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Aerosol Sampling and Transport

* Objective
— Provide guidance to design and evaluate aerosol
sampling and transport systems

— Discuss sampling inefficiencies and deposition
mechanisms

— Provide correlations
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Aerosol Sampling and Transport

e Qutline

— Aerosol sampling with thin-wall nozzle isoaxially from
free stream

— Aerosol sampling with thin-wall nozzle from still air
— Aerosol transport through sample lines

— Losses in bags and chambers

— Examples
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Particle Transport in Inlets and Transport Lines
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Aerosol and Flow Parameters

* Reynolds Number

e Stokes Number

e Settling Velocity

 Dimensionless Settling Velocity

* Gravitational Deposition Parameter

 Diffusion Parameter
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Re = pUd/u

Stk = tU/d
V=18

V =V J/U

Z. = (L/U)/(d/V)
& =nDL/Q



Isoaxial Isokinetic Sampling
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Isoaxial Sub-Isokinetic Sampling
U<Vl
(Sub-iso-mean-velocity)
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Isoaxial Super-Isokinetic Sampling
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Aspiration Efficiency

Ratio of the concentration of particles passing through the
nozzle entrance to the concentration of particles in the
ambient environment

Efficiency is 1 when U = U,
Efficiency is > 1 when U < U,

— Flow diverges into nozzle

— Larger particles cross streamlines
Efficiency is <1 when U > U,
— Flow converges into nozzle

— Larger particles cross streamlines

Free stream turbulence does not seem to effect aspiration
efficiency
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Aspiration Efficiency

* Stokes Number

. _Uo
Nap = 14\ 7~

Stk

] —

:TUO

1
1+ &k Stk

for 0.005< Stk <10 and o.zs%ss

k =24+0617

* Belyaev and Levin (1972, |
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Aspiration Efficiency of a Thin-Walled Nozzle In
Isoaxial Sampling Under Anisokinetic Conditions

Aspiration Efficiency, asp
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Transmission Efficiency

« Ratio of the concentration of particles transmitted
through the nozzle to the concentration of particles
passed through the inlet

e Inlet deposition from inertial forces
— Nolosses for U=U,
— Particle trajectories toward wall when U < U,
— Vena Contracta losses when U > U,

e Inlet deposition from gravitational forces

— Include settling in transport calculations

e Inlet deposition from Saffman lift forces

— Correlation independent of U,

* Free stream turbulence enhances inlet lip deposition

— Effect reduced by larger inlet diameter

Sandia
National
Laboratories



Transmission Efficiency
Inertial Losses

L t U
e Sub-Isokinetic U < U, Stk = y .
L+ [ Yo g /|14 200
, _ _U 1/ | Stk2/3_
| L+ [ Yo q| /|14 9418
v sk

for 0.01< Stk <100 and 1<%<5

* Liu et al. (1989)
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Transmission Efficiency
Inertial Losses
t U,
d

 Super-Isokinetic U > U, Stk =

0.6
— exp |— 061 {Stk U- Uo}
Uo

for 0.02 < Stk <4 and 025< Y0 <1

U

7/] trans,inert

« Hangal and Willeke (1990)
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Transmission Efficiency for a Thin-Walled Nozzle In
Isoaxial Sampling Under Anisokinetic Conditions

1.1 : ——
- 1.0 ~ Transmission Efficiency i
.E“ 0.9 - - \UOIU=1 |
St U/U=2 =
<~ 0.8 - : / ]
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L 0.6 — U/U>1 H
= - Liu et al. (1989) -
— 0.5 _
- - U/U=0.5 §
g 0.4 — —
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Transmission Efficiency

Saffman Lift Forces
Po
—Dae
sk = TV Re = PY9 b 03246 F
d H \/2 vvi
U
4Stk 0.559
_, 1.769 VPl
”tmns, lift o _|: gL:| 9.19 RC 0.216
1+ =
U

 Anand et al. (1993)
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Inlet Efficiency

* Ratio of the concentration of particles
transmitted through the nozzle to the
concentration of particles in the ambient
environment, 1.e., the product of the Aspiration
Efficiency and the Transmission Efficiency

H inlet " aspiration N transmission
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Inlet Efficiency for a Thin-Walled Nozzle In
Isoaxial Sampling Under Anisokinetic Conditions

3.0

Inlet Efficiency
Sub-isokinetic
2.5 - U,/U>1

- Belyaev and Levin (1974)
Liu et al. (1989)

2.0 - Super-isokinetic 0 N
u U,/U<1
1.5 Belyaev and Levin (1974)
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Sampling in Still Air

