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Abstract With the advent of multi-core technology, inexpensive large-scale paral-
lel platforms are now widely available. While this presents new opportunities for
the EDA community, traditional transistor-level, SPICE-style circuit simulation has
unique parallel simulation challenges. Here the Xyce Parallel Circuit Simulator is
described, which has been designed from the from-the-ground-up to be distributed
memory-parallel. Xyce has demonstrated scalable circuit simulation on hundreds of
processors, but doing so required a comprehensive parallel strategy. This included
the development of new solver technologies, including novel preconditioned itera-
tive solvers, as well as attention to other aspects of the simulation such as parallel
file I/O, and efficient load balancing of device evaluations and linear systems. Xyce
relies primarily upon a message-passing (MPI-based) implementation, but optimal
scalability on multi-core platforms can require a combination of message-passing
and threading. To accommodate future parallel platforms, software abstractions al-
lowing adaptation to other parallel paradigms are part of the Xyce design.
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1 Introduction

At modern technology nodes, analog style SPICE-accurate simulation can be a sig-
nificant (and prohibitive) development bottleneck. Traditional circuit simulation,
originally made popular by the Berkeley SPICE program[26], does not scale well
beyond tens of thousands of unknowns, due to the use of direct matrix solver meth-
ods.

A number of algorithms for FastSPICE tools have been developed which allow
for faster, larger-scale circuit simulation. Often based on circuit-level partitioning
algorithms [1, 3, 27, 34], such tools can be applied to much larger problems, but
the approximations inherent to such algorithms can break down under some cir-
cumstances. In particular, for state-of-the-art modern VLSI design, high levels of
integration between functional modules and interconnects are subject to prohibitive
parasitic effects, and can render such tools unreliable.

Recent development of inexpensive computer clusters, as well as multi-core tech-
nology, has resulted in significant interest for efficient parallel circuit simulation.
Parallel “true-SPICE” circuit simulation has been investigated previously, including
Frölich [13], who relied on a multi-level Newton approach in the Titan simulator;
Basermann [8], who used a Schur-complement based preconditioner; and Peng et
al. [28] used a domain decomposition approach and relied on a combination of di-
rect and iterative solvers. Recently, interest has developed around parallel SPICE
acceleration using graphical processing units (GPUs) [15].

Parallel circuit simulation requires integration of large and small scale paral-
lelism throughout the entire circuit simulation flow. In this paper, parallel algorithms
for circuit simulation, and their implementation in a production simulator, Xyce, are
discussed. Xyce [4] is a simulator designed “from-the-ground-up” to be distributed
memory-parallel, and is targeted at a spectrum of parallel platforms, from high-end
supercomputers, to large clusters, to multi-core desktops. It relies primarily upon a
message-passing implementation (MPI) [14], but optimal scalability on multi-core
technology can require combined message-passing and threading. Xyce uses soft-
ware abstractions that allow the simulator to adapt to other parallel paradigms.

2 Background

Circuit simulation adheres to a general flow, as shown in Fig. 1. The circuit, de-
scribed in a netlist file, is transformed via modified nodal analysis (MNA) into a set
of nonlinear differential algebraic equations (DAEs)

dq(x(t))
dt

+ f (x(t)) = b(t), (1)

where x(t) ∈ RN is the vector of circuit unknowns, q and f are functions repre-
senting the dynamic and static circuit elements (respectively), and b(t) ∈ RM is the
input vector. For any analysis type, the initial starting point is this set of DAEs. The
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Fig. 1 General circuit simulation flow

numerical approach employed to compute solutions to equation (1) is predicated by
the analysis type.

Transient and DC analysis are two commonly used simulation modes, in which
the set of equations (1) are solved by numerical integration methods corresponding
to the nested solver loop in Fig. 1. For transient analysis, linear systems are of the
form:

(G+Q/δ t)δx = (b− f )/δ t (2)

involving the conductance matrix G(t) = d f
dx (x(t)), and the capacitance matrix

Q(t) = dq
dx (x(t)). For DC analysis, the q terms are not present, so equation (1) is

reduced to the nonlinear equation f (x) = 0, and the linear system is simplified to:

G δx =− f (x). (3)

For transient and DC analysis, the computational expense is in repeatedly solving
linear systems of equations given by (2) or (3), respectively. These linear systems
are typically sparse, have heterogeneous non-symmetric structure, and are often ill-
conditioned. As such, iterative matrix solvers have historically not been the first
choice for circuit simulation, and direct sparse solvers [10, 21] have been the indus-
try standard approach. Direct solvers have the advantage of reliability and ease of
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use, and for smaller problems direct methods are usually faster than iterative meth-
ods. However, direct solvers typically scale poorly with problem size and become
impractical when the linear system has hundreds of thousands of unknowns or more.

