

Fuel Cycle Technologies

Used Fuel Disposition (UFD) Features, Events, and Processes (FEPs) for Generic Disposal System Evaluations (GDSE)

Geoff Freeze, Sandia National Laboratories

**Fuel Cycle Technologies Annual Meeting
Gaithersburg, MD
October 27, 2010**

UFD Overview

■ Objectives/Mission

- Develop computational models, validated by experiment, for the evaluation of disposal system performance in a variety of generic disposal concepts and environments

■ FY10 Accomplishments

- Features, Events, and Processes (FEPs):
 - *Identification of potentially relevant FEPs*
 - *Initial collection of information to evaluate relevant FEPs*
 - *Collaborative effort at SNL, LLNL, LBNL, ANL, LANL*
 - *Collaboration with NEAMS Waste IPSC*
- Generic Disposal System Evaluations (GDSE):
 - *Development of simplified generic performance assessment (PA) models for clay, salt, granite, and deep borehole disposal*
 - *Collaborative effort at SNL, ANL, LANL*

■ 8 preliminary repository environment categories

- combinations of concept and geologic setting

Group	Disposal Concept / Geologic Setting	Description	Current R&D
1	Surface Storage	Long-term interim storage at reactors or at centralized sites	UFD-Storage
2	Shallow Disposal	e.g., near-surface disposal, LTHLW sites (Depths <= 100 m)	
3	Mined Geologic Disposal (Hard Rock, Unsaturated)	Granite/crystalline or tuff (Depths > 100 m)	UFD-NS, EBS
4	Mined Geologic Disposal (Hard Rock, Saturated)	Granite/crystalline or tuff (Depths > 100 m)	UFD-GDSE, NS
5	Mined Geologic Disposal (Clay/Shale, Saturated)	Clay/shale (Depths > 100 m)	UFD-GDSE, NS, EBS
6	Mined Geologic Disposal (Salt, Saturated)	Bedded or domal salt (Depths > 100 m)	UFD-GDSE, NS, EBS
7	Deep Borehole Disposal	Granite/crystalline (Depths~ 1000 m)	UFD-GDSE, NS
8	Other	Sub-seabed, carbonate formations, etc.	N/A

* GDSE=Generic Disposal System Evaluations, NS=Natural Systems, EBS=Engineered Barrier Systems

■ 6 preliminary waste form / inventory categories

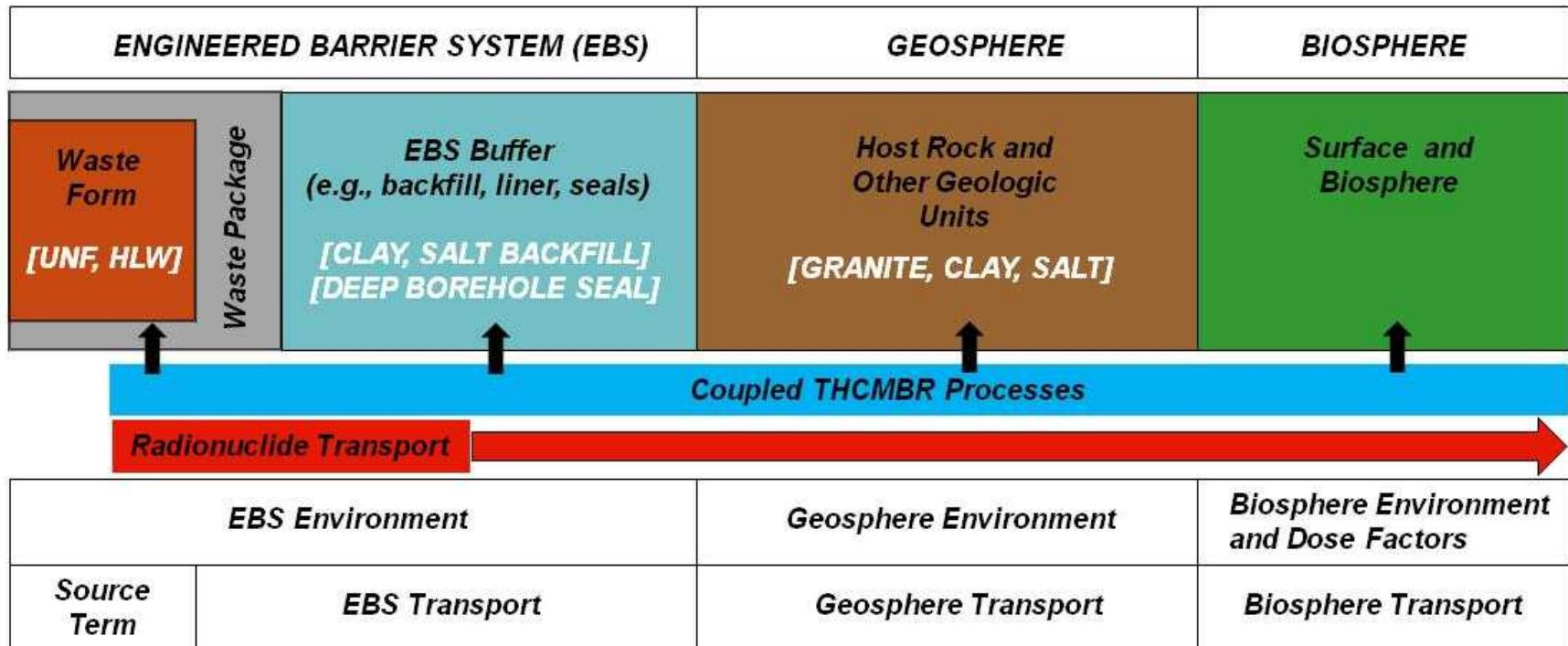
Group	Waste Form Type	Description	Current R&D
1	Used Nuclear Fuel (UNF)	e.g., Commercial, DOE-Owned, HTGR	UFD-GDSE, EBS
2	High-Level Waste (HLW) Glass	Current (e.g., borosilicate) and future (e.g., no minor actinides)	WF
3	High-Level Waste (HLW) Glass Ceramic / Ceramic	Current (glass bonded sodalite) and future (e.g., from electrochemical processing)	WF
4	High-Level Waste (HLW) Metal Alloy	From electrochemical or aqueous reprocessing, cermets	WF
5	Lower Than HLW (LTHLW)	Class A, B, and C, and GTCC	
6	Other	Molten salt, electro-chemical refining waste, etc.	N/A