* Davies Criterion — Perfect Sampling

Vs <004 Stk < 0016 S =LY
U d

e Davies (1968)

» Agarwal and Liu Criterion — Efficiency > 90%

tU
stk Vs <005 Stk =——
U] d
for I(/}S <0.001 and Stk <1000

« Agarwal and Liu (1980)
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Sampling in Still Air

e Calm air sampling expression

stk = L2
d _
1+ Vis
_ Y .cos(@) +exp| — A5tk "
7/Iasp, calm air U QD p 1 n ZStkl

* Vertical Sampling Criterion — Efficiency > 95%

2
v
g-d

« Grinspun, Willeke, and Kalatoors (1993)
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Still Air Sampling Criteria for Thin-Wall Nozzles

103 § T T TTT I T T T T TTT] T T TTTH] T T T [ IIIII%
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Transport Efficiency

« Ratio of the concentration of particles transported
through the sampling line to the concentration of
particles entering the sampling line

« Efficiency for a given mechanism in a given flow
element is the fraction of the particles not removed by
that mechanism

* Total transport efficiency is the product of the
transport efficency over all the mechanisms and all the
flow elements

n transport o I I I I n flow element, mechanism

flow  mechanisms
elements
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Transport Efficiency

 Particle removal mechanisms are
— Gravitational deposition
— Diffusional Deposition

— Turbulent inertial deposition (turbo-
phoresis)

— Inertial deposition in a bend

— Inertial deposition at flow constrictions
— Electrostatic deposition

— Thermophoretic deposition

— Diffusiophoretic deposition
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Transport Efficiency
Gravitational Deposition

A Particle’s mass causes it to settle to a
wall under the influence of gravity
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Transport Efficiency
Gravitational Deposition

* Particles settle in sampling lines

* Settling parameter is the ratio of
residence time to settling time

* Gravitational deposition can be reduced
by
— Reducing horizontal run of lines
— Decreasing residence time
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Transport Efficiency

Gravitational Deposition

£Vts
d U

% Z cos(6)

* Settling parameter Z= K =

e In laminar tube flow

=1 — 2 [2 kAl 1—x23 — 34 1= 527 +arcsin(x1/3)]
T

n lam_grav

— Heyder and Gebhart (1977)
* In turbulent tube flow

B 16 k
H turb grav - eXp o

— Schwendiman et al. (1975)
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Gravitational Deposition
In Tube Flow
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Transport Efficiency
Difftusional Deposition

 Brownian diffusion of a particle causes it
to contact a wall
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Transport Efficiency
Diffusional Deposition

* Brownian diffusion causes particles to move
from high to low concentration

e Diffusion parameter is the ratio of diffusion
distance to system size

* In laminar flow, diffusional deposition can be
reduced by
— Increasing the flow rate
— Decreasing the line length

* In turbulent flow, diffusional deposition can be
reduced by

— Increasing the tube diameter
@ sandia -~ — Decreasing the line length 29
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Transport Efficiency
Difftusional Deposition

£ = n DL
e In laminar tube flow 0
M tam g~ 1250 ¢ 4128 +01778 Y
for £ <0.02

e Diffusion parameter

= 0818exp(— 3657 &) +0097exp( — 223 &) + 0.032 exp( —57 &)

for £> 0.02
— Gormley and Kennedy (1949)

e In turbulent tube flow

p&
2 13 L
Heury_ dir _eXP|:_§/3 -0.0187-Re 24-(dj } Re :M

@ sanda — Friedlander (1977) 30
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Transport Efficiency, 77, diff
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Diftusional Deposition

In Tube Flow
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Transport Efficiency
Turbulent Inertial Deposition

e Turbulence in the

Uo
gas stream l
imparts a velocity
to a particle ®---.

sufficient for the
particle to
penetrate to a wall
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Transport Efficiency
Turbulent Inertial Deposition

* Turbulence in the central region of a tube
transports particles through the laminar
sub-layer to the wall

 Turbulent inertial deposition can be
reduced by

— Increasing the tube diameter
— Decreasing the line length
— Decreasing the volumetric flow
Sandia 33
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Transport Efficiency
Turbulent Inertial Deposition

. Parameters Sik =LY Re =2Y4
u
* Model ) rdLv.
n tube, turb inert o eXp o Q
v, =6-10%7° forr, <12.9
vy = 01 for . > 129
v, =503 %Re”g r, = 0.0395 Stk Re¥*