Despite the problems inherent to circuit matrices, iterative solvers have the po-
tential to be a scalable solution method for large-scale linear systems with lower
algorithmic complexity. They are not as easy to use as direct solvers because
their effectiveness is dependent upon finding an adequate preconditioner. However,
progress has been made on the use of iterative methods in transient circuit anal-
ysis; notably Basermann [8] and Bomhof [9], both of whom relied on distributed
Schur-complement based preconditioners. Also, multi-grid methods have success-
fully been applied to power-grid simulation [32]. Recently, a new preconditioning
strategy has been developed to generate effective preconditioners for performing
transient analysis using matrix structure found during DC analysis [16]. Nonethe-
less, for conventional transient circuit simulation, iterative matrix solvers have yet
to be widely used in production tools.

3 Parallelism Opportunities in Circuit Simulation

Parallelism can be integrated into every step of the circuit simulation flow shown in
Fig. 1. Furthermore, at every step, parallelism can be achieved through both coarse-
scale (multi-processor) and fine-scale (multi-threaded) approaches. A composition
of these two approaches will provide circuit simulation with the best performance
impact on the widest variety of parallel platforms.

This section contains a discussion of the parallelism opportunities exploited by
the Xyce simulation flow. Section 3.1 will focus on the parallel netlist parser, while
section 3.2 describes parallelism in the nonlinear and linear solvers. The majority
of the computational time is spent in device evaluations and linear solvers, so sec-
tion 3.2 will focus on parallelism pertaining to those specific tasks.

3.1 Parallel Netlist Parser

An efficient parallel netlist parser is essential for the simulation of very large cir-
cuits. The parser is the gateway through which the devices and network topology
are established and, if inefficient in computational time or memory, can easily be-
come the Achilles’ heel of a circuit simulator. Developing a netlist parser to work on
a wide variety of platforms, from desktops to supercomputers, can be a harrowing
task because of parallel file I/O. As such, the netlist parser in Xyce has had to ad-
dress two file system scenarios: inhomogeneous and distributed, homogeneous file
systems.

3.1.1 Inhomogeneous File System

An inhomogeneous file system, often found in networked computer clusters, is the
most general type of parallel file system. For such a file system, it cannot be assumed
that each node has access to the same directories and files, so the netlist has to be
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streamed on one processor. This presents an immediate parallel bottleneck, both in
terms of performance as well as memory. The approach taken in Xyce for this sort
of file system involves minimally processing the netlist prior to distributing devices
and analysis information to the other processors.

Parsing is accomplished in multiple passes of the netlist. In the first pass, the
netlist is dynamically flattened and a total device instance count is obtained. This
allows an initial, naive, parallel partitioning of devices to be determined based on
D/N, where D=number of devices and N=number of nodes. On the subsequent pass,
raw netlist data for each device is broadcast sequentially to the remaining nodes or
processors. After this process is completed, the devices are instantiated and initial-
ized locally on each node. This approach does not completely remove the parallel
bottleneck inherent to streaming the netlist file on one processor. However, it enables
the parsing process to be mostly scalable in terms of memory usage.

The initial D/N partition determines the load balance for device evaluation. For
large problems, a naive partition (where each device is given an identical weight)
is often adequate, as the runtime is dominated by the linear solve at each step.
However, a more optimal device evaluation partition can easily be created by us-
ing weightings.

3.1.2 Distributed Homogeneous File System

A homogeneous parallel file system is a more common file system on modern par-
allel architectures. Though less general, it is in principle more scalable. Similar to
the heterogeneous case, an initial pass through the netlist is necessary, to determine
device count, and also to set file pointers for each node. As each node has full ac-
cess to the file system, parts of the netlist can be streamed in to each node directly,
rather than streamed in on one processor and then communicated. While this has the
potential to be scalable in terms of operations as well as memory, the bookkeeping
can be prohibitive for very hierarchical netlists. As with the heterogeneous file sys-
tem, the initial device evaluation partition is determined as part of the parallel netlist
parsing process.

3.2 Parallel Approach For Nested Solver Loop

In Xyce, the parallel approach taken for the nested solver loop is designed to account
for circuit heterogeneity, so optimal parallel load balance for device evaluation (ma-
trix and residual vector assembly) will likely differ from that of the linear solution
phase. Device evaluation and linear solves each happen once per Newton iteration,
so over the course of a long run the combined cost of both will comprise the bulk of
the wall clock simulation time.