* GDSE=Generic Disposal System Evaluations, WF = Waste Form Campaign, EBS=Engineered Barrier Systems

UFD Disposal System Alternatives

■ 35 potential disposal system alternatives

- 7 repository environments x 5 waste forms (excluding “other” categories)
- 20 alternatives initially considered by GDSE
 - *Mined and Deep disposal of UNF (and HLW)*
- 4 alternatives initially considered by Storage
 - *Storage of UNF (and HLW)*
- 2 alternatives initially considered by LLW
 - *Storage and shallow disposal of LTHLW*
- 9 alternatives not initially considered
 - *Mined and Deep disposal of LTHLW - “implicit” in UNF and HLW*
 - *Shallow disposal of UNF and HLW – not expected*


UFD GDSE Overview

- **20 potential disposal system alternatives initially considered**
 - 5 repository environments x 4 waste form types (1 UNF and 3 HLW)
 - encompassed by 4 GDSE conceptual models
- **4 GDSE conceptual models developed**
 - Mined Geologic Disposal – Granite / hard rock
 - Mined Geologic Disposal – Clay / Shale
 - Mined Geologic Disposal – Salt
 - Deep Borehole Disposal – Granite / hard rock
 - *Initial focus is on saturated host rock. Effects of desaturation, oxidizing conditions, and/or unsaturated flow pathways to be evaluated later.*
- **All conceptual models can accommodate inventory and degradation representative of UNF and/or HLW waste form types**

UFD GDSE Overview

- **1D schematic of generic disposal system domains and phenomena**
 - Common to all 4 GDSE conceptual models

