturbed

= Consequently, the real image overlaps with an out-of-focus virtual image
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Digital in-line holography (DIH) ) i
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" |nthe computer, we multiply the digitally recorded hologram h by an
estimate of the complex conjugate of the reference wave E,*

hE = (1E,12+ |E 12, + £, + |,

v -

DC term virtual real
image image
= This complex amplitude can be numerically propagated to any distance
along the optical axis, z, using the diffraction equations

E(x,y,2)=h(x,y)-E, (x,y)®g(x,y,2)
= Rayleigh-Sommerfeld: g(x,y,z) = el /j/'t\/x2 +y’+2°

ejkz ik(x*+y?*) /22
=  Fresnel-Kirchhoff: g(x,y,z) =.—ej ey )/2
jAz
= Numerically, the convolution is computed using the fast Fourier
transform (FFT)

E(x,y,2)=FFT{FFT {l,(x,y)E, (x,y)| FFT {g(x,y,2)}

= Visualized via the reconstructed amplitude, A = |E|, or intensity, | = | E|?
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Digital in-line holography (DIH) ) e
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Drop ,
Trajectory :

digital holograms of the breakup of an e¥anol drop in an
air-stream (Gao, Guildenbecher et al 2013NQpr. Lett.)

Reconstructed amplitude throughout depth, z

= |n-focus structures are clearly observed at different depths, z
= “Rings” around the in-focus structures are the out-of-focus virtual images
Challenge: How can we automatically extract in-focus objects?
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The depth-of-focus problem

h

The spatial extent of the diffraction pattern limits the angular aperture, Q,
from which a particle is effectively reconstructed (Meng et al, 2004, Meas. Sci. Technol.):

= From the central diffraction lobe > Q = 21/d

= Using the traditional definition of depth-of-focus, o, based on change of

intensity within the particle center 2 0= 44/0?
= Therefore: for in-line holography, o= d?/A
* Example: d =465 um, A =532 nm =2 =400 mm!

Literature contains two basic methods to find the focal plane with improved

accuracy:

1. Fit a model to the observed diffraction patterns (inverse method)
= Generally accurate with small depth uncertainty
= Limited to objects with known diffraction patterns (spheres)

2. Reconstruct the amplitude (or intensity) throughout depth and apply a

focus metric to find “in-focus” objects

=  No a-priori knowledge of particle shape required
= Accuracy is a strong function of the chosen focus metric
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Hybrid particle extraction method () i
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Basic idea: In-focus regions display a minimum amplitude within the particle
interior and a maximum sharpness at the particle edges

Validity of this assumption has been verified through simulation
2SS IOUNANIIR IR - — 160.0 mm
RO i P ot '3;.,:‘-"—"2'. St e o i &

Reconstructed edge sharpness throughout depth, z
Optimum threshold for particle extraction is automatically extracted from
the threshold of the amplitude which displays maximum edge sharpness

= Further details in Guildenbecher et al, 2013, Appl. Opt. and
Gao, Guildenbecher, et al, 2013, Opt. Express.
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Experimental validation i e
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= Quasi-stationary particle field
= Polystyrene beads (d =~ 465um) in 10,000 cSt silicone oil
= Settling velocity = 0.8 mm/s

= Multiple holograms recorded, displacing the particle
field 2 mm in the z-direction between each acquisition

particle field
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Experimental validation =)
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Diameter measured from area of the Displacement found by particle
detected 2D morphology matching between successive
= Actual mass median holograms
diameter =465 um = Actual displacement = 2.0 mm
= Measured mass median = Mean detected displacement =
diameter =474 um 1.91 mm +/- 0.81 mm
= Error of 2.0% with respect to = Standard deviation of 1.74 times

actual value mean diameter
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Aerodynamic drop fragmentation ) i
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Motivation: fundamental spray

. . Drop .
process and an important canonical Trajectory |
problem for multiphase simulations : L

= No viable methods to measure
secondary drop size/velocity
statistics or the 3D morphology of
the ring shaped ligament

Experimental configuration: Double-
pulsed laser and imaging hardware as
typically used in PIV

= A4=532nm, 5 ns pulsewidth
= |nterline transfer CCD (4008 X 2672, 9 um pixel pitch)
= Temporal separation, At = 62 us, determined by laser timing

digital holograms of the breakup of an ethanol drop in an
air-stream (Gao, Guildenbecher et al 2013, Opt. Lett.)

= Note: experiments in Guildenbecher et al, 2013, Proceedings of Digital
Holography and 3-D Imaging confirm no loss of accuracy due to the reduced
coherence length of these lasers

December 5, 2013 Daniel R. Guildenbecher 11




Aerodynamic drop fragmentation
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= Secondary drop sizes/positions 10mis 19
extracted by the hybrid method ~0
= Comparison with phase Doppler <l
anemometer (PDA) data confirms 18
accuracy of measured sizes =
Eo.oz fffff R S O N N M| e PDA 1°E
=z N DIH >
I e
§ 0¢850 100 180 200 0 300 <20
a Diameter (um) 45
= Ring measured from z-location of I TR o,
maximum edge sharpness of L -
= Total volume of ring + secondary drops = 2
is within 2.2% of the initial volume E”;____g;_
= 3C velocity measured by particle >15; -
matching between successive frames | "
= Expected symmetry observed with 20 Zoasres

higher uncertainty in z-direction
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Drop impact on a thin film

Motivation: measurement of secondary
droplet by other methods requires
significant experimental repetition

" Process symmetry provides
opportunities to validate accuracy

Experimental configuration:

= Double pulsed laser (1 =532 nm, 5 ns
pulsewidth)