The relative amount of time spent in each phase is problem-dependent. For
smaller problems, the device evaluation phase should dominate run time. As the
problem size increases, the linear solve phase will dominate, as it should scale super-
linearly, while the device evaluations should scale linearly. This is because linear
solution methods (whether they be direct or iterative) are generally communication
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Fig. 2 Different load balance/partitioning for device evaluation and linear solve

intensive, while the communication volume required during the device evaluations
is relatively small.

As a result, the device evaluation phase can be balanced by taking into account
only the computational work required, while the matrix partitioning has to mini-
mize communication volume. How this communication volume is measured, and
how it is optimized is an active area of research for many types of numerical sim-
ulation problems. Since the device evaluation and solve phases have different load
balance requirements, Xyce has been designed to have completely different parallel
partitioning for each. A simplified representation of this is shown in Fig. 2.

3.3 Device Evaluation

In Fig. 2, the left column represents the device evaluation procedure. Communica-
tion costs for this are relatively low and insensitive to load balance. At the beginning
of each device evaluation, solution and state vector values are needed by each de-
vice, and off-processor values are communicated as necessary. At the end of the
device evaluation, before final assembly, residual and Jacobian matrix values must
be communicated to fill the final linear system. Thus, the communication cost is rel-
atively cheap, and the main metric considered is the computational cost. For many
circuits of interest, a naive load balance, in which the total number of devices is
evenly divided among the available processors will demonstrate very good parallel
scaling. For circuits that are very heterogeneous, weights can be applied to different
device types to achieve a better balance.

The middle box in Fig. 2 represents the communication necessary to accommo-
date both load balances. This is dependent upon the partitioning of the linear system,
which is a much more difficult and complex issue. Unlike the device evaluation, a
naive partitioning will generally not suffice.
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3.4 Linear Solvers for Circuit Simulation

Solving the linear systems of equations, (2) and (3), generated through circuit sim-
ulation is often challenging. These linear systems are sparse, typically have hetero-
geneous non-symmetric structure, and are often ill-conditioned. Direct sparse linear
solvers provide a reliable, easy-to-use solution method that is preferred, industry-
wide, over iterative solvers. For smaller linear systems, this is understandable, be-
cause direct solvers are usually faster than their iterative counterparts. However,
when the linear system has hundreds of thousands of unknowns or more, direct
solvers become less practical as they suffer from poor scaling. So any advantage
gained through a scalable device evaluation procedure, is lost through the linear
solver. This situation only becomes more pronounced as the problem, or circuit,
size increases.

Iterative solvers, like GMRES [30], are scalable and robust for other types of
physical problems, but not generally for circuit simulation. This issue results from
the inability to generate effective, general-purpose, scalable preconditioners. The
heterogeneity in circuit matrices presents an exceptional challenge for creating a
preconditioner that approximates the coefficient matrix well, to accelerate conver-
gence, and is inexpensive to apply and scalable. Xyce takes advantage of several
common matrix properties when constructing a preconditioner for equations (2)
or (3). In the rest of this section the algorithms that take advantage of these proper-
ties will be presented, including: singleton removal, block-triangular permutation,
and parallel partitioning. This will be followed by a discussion of the iterative linear
solver strategies that are used in Xyce.

3.4.1 Singleton Removal

Conductance and capacitance matrices are sparse, but typically contain dense rows
and columns. Such structural matrix features are problematic for parallelism be-
cause they have the potential to increase communication costs dramatically. A cru-
cial observation [8] is that the dense rows (or columns) correspond to columns (or
rows) with one and only one non-zero entry, called a singleton. Eliminating single-
ton rows and columns, a standard practice in the original sparse direct methods for
circuits (section 6.3.1 of [21]), also eliminates the dense rows and columns. These
dense rows and columns typically result from power supply and ground nodes,
which are common to digital circuits. Other features such as clock nodes, while
not as highly connected as power nodes, still have a high enough connectivity to
cause problems. A histogram illustrating the connectivity for a sample integrated
circuit (IC) is depicted in Fig. 3.

Dense rows and columns can easily be removed from circuit matrices as pre-
and post-solve steps because the corresponding columns or rows will only have one
non-zero entry [8]. The procedure, referred to as “singleton removal”, is used by
Xyce as a first step for solving equations (2) and (3). The pre-processing step for
handling row singletons by removing the independent variable (x j), is given on the
left in Fig. 4. While the post-processing step for handling column singletons, where
the variable (x j) is fully dependent, is given on the right in Fig. 4.
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Fig. 3 Example IC connectivity histogram

Singleton removal is a successful strategy, but only when the nodes are connected
to ideal sources, and thus can essentially be removed from the system of equations
by inspection, as their values are known. In practice, highly connected nodes may
be non-ideal due to parasitic elements, and under this circumstance, the singleton
removal algorithm can fail to detect them. A mitigation strategy designed to preserve
singleton removal, based on multi-level Newton methods is presented in section 4.



a1 j
...