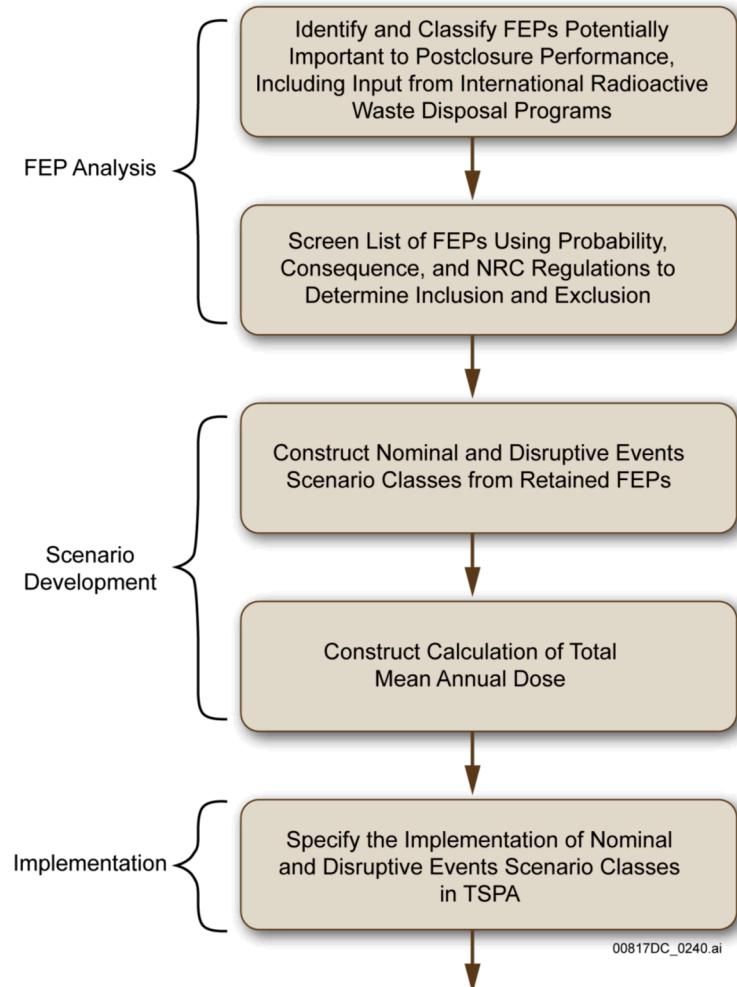
UFD GDSE Overview

■ Initial development of GDSE models based on:

- Informal identification of key disposal system components
 - *Concept (engineered barrier system (EBS) with some combination of waste form, waste package, backfill, and seals)*
 - *Geologic Setting (granite, clay/shale, or salt host rock)*
- Informal specification of key phenomena
 - *Source Term (waste form degradation, solubility, and mobilization)*
 - *Environment (temperature, chemistry – reducing/oxidizing, solubility)*
 - *Radionuclide Transport (simplified THC processes – advection, diffusion, sorption)*

■ FY11 plans for GDSE models:

- Refinement of conceptual models informed by FEP analysis
- Generic parameterization of FEPs/phenomena, including uncertainty quantification