— Liu and Agarwal (1974)
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Turbulent Inertial Deposition
In Tube Flow

1.0 — —_—
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Transport Efficiency
Inertial Deposition in Bends

* A particle’s inertia causes it to cross stream
lines to impact on a wall
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Transport Efficiency
Inertial Deposition in Bends

* A particle with sufficient inertial will not make the turn

 There appears to be a Reynolds number dependence in
laminar flow

e In laminar flow, there are minimal losses for Stk < 0.05

e In turbulent flow deposition is independent of Reynolds
number

* Inertial deposition in bends can be avoided by
— Keeping the bend radius larger than twice the tube diameter
— Keeping the Stokes number low

— Minimize the number of bends in sampling lines
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Transport Efficiency
Inertial Deposition in Bends

 Parameters

Stk =%, bend angle ¢

e In laminar tube flow

n lam_bend

7] /lam_bend

= 1- Stk ¢

1{

Stk
0171

|

Stk

0.452 ——— +2.242

0.171

 In turbulent tube flow

i turb_bend
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=exp| — 2.823 Stk ¢

Crane and Evans (1977)

Fit to Pui et al. (1987) data

Pui et al. (1987)
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Inertial Deposition In A Bend
Data for 90 Degree Bend

1.0 — T g T o T
_— ““-\—\_\_\_\_\_\ D
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0.9 -
- \-\ O
SN O
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Re Ry ID
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02+ — — Pui et al. (1987): Fit to Re =1000 \\
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0.1 b ¢ Cheng and Wang (1981) Re=1000, R =8

Transport Efficiency, Nsond inert

0.0 ' ' — ' ' EE—
0.01 0.1 1

Stokes Number, Stk = tU/d
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Transport Efficiency

Inertial Deposition in Flow Constrictions

* A particle’s inertia causes it to cross stream
lines to impact on the face of the constriction
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Transport Efficiency

Inertial Deposition in Flow Constrictions

* A particle with sufficient inertial will cross
stream lines and impact on the contraction face

* Avoid flow restrictions where possible
 Keep Stokes number small

 Use Ye and Pui (1990) or Muyshondt et al.
(1996) to make estimates
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Transport Efficiency

Inertial Deposition in Flow Constrictions

o Parameters Sy =" Y , contraction angle 6
d

o

1

kil

1+ >
3.14 exp(—0.01850)

- 1=

]/l cont, inert N\ —1.24

Muyshondt, McFarland. and Anand (1996)
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Inertial Deposition in a Flow

n cont, inert

Transport Efficiency,
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Contraction in Tube Flow

T
1.0 = —
O A |
Transport Efficiency

0.9 B v Through a Contraction |
0.8 |- ® -
- g .

0.7 - A .
L . A |

0.6 |- N —
0.5 - %km \ -
L O 90° Muyshondt et al. (1996) -

0.4 — O 45° Muyshondt et al. (1996) _
UL A 12° Muyshondt et al. (1996) N |
0.3 - @ 75° Chen and Pui (1995) \O |
=~ O 45° Chen and Pui (1995) \ |

v 15° Chen and Pui (1995)

0.2 - 90° Muyshondt et al. (1996) correlation & ]
F -————- 45° Muyshondt et al. (1996) correlation i

01 ———— 120 Muyshondt et al. (1996) correlation ]
0.0 L — :
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Stk(1- (do/di)z) =(zr Uz )(1-(d/d)")
43



Transport Efficiency
Electrostatic Deposition

* An electric field on
and/or electric
charge on a particle ®
result in a force on ]
the particle that 5
moves it to a wall A
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Transport Efficiency
Electrostatic Deposition

* An electric field and/or electric charge on a
particle result in a force on the particle that
moves it to a wall

* Not a readily characterized loss mechanism
* Electrostatic deposition can be avoided by

— Use of conductive grounded transport lines
* Metal lines are preferable
* Tygon™ is acceptable

— Avoid Teflon™ and Polyflow'™ tubing

Sandia
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Transport Efficiency
Thermophoretic Deposition

* An temperature luo

gradient from a hot
gas to a cool wall ®
produces a force on ]
a particle that \
moves it down the Toas A T
gradient to the wall

Ta>T

gas wall
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Transport Efficiency
Thermophoretic Deposition

* An temperature gradient from a hot gas to a
cool wall produces a force on a particle that
moves it down the gradient to the wall

* Not easily characterized
— Changes in temperature gradient
— Requires more detailed calculation