0 · · · ai j · · · 0
...

an j





x1
...

x j
...
...

xn


=



b1
...
...

bi
...

bn


⇒ x j = bi/ai j



0
...

ai1 · · · ai j · · · ain
...
0





x1
...

x j
...
...

xn


=



b1
...
...

bi
...

bn


⇒ x j =

(
bi−∑

k 6= j
aikxk

)
/ai j

Fig. 4 Singleton removal for rows (left) and columns (right)

3.4.2 BTF Reordering

The conductance matrix G used during DC analysis can be reducible [10], per-
mutable to a block triangular matrix with small diagonal blocks. Exploiting this
block triangular form (BTF) often gives great performance gains both for direct and
iterative solvers. Direct solvers only factor the tiny diagonal blocks, handling the
off-diagonal blocks in the substitution phase. However, the challenge is in perform-
ing transient analysis, when the linear systems are not reducible. Iterative solvers
can take advantage of this block structure to generate preconditioners that are effec-
tive for both DC and transient analysis [16].

The permutation to block triangular form, via the Dulmage Mendelsohn decom-
position, has two steps. First, a maximum matching permutation generates a matrix
with a zero-free diagonal. Second, a topological sort finds the strongly-connected
components of the associated directed graph. In Xyce, computing the permutation
to block triangular form is a serial bottleneck because there is no parallel software
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available. However, both steps required to compute this transformation can proba-
bly be parallelized. The first step requires a bipartite matching, which is the most
difficult to parallelize [24], but most device models produce Jacobian matrices with
very few zeros on the diagonal. The second step finds strongly connected compo-
nents and recent work shows this can be done in parallel [25]. For the time being,
computing the BTF permutation in serial is acceptable because the same reordering
can be used for each Newton step of the DC and transient analysis. Thus, the cost is
amortized over the entire simulation.

3.4.3 Parallel Partitioning

An effective sparse matrix partitioning, where the goal is to reduce the communi-
cation in sparse matrix-vector multiplication, is essential to iterative matrix solvers.
Furthermore, it has been demonstrated for a variety of physical simulation prob-
lems [33, 11] that a good parallel partition can enhance the performance of pre-
conditioned iterative matrix solvers. Graph-based partitioning algorithms have been
popular for some time [20] and became computationally feasible for large problems
with the advent of multilevel methods [17]. In recent years, hypergraph partitioning
has shown a lot of promise [12], in part because it relies upon more accurate metrics
for measuring parallel communication costs. This will give an exact estimate of the
costs required for a matrix-vector multiply, which is the main communication ex-
pense for iterative methods like GMRES. Interestingly enough, hypergraph-based
partitioning has also been demonstrated to be an effective algorithm for optimizing
circuit layout for path-based delay minimization [18].

Sparse matrix partitioning is performed in Xyce using either a graph or hyper-
graph partitioner via ParMETIS [19] or Zoltan [12], respectively. Either approach
generates a 1D partition, which partitions only the rows, assigning each row to only
one processor. Partitioning is computationally expensive, but the graph for conduc-
tance and capacitance matrices is static over the course of the simulation. Thus, the
partitioning can be reused, amortizing the cost over the entire simulation.

3.4.4 Iterative Linear Solver Strategies

In Xyce, the previously discussed matrix transformations are combined with alge-
braic preconditioning techniques to generate an iterative linear solver strategy. The
two strategies that have proven to be effective in preconditioning circuit matrices
will be presented in this section. In both, the linear solver is a block diagonal pre-
conditioned GMRES [30] method, in which the number of “blocks” is the number of
cores or processors used. To avoid confusion these “blocks” are referred to as sub-
domains. A block diagonal preconditioner applies the exact (Jacobi) or approximate
inverse of the subdomain matrix as its preconditioner. This preconditioner requires
no communication to perform the factorization and in its application, which makes
it suitable for parallel computation.

The first strategy is a general-purpose domain decomposition (DD) strategy, and
is illustrated in Fig. 5. Domain decomposition uses singleton removal, graph par-
titioning (ParMETIS [19]) on the resulting symmetrized graph to reduce commu-
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nication, and then computes a local fill-reducing ordering (AMD [6]) on the block
diagonal before performing a complete or incomplete LU (ILU) factorization. This
is used as a preconditioner for GMRES [30].