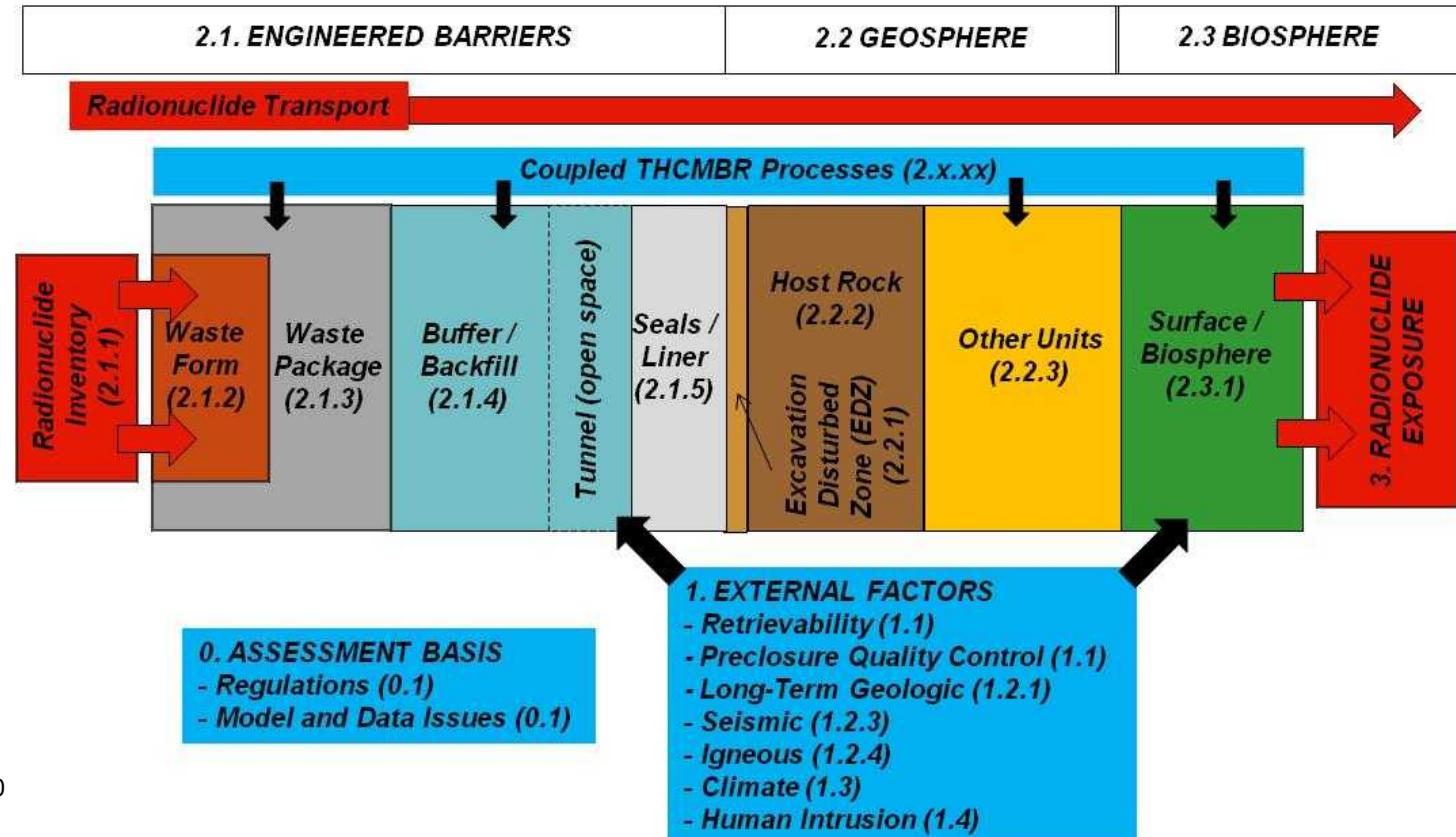

UFD FEP Analysis

■ FEP analysis consists of:

- FEP Identification and Categorization
- FEP Evaluation and Screening
- Scenario Development and Implementation in a GDSE/PA Model
- Iteration

■ Preliminary identification and categorization of potentially relevant UFD FEPs

- Based on NEA International FEP Database
 - *Includes granite, clay, and salt concepts from 10 different national programs*
- Follows Yucca Mountain Project FEP analysis methodology
 - *Comprehensiveness, level of detail*


00817DC_0240.ai

UFD FEP Identification

Identified and categorized 208 preliminary UFD FEPs

- Generic features applicable to all 20 GDSE disposal system alternatives
- FEPs describe the coupled thermal-hydrologic-chemical-mechanical-biological-radiological (THCMBR) processes and events acting upon the features

UFD FEP Evaluations

■ 208 UFD FEPs need to be evaluated for all 4 GDSE conceptual models

- Evaluations are done in collaboration with other activities
 - *UFD: Natural Systems, EBS, Storage*
 - *FCR&D WF Campaign*
- Evaluations (and conceptual models) are dynamic
 - *Evolve as new information (data, designs, model results, socio-political input) becomes available*
- Current FEP evaluations are limited to collection of existing information
 - *Preliminary evaluations/data collection initiated for 104 FEPs in FY10*
 - *Can be used to inform preliminary FEP screening for GDSE models*
 - *Ongoing collection of information may include experimental work*
 - *Examples provided on subsequent slides*

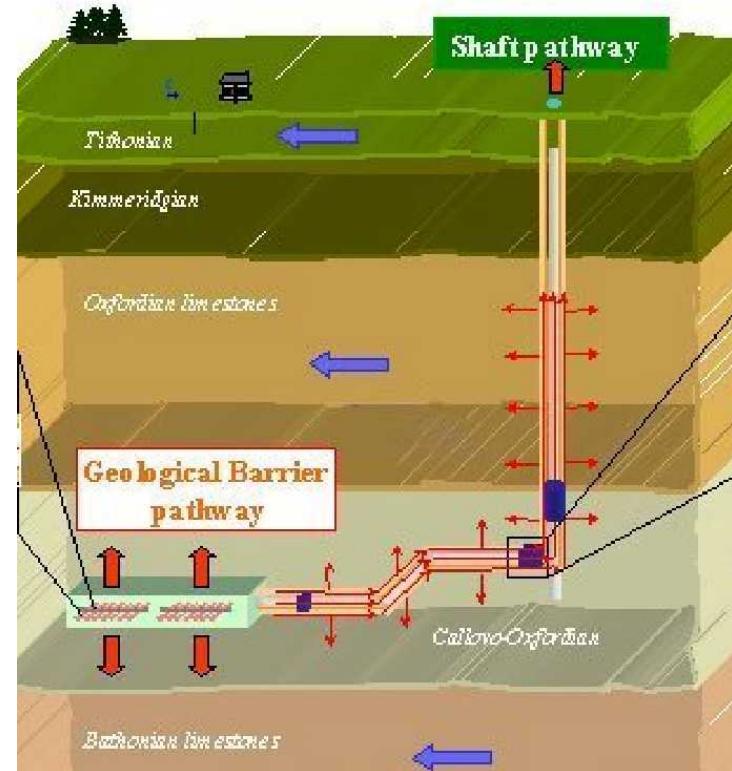
UFD FEP Evaluations – Waste Forms (ANL)