 Thermophoretic deposition can be avoided by
elimination of thermal gradients

— Cool hot gas by dilution

— Heat sampling probes initially in contact with hot
sample gas

Sandia
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Transport Efficiency
Diffusiophoretic Deposition

* Condensing vapor luo
produces a net force
on a particle L ,::
driving it in the o
samp direction as .
the vapor transport 3§
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Transport Efficiency
Diffusiophoretic Deposition

* Particles are transported by diffusing gas

— In the direction of the heavier gas in equimolal
diffusion

— In the direction of the diffusion gas in a simgle
component diffusion, e.g., condensation, evaporation
* Diffusiophoretic deposition can be avoided by
elimination of condensation in the sampling
system

* An estimate of the fraction of particle removal
by condensation is the mole fraction of the total
gas that is conensed
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Transport Efficiency
Deposition in Chambers and Bags

* Samples may need to be taken into a sampling
chamber and measured from there

* Model may require calibration to be useful
— Coefficient of eddy diffusion is unknown

— Collapsing bag during sampling will change
dimensions

* Resuspension of particles from walls may be a
consideration
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Transport Efficiency
Deposition in Chambers and Bags

* Loss from gravitational settling and Brownian
diffusion

* Penetration

ot
n bag, grav diff — €XP| — j B dt
0

 Loss coefficient
T Vi

5~ 12k.D }ﬁ X3V,
7[2 RVtS 0 e’ - 1 4R

— Crump and Seinfeld (1981)
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Sampling Efficiency

* Sampling efficiency is the fraction of
particles in the ambient environment that
make it to the indtrument for
measurement

* Sampling efficiency is the product of Inlet
efficiency and Transport efficiency

" sampling — " inlet dl transport
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Sampling Efficiency Example 1

1.11 cm diameter inlet

e 2.22 cm diameter
tubing

* 545 cm total length

e 315 cm horizontal run
* 4 right angle bends

28 LPM sample flow

e Re=1790

* U,=5.0 m/s free
stream velocity

« Uy/U=1.04: near
isokinetic

Sandia
National
Laboratories

200 cm

/i

200 cm

Schematic of Aerosol Sampling System

/IEI] Cin

53



@)

Efficiency
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Inlet Efficiency
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Transport Efficiency

Gravitational Deposition
Diffusional Deposition

0.0 ==

1.0
0.8
1)
c 0.6
2
L
[
“Llj 0.4
0.2
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'| -—-- Inertial Bend Deposition Ui, = 4.8 m/sec

""""""" Turbulent Inertial Deposition Upg = 5.0 m/sec
Transport Efficiency Re = 1790 \
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Inlet, Transport, and Sampling
Efficiency

10 e -
08 L =9545cm Inlet Efficiency ]
[ L,= 315 cm
-4
1Y  di.=1.11cm
Q 06 - In - _ -
g 2T d = 2.22cm Sampling Efficiency
§ L ¢ = 2=n
E 0.4 | Uin =48 m/sec Transport Efficiency/ )
[ Ug = 5.0 m/sec
[ Re= 1790
0.2 | .
0.0 S -~
0.01 0.1 1 10
Particle Diameter (um)
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Sampling Efficiency Example 2

1.11 cm diameter inlet

1.11 cm diameter
tubing

* 545 cm total length

e 315 cm horizontal run
* 4 right angle bends

28 LPM sample flow

e Re=3590

* U,=5.0 m/s free
stream velocity

« Uy/U=1.04: near
isokinetic

Sandia
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200 cm

/i

200 cm

Schematic of Aerosol Sampling System
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Transport Efficiency
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Inlet, Transport, and Sampling

1.0 —

=
=)

=
(=}

Efficiency
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Conclusions

e Use these correlations to design a Sampling and Transport
system that will get at least half, preferably more than
90%, of the particles of interest to the measurement device

* Where the transport efficiency begins to fall rapidly, the
uncertainty in calculated transport efficiency is high

* Correlations are just that, correlations of data taken in a
system that is not necessarily the same as the one being
used

 Sampling and Transport systems should be calibrated
where possible
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Conclusions

Isokinetic sampling should be used when possible
— New inlet designs may improve sampling velocity range

— Inlet diamters should be on the order of a cm or larger to reduce
free stream turbulence effects

Gas velocities should be large compared to particle
settling veloctities

Avoid conditions where electrostatic, diffusiophoretic, or
thermophoretic deposition could occur

Small particles are lost by diffusion

Large particles are lost by inertial and gravitaional forces
Sampling lines should be kept short with few bends
Stokes numbers should be kept as low as possible
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