The second linear solver strategy was recently developed and is based on the
block triangular structure that is often found in conductance matrices [16]. When
the BTF structure is present, this strategy generates an effective preconditioner for
DC analysis that can also be used in transient analysis. The BTF linear solver strat-
egy, as illustrated in Fig. 5, uses singleton removal and then permutes the resulting
graph to block triangular form. The strongly connected components are then parti-
tioned, and each subdomain is solved directly using KLU [31] as a preconditioner
for GMRES [30].

Fig. 5 Domain decomposition (top) and BTF (bottom) linear solver strategies

4 Graph Mitigation using Multilevel Newton Methods

Several of the linear solver steps described in section 3.4 depend upon the circuit
or Jacobian matrix having specific structure. For example, the singleton removal
algorithm (section 3.4.1) assumes that power and clock node voltages are set with
ideal sources, with no intervening parasitic elements. Also, the BTF reordering (sec-
tion 3.4.2) only works if the circuit or matrix is sufficiently unidirectional, which is
not the case for all circuits.

Often, it is possible to mitigate structural problems by strategically partitioning
the nonlinear solver, and applying the multilevel Newton method [29]. In general,
such methods have been used to enable a simulator to optimally apply ideal solver
methods to different phases of a simulation. Peng et al. [28] used a multilevel New-
ton approach to enhance post-layout transistor-level circuit simulation. In this work,
the problem was partitioned into linear and nonlinear partitions. The linear partition
(due to post-layout parasitics), produced an SPD matrix that could be efficiently
solved using the Conjugate-Gradient (CG) method, while the nonlinear partition
produced a much smaller non-SPD matrix that was solved using direct methods.

For parallel circuit simulation, the multilevel Newton method can be applied to
break up the graph structure of the circuit, with the goal of preserving the effec-
tiveness of matrix ordering and other pre-processing steps. The method will be de-
scribed next, followed by its application to non ideal power supplies (section 4.2).
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Fig. 6 Simple multilevel Newton decomposition, where xu, xl and xi are the solution variables for
the upper level, lower level, and interface, respectively.

4.1 Multilevel Newton Method

The multilevel Newton method has been described by numerous authors [29], and
involves partitioning a problem into a tree structure, with a top level and sub-
ordinate lower levels. Circuits can often be very naturally partitioned based on sub-
circuits, but such a partition will not always fulfill the numerical objective which
justifies using the method.

An illustration of a multilevel Newton partitioning, consisting of two levels, is
shown in Fig. 6. The variables xu, xl and xi represent solution variables for the upper
level, lower level, and interface respectively.

The multilevel method treats each level separately, with the lower level undergo-
ing a full Newton solve for each iteration of the upper level. For circuit simulation,
using the MNA formulation, most of the solution variables x will be nodal voltages.
The interface nodal values xi will be imposed into each lower level as fixed voltage
boundary conditions, or independent voltage sources, as indicated in Fig. 6.

From the point of view of the upper level, the subordinate portions of the circuit,
or lower levels, are replaced by macromodels, which provide Ohmic relationships
similar to that of conventional compact device models. As such, each lower level
subcircuit must provide currents and conductances to fill out their respective matrix
stamps in the upper level system.

After each lower level solution has been obtained, that solution is then used to
help construct the upper level linear system. Each macromodel provides a matrix
stamp that is equal in size to the number of terminal connections, and each entry in
that stamp is a conductance term, obtained by solving the following equation:

Jmn =
∂ fm

∂xi
=

∂ f̂m

∂xi
+

∂ fm

∂xl

∂xl

∂xi
(4)

where m is the row index and n is the column index. From the perspective of the
top level circuit Jacobian, m corresponds to the KCL equation associated with the
circuit node attached to the mth electrode of the lower problem, and n corresponds
to the voltage variable for the circuit node attached to the nth electrode. The first
term f̂m/∂xi in equation (4) corresponds to the inner problem contribution to the
circuit node equation on the matrix diagonal, and is zero if m 6= n.
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The second term in equation (4) is the product of two vectors, ∂ fm/∂xl and
∂xl/∂xi. The vector ∂ fm/∂xl of the second term of equation (4) corresponds to a
sparse row of the lower problem Jacobian, or the derivatives of the terminal KCL
equations with respect to the internal variables of the lower problem. The vector
∂xl/∂xi is determined from solving the linear system:

Jl
∂xl

∂xi
=−∂ fl

∂xi
(5)

where xi are interface variables, corresponding to nodal voltages at the terminals to
the lower problem, Jl is the Jacobian of the lower level problem, and xl are lower
problem variables. The right hand side of equation (5), ∂ fl/∂xi is a sparse vector
that corresponds to a column of the full system Jacobian for the derivatives of lower
system variables with respect to interface variables.