■ Used Nuclear Fuel (UNF)

- Basis for evaluating degradation of commercial LWR fuels (UOX and MOX) is extensive
 - *Data are available from worldwide sources to assess degradation of UOX fuel matrix and release of gap and grain-boundary inventories*
 - *UOX and MOX matrix degradation processes are well understood and depend on the redox conditions in the disposal environment*
- Basis for evaluating degradation of DOE-owned fuels and advanced reactor fuels in less mature

■ High-Level Waste (HLW)

- Basis for evaluating degradation of HLW glass is extensive
 - *Data are available from worldwide sources on processes controlling hydrolysis and dissolution of glass network*
 - *The important environmental factors (T, pH, dissolved silica) are likely to be controlled by the waste form and EBS*
- Basis for evaluating ceramics (e.g., glass bonded sodalite) and metal alloys (e.g., SS 15Zr) is less extensive

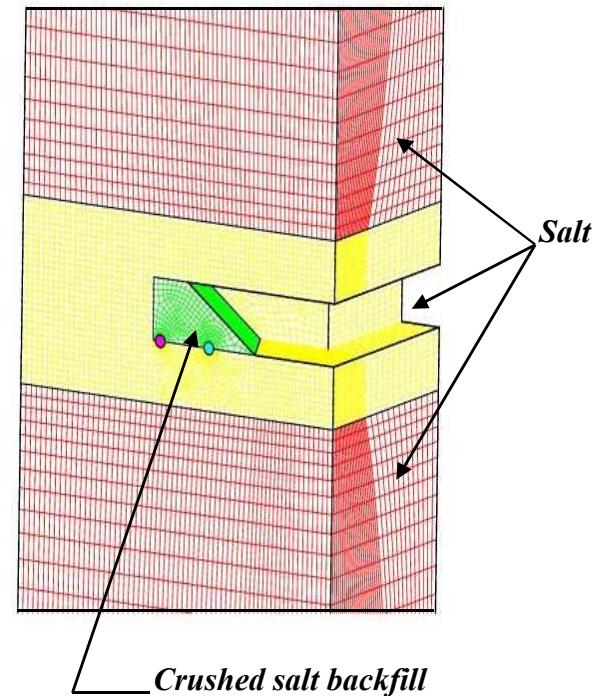

UFD FEP Evaluations – Clay (LBNL)

■ Bentonite Backfill

- Rehydration and swelling to close gaps
- Interaction of swelling stress and EDZ
- Erosion and piping
- Dissolution and precipitation

■ Excavation Disturbed Zone (EDZ) and Near-Field Clay

- Enhanced fracturing in EDZ due to changes in stress and saturation
- Formation of long-range connected transport pathways through EDZ
- Mitigation of extent of fractures and transport pathways through self-sealing


from Bauer et al. (2003)

UFD FEP Evaluations – Salt (SNL)

■ Thermal-Mechanical (TM) Effects in EBS and Near Field

- Large deformation salt creep behavior
- Compaction of crushed salt backfill
- Temperature dependent material properties

UFD FEP Evaluations – Granite (LANL)

■ **Hydrology and Radionuclide Transport in Far Field (Geosphere)**

- Advection through fractures and heterogeneous domains
- Characterization of fracture networks and connectivity
- Matrix diffusion – exchange between fractures and surrounding rock matrix
- Sorption
- Colloid-facilitated transport

Interfaces Between UFD GDSE Models and NEAMS Waste IPSC Models

■ UFD GDSE Model Timeline

■ Short time horizon (2-3 yrs)