= |Interline transfer CCD (4872 X 3248,
7.4 um pixel pitch)

"= Temporal separation, At = 33 us,
determined by laser timing
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) 1 % e N
Continuum spatial filter and 1t beam expansion

impact of a 3 mm water drop on a 2 mm water film
(Guildenbecher et al, 2013, Exp. Fluids.)
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experimental configuration of holographic recording of drop impact on a thin film
(Guildenbecher et al, 2013, Exp. Fluids.)
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Drop impact on a thin film i e
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Again processed with the hybrid method
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holographic reconstruction of
drop impact on a thin film
(Guildenbecher et al, 2013, Exp. Fluids.)
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Drop impact on a thin film ) e
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Drop size distribution shows the Symmetry in the in-plane (v,) and
expected lognormal behavior out-of-plane (v,) velocities confirms
= Probability goes to zero at large accuracy in measured v,
and small diameters = Difference in scatter gives

estimated z-uncertainty of 0.72-d

B
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Sonic pellets from a shotgun () i
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Motivation: a shotgun
simulates blast environments

Challenge: Shock-waves
introduce noise

Reconstructed amplitude throughout depth, z Holography configgestiostfioctsaotgga shaeptigssitiroughout depth, z

| December 5, 2013 Daniel R. Guildenbecher 16



Cross-correlation method i e,
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Theory: in-focus particle images from two sequential holograms contain
correlated information

= The maximum cross-correlation, ¢, gives the displacement (Ax, Ay)
c =max ;;Imgl(m,n)lmgz(m,n)(m—Ax,n—Ay)

" Img, and Img, chosen as the edge sharpness images from the two frames

= Zzpositions in each frame (z, and z,) are found from the maximum value of
c over all possible combinations of z, and z,

0.15
= z1 =194.72 mm,
g z2 = 192.72 mm,
S Az =2.00 mm
Imm . 0.25
0.15
hologram hologram after displacing
(Guildenbecher et al, the particle field by 2 mm Z [mm]
2013, Opt. Lett.) (Guildenbecher et al, maximum value of c for the particle in the white
2013, Opt. Lett.) boxes (Guildenbecher et al, 2013, Opt. Lett.)
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Cross-correlation method i e,
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Again, experimentally validated with quasi-stationary particles in silicone oil

j} ol 80
dumi| | 60 - -
750 | = 1
700 % 40 -
650 |+ 8
600 7
550 —
500 | 20
450 .
o 0 — 1 T T 1
1.5 175 2 225 25
o0 L 7% Az| = |z, - z| [mm]
Z [mm) 2180
measured displacement field from one realization measured z-displacements from all realizations
(Guildenbecher et al, 2013, Opt. Lett.) (Guildenbecher et al, 2013, Opt. Lett.)

= Actual displacement = 2.0 mm
= Mean detected displacement = 1.996 mm +/- 0.072 mm
= Standard deviation of 0.15 times mean diameter

= Order of magnitude improvement compared to uncertainties in the literature
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Sonic pellets from a shotgun ) i
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particle field from the shotgun measured with the cross-correlation method
(Guildenbecher et al, 2013, Opt. Lett.)

Results closely match the expected mean velocity (350 m/s) and
diameter (2.0 mm)

= Uncertainty in Az is on the order of 0.2 particle diameters

B
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Fluid measurement i e,
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In particle image velocimetry (PIV) and particle tracking velocimetry (PTV),
tracer particles are used to measure flow velocity

= Similar measurements can be done with digital holography

Consider: d ~465um particles in 10,000 cSt silicone oil, stirred at 100 rpm by
ar=1.58 mm stir rod
230

225

r 220

215

210

object z [mm]

205

200

particles measured with the hybrid method, background shows the recorded hologram
-
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Fluid measurement

Advantages:

=  Simple optical setup requiring only one
line-of-sight view

= Large depth of field (hundreds of mm
possible)

= Particle sizes can be measured (if desired)

Challenges:

= High uncertainty in the z-direction

= Particle field must be relatively spare
providing only limited vectors

= Vectors at random positions

= Methods not as mature as PIV or even
tomographic-PIV

Note: the literature contains many works on

holographic-PIV. My own work has not

been focused on these applications
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measured particles ina swirl flow, viewed in

reconstructed x-z plane
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Aluminum drop combustion in propellants ()i
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filter optics plane
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recorded hologram

Propellant: solid-rocket propellant pressed into a strand roughly 5 mm in
diameter and initially 10 cm long

= Combusts from the top surface down, ejecting molten aluminum particles
traveling on the order of 10 m/s

Laser: Continuum Minilite Nd:YAG, 532 nm wavelength, 5 ns pulse duration
Camera: sCMOS from LaVision at 15Hz

Lens: Infinity K2 long distance microscope with CF-4 objective

= ~ 6X magnification
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Aluminum drop combustion in propellants )

z=29.1 mm

Agglomeration appears to reveal
«—— Individual pm sized Al,O, particles
in this region

= Wake containing nm
/ sized Al,O, particles

-

» Al,O4 cap
.‘:
Dy Al,Og
| f
‘__ ‘f8‘rma‘tion
L .zone
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Particle extraction methods i e,
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Development focuses on:

1. Improvement and validation of the depth uncertainty

2. Reduction of “user-tunable” parameters

3. Measurement of non-spherical particles in extreme environments

Many parameters affect the accuracy:

particle size d, particle distance z, particle number density, particle shape, particle
overlap, laser wavelength A, pixel size Ax, number of pixels N, noise, etc...
Our development began with construction of non-dimensional
recording/reconstruction models which consider as many factors as possible
(Guildenbecher et al, 2013, Applied Optics)
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Methods comparison
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