4.2 Preserving Singleton Removal

As mentioned in section 3.4.1, singleton removal can fail when highly connected
nodes are not connected directly to ideal voltage sources. One example of this is
illustrated in Fig. 7, in which a parasitic network is attached to both VDD and VSS.
Singleton removal depends upon the values being pre-determined and in the ex-
ample this will no longer be the case. As a result, both linear solution strategies
illustrated in Fig. 5 would fail. Additionally, even if singleton removal did not fail,
the additional structure created by the power node parasitic network is sufficient to
destroy the triangular structure required by the BTF linear solver strategy.

Applying the multi-level Newton method can mitigate the graph problem pre-
sented by non-ideal power supplies. The power supply parasitic network on the left
side of Fig. 7 is partitioned into one level, while the remaining integrated circuit on
the right side is partitioned into another level. From a conceptual standpoint, either
partition can be the top or bottom level, but it is more computationally efficient to
put the parasitic network on the bottom level as it is (in this example) a relatively
small circuit, while the integrated circuit comprises the bulk of the original prob-

Fig. 7 Power node parasitics example. An RLC network sits between the VDD, VSS sources and
the main circuit, so these highly connected nodes cannot be removed with a singleton filter.
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lem. By using two-level partitioning, the values of VDD and VSS appear as ideal
sources within the partition, and thus these matrix processing steps are preserved. A
successful example of this approach is given in section 7.

5 Software

Xyce [4] relies heavily on the open-source Trilinos scientific computing library [23],
which was designed for parallel computing. Trilinos provides support for linear al-
gebra data structures as well as preconditioners, linear solvers and nonlinear solvers.
Xyce is not directly written to the Trilinos packages and, instead, has an abstract
interface that defines the functionality necessary for performing circuit simulation.
These software abstractions allow Xyce to use MPI with double precision arithmetic
through Epetra or combine and adapt to other parallel paradigms.

Xyce is designed to use abstract interfaces wherever feasible for algorithmic
components, so that the implementation of those components may be separated from
the implementation of the simulator. Many benefits result from such a decision. This
decoupling facilitates code reuse across Xyce and increases algorithmic flexibility.
As a result, constituent mechanisms (e.g., nonlinear solvers, linear solvers, precon-
ditioners) can be chosen at runtime. This enables Xyce to be a production simulator,
as well as a testbed for parallel algorithm research.

Xyce uses abstract interfaces and runtime polymorphism throughout the simu-
lation code. Much of the higher-level abstractions, relating to the analysis type or
time integration methods, have implementations that are contained in Xyce. How-
ever, the lower-level abstractions, relating to nonlinear solvers, linear solvers, and

Fig. 8 Xyce simulation flow with interface to Trilinos
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basic linear algebra, have interfaces to Trilinos packages. Fig. 8 shows the nested
solver loop from the circuit simulation flow diagram (Fig. 1), where the shaded box
illustrates the part of Xyce where Trilinos is utilized.

These software abstractions allow Xyce to adapt to future parallel paradigms and
arithmetic precision strategies. By default, Xyce uses MPI with double precision
arithmetic through Epetra. However, future computational platforms may require the
use of other parallel paradigms, such as TBB [5] and CUDA [2], to achieve optimal
performance. Furthermore, to address ill-conditioned matrices, it may prove useful
to use quad-precision arithmetic in the linear solvers.

These forward-looking computational strategies are the motivation for the newer
Trilinos linear algebra packages: templated Petra (Tpetra) and Kokkos. Tpetra pro-
vides a templated interface to parallel linear algebra and Kokkos contains the un-
derlying computational kernels enabling platform-dependent optimizations. Several
pre-existing Trilinos packages can use TPetra, like NOX, LOCA, Belos, and Teu-
chos, and many other packages are under development to provide direct solvers and
preconditioners using Tpetra.

6 Parallel Linear Solver Strategy Comparison

In this section, Xyce scalability experiments for several different circuits using var-
ious linear solvers are presented. The first comparison is an abbreviated version of
the results presented in [16], comparing the domain decomposition (DD) and block
triangular form (BTF) linear solver strategies with two other direct linear solvers:
KLU and SuperLU DIST (SLUD). KLU is a serial sparse direct linear solver devel-
oped specifically for circuit simulation [31]. SLUD is a general purpose (not circuit-
specific) distributed memory sparse direct linear solver [22]. The second compari-
son illustrates the scalability of the two linear solver strategies over an increasing
number of processors for the largest test circuit.

Since the goal of developing efficient, scalable linear solvers is to extend the
simulation capability to very large ICs, test circuits were chosen that produced large
(more than 104 unknowns) linear systems. Table 1 partially describes the these cir-
cuits, where ckt4 is the chip2 circuit from the well known test suite CircuitSim90 [7]
and the others are proprietary integrated circuits.

All computations are performed on a cluster with 2.2 GHz AMD four-socket,
quad-core processors with 32 GB DDR2 RAM and an Infiniband interconnect using
the OFED software stack. Each node of the machine has a total of sixteen cores,
and the user can request anywhere from one to sixteen cores per node. If less than
sixteen cores per node are used, the memory is evenly divided between the cores,
and more memory is available for each core. For the first comparison, two parallel
configurations were considered, 4 cores and 16 cores, on one compute node. For the
second comparison, the parallel configurations vary the number of processors per
node (ppn) used as well as the number of compute nodes.
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Table 1 Circuits: matrix size(N), capacitors(C), MOSFETs(M), resistors(R), voltage sources(V),
diodes (D).

Circuit N C M R V D

ckt1 688838 93 222481 176 75 291761
ckt2 434749 161408 61054 276676 12 49986
ckt3 116247 52552 69085 76079 137 0
ckt4 46850 21548 18816 0 21 0
ckt5 25187 0 71097 0 264 0

6.1 Explanation of Tables

For each circuit, results are presented for setup, device evaluation, solve and to-
tal times. The “setup time” refers to the time required to read the netlist, setup the
circuit topology, allocate devices, resolve parameters, and create the linear system
structure. The “device evaluation time” refers to the total time required to compute
the Jacobian matrix and residual entries for all the individual devices, and to sum
them into the parallel linear algebra structures, for every Newton iteration of every
time step. The “solve time” is the total linear solve time for the entire transient sim-
ulation. The “total” time is simply the total time for the entire simulation, including
setup, device evaluation, and solve times.

In tables 2 and 3, there are a number of entries labeled F1, F2, and F3 representing
different failure modes for the tested solvers. The F1 failure is unique to the BTF
linear solver strategy, stemming from the block triangular form having one large
irreducible block that makes it impossible to find a suitable partition. The F2 failure
results from Newton’s method failing to converge, which ultimately leads to Xyce
exiting with a time-step-too-small failure. The F2 failure can happen with either
iterative or direct solvers, but mostly happens with the iterative solvers when the
preconditioner is ineffective. The F3 failure mode denotes circuits that run out of
memory, suggesting that the memory requirements of the solver are too high.

6.2 Numerical Results

KLU reliably solves all the test circuits, and is considered the baseline for both
comparisons. Table 2 shows the simulation time for three of the five circuits, where
the simulations using KLU are run on one core and the others are run on four cores.
The BTF linear solver strategy successfully solves all three test circuits and the
total simulation time has been reduced relative to serial KLU. The speedups are
due to a combination of multiple cores and an improved algorithm, and can thus
be superlinear. The DD linear solver strategy successfully solves two of the three
test circuits, but is only faster than KLU on ckt5. Using the SLUD solver, the total
simulation time is faster than KLU in two of the three test circuits.

Table 3 shows the simulation time for the three largest circuits on sixteen cores.
The BTF linear solver strategy, when successful, achieves a substantial speedup and
even superlinear speedup for ckt3. However the failure to solve ckt2 is due to its
bidirectional structure, which results in a large irreducible block. The DD linear
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Table 2 Simulation times in seconds for four cores on a single node

Circuit Task KLU SLUD DD BTF Speedup
(serial) (KLU/BTF)

ckt3 Setup 131 56 F2 57 2.3x
Device Eval 741 568 F2 562 1.3x

Solve 6699 2230 F2 255 26.2x
Total 7983 2903 F2 923 8.6x

ckt4 Setup 15 8 8 13 1.2x
Device Eval 1189 330 264 265 4.5x

Solve 536 2540 1746 312 1.7x
Total 1858 2916 2050 619 3.0x

ckt5 Setup 57 21 21 22 2.6x
Device Eval 801 219 218 221 3.6x

Solve 346 318 280 67 5.2x
Total 1360 606 567 360 3.8x

Table 3 Simulation times in seconds for sixteen cores on a single node

Circuit Task KLU SLUD DD BTF Speedup
(serial) (KLU/BTF)

ckt1 Setup 2396 F3 207 199 12.0x
Device Eval 2063 F3 194 180 11.4x

Solve 1674 F3 3573 310 5.4x
Total 6308 F3 4001 717 8.8x

ckt2 Setup 2676 F2 F2 F1

Device Eval 1247 F2 F2 F1

Solve 1273 F2 F2 F1

Total 5412 F2 F2 F1

ckt3 Setup 131 29 F2 29 4.5x
Device Eval 741 181 F2 175 4.2x

Solve 6699 1271 F2 84 79.8x
Total 7983 1470 F2 306 26.1x

solver strategy does poorly on these larger test circuits, producing convergence fail-
ures in all but ckt1. SLUD also has difficulties, running out of memory on ckt1 and
causing a convergence failure on ckt2.

The second comparison illustrates the scalability of the two linear solver strate-
gies for ckt1. This comparison also examines the performance of loading values into
the Jacobian matrix and the residual vector, which includes the device evaluation.
The scaling is done relative to the serial simulation performance, where KLU is used
as the linear solver. The simulations were run on 8, 16, 32, and 64 processors (cores)
where 4 processors per node (ppn) were used. Thus 2, 4, 8, and 16 nodes were used
to perform this study. The plot in Fig. 9 illustrates that the scaling of the Jacobian
and residual load are about the same, as one would expect. However, the BTF linear
solver strategy is almost twice as fast as the DD approach.
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Fig. 9 Xyce scaling study for ckt1 using 4 ppn.
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Fig. 10 Xyce linear solver scaling for ckt1 using 4, 8, and 16 ppn.

Relatedly, the BTF approach is a better choice than DD with respect to overall
parallel scaling. When the DD strategy is used, the total simulation scaling falls
midway between the Jacobian load and linear solve scalings. This indicates that the
linear solve is a bottleneck to overall parallel performance, representing a larger
fraction of the total runtime. However, with the BTF linear solver strategy, the total
scaling is consistent with the Jacobian load scaling, demonstrating that the BTF-
based linear solve does not impact the overall simulation scaling.

Fig. 10 shows the total linear solve time for ckt1 over increasing numbers of pro-
cessors, for three values of processors per node. This plot verifies the performance
difference between the BTF and DD linear strategies, independent of the number of
processors per node. Furthermore, it illustrates that increasing the number of pro-
cessors past 32 is not likely to speed up the simulation. For any fixed problem size,
this roll-off is to be expected beyond a certain number of processors. However, it
should be noted that the overall runtime on 32 processors is approximately twenty
times faster than the serial case, which is still a substantial improvement.
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7 Graph Mitigation Example

All the results given in the previous section are for circuits which do not have a
parasitic network attached to highly connected nodes such as VDD and VSS (power
and ground). However, if such a network were to be attached, both the DD and BTF
solver strategies would fail. Here, an example is given, in which a power network
similar to the one shown in Fig. 7 has been added to ckt3.

The initial consequences of adding the parasitic network are given in Fig. 11. In
these figures, the DCOP matrix structure from the modified ckt3 is given, before
and after the BTF reordering phase of the BTF solver strategy. The structure has not
changed significantly, and the reordered matrix has a single irreducible block. As a
result, it is not possible to achieve an effective block-wise load balance in parallel,
as the irreducible block will be confined to a single processor.

The graph problems presented by the parasitic network can be mitigated by using
the multi-level Newton approach described in section 4. The parasitic network (cor-
responding to the left side of Fig. 7) in this example is considered the upper level
of the problem, while the rest of the integrated circuit is considered to be the lower
level. The graph problems are thus confined to the upper level and invisible to the
lower. The result of this strategy is given in Fig. 11.
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Fig. 11 Matrix pattern for ckt3 with power node parasitics attached before (top, left) and after (top,
right) BTF reordering. After the circuit has been partitioned into a multi-level Newton solve, the
matrix pattern for the inner solve before (bottom, left) and after (bottom, right) BTF reordering.
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8 Conclusion

Parallel circuit simulation requires integration of large and small scale parallelism
throughout the entire circuit simulation flow. In this paper, parallel algorithms for
circuit simulation, and their implementation in a production simulator, Xyce, have
been discussed. Specific attention was given to parallelism issues in the netlist
parser, nonlinear solver, and linear solver.

A key design aspect for Xyce is the development of new circuit-specific precon-
ditioners for iterative linear solvers. While not as robust as direct solvers, iterative
solver strategies have the potential to enable scalable parallel simulation. The results
presented show that the BTF linear solver strategy reduces the total simulation time
by up to a factor of twenty compared to the serial solver KLU on 32 processors.
However, the strategy only works well when the conductance matrix is reducible,
which is not true for some circuits for a variety of different reasons. One graph
mitigation strategy, multi-level Newton, has been successful at partitioning an irre-
ducible graph to a reducible one. Future work will include a focus on developing
other strategies for graph mitigation. Ultimately, a general parallel tool will require
a comprehensive strategy to obtain good parallel performance.
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