- Simplified generic system models (i.e., PA-fidelity)
- Current computing capabilities
- Minimal multi-physics coupling
- Sufficient for scoping studies and high-level comparison of options

■ Intermediate time horizon (~5 yrs)

- More advanced system models developed in parallel with NEAMS Waste IPSC

■ Long time horizon (~10 yrs)

- Mature models based on NEAMS Waste IPSC experience

■ R&D and FEP Evaluations

- Informs process and PA model development

■ NEAMS Waste IPSC Timeline

■ Long time horizon (~ 10 yrs)

- Fully coupled multi-physics (THCMR) models from first principles (i.e., high-fidelity)
- PA-fidelity system model abstracted from high-fidelity model
- Advanced high-performance computing capabilities
- Models capable of detailed analyses of a range of disposal options, sufficient for licensing

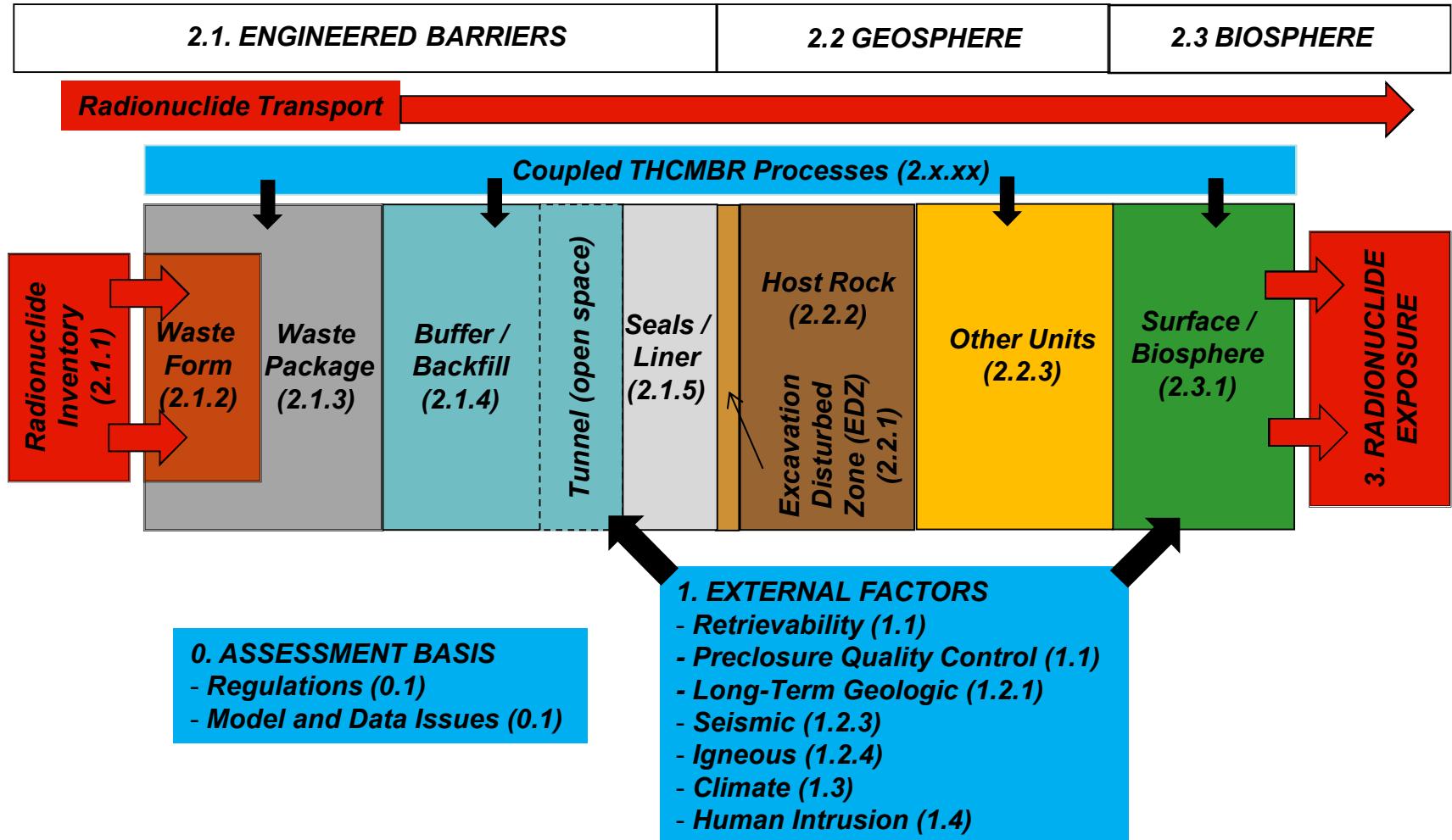
■ FEP Analysis

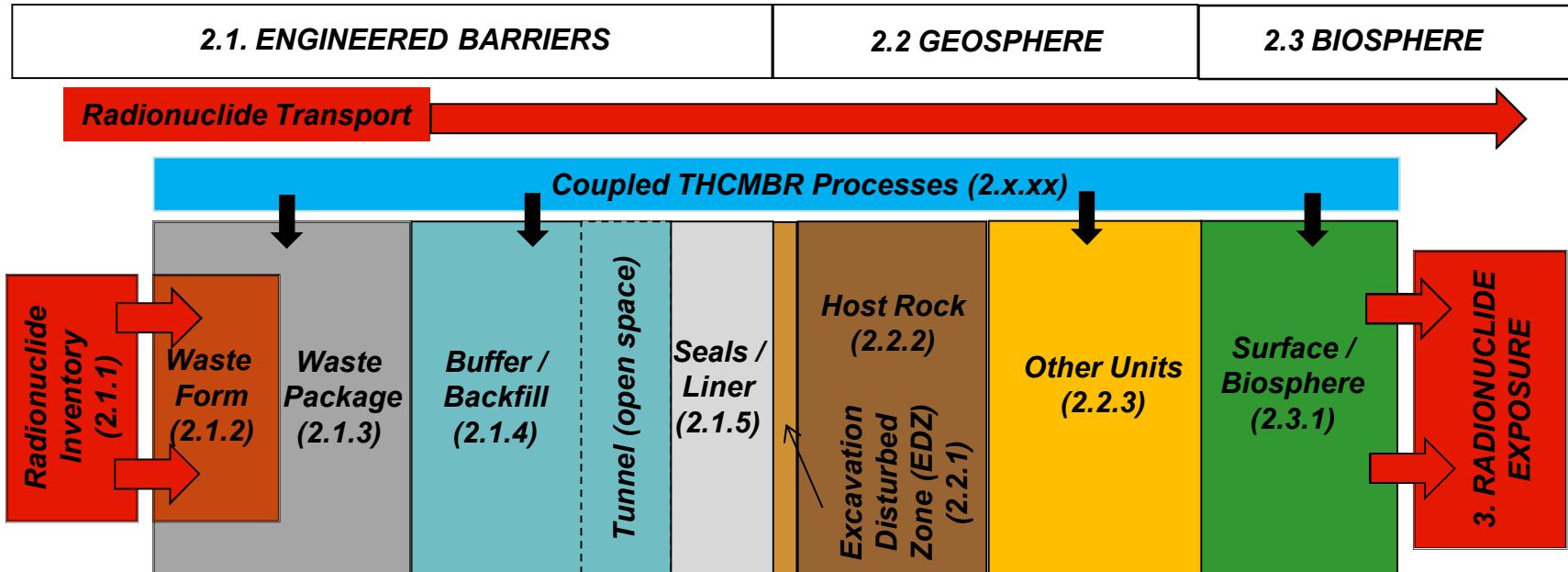
- FEP list is reasonably mature
- FEP evaluations are ongoing
 - *Will inform GDSE model conceptualization and parameterization*

■ GDSE Model Capabilities

- 4 conceptual models (granite, clay, salt, deep borehole)
- Provide insights at a generic level
- Facilitate comparisons among generic concepts, for example
 - *compare different EBS designs with same geosphere and biosphere*
 - *compare the same stylized treatment of human intrusion or disruptive events in different concepts*
- Identify important features, processes, and sources of uncertainty in various disposal concepts, for example
 - *diffusion vs. advection*
 - *waste form lifetime vs. EBS transport time vs. geosphere transport time*
 - *impact of variability in waste package failure times*

■ Backup Slides


UFD FEP Evaluations – UNF Waste Forms (ANL)


- **Initial evaluations focused on commercial LWR fuels (UOX and MOX) and DOE-owned fuels**
 - Few relevant data for evaluating degradation of advanced reactor fuels
- **Basis for evaluating degradation of LWR fuels is extensive**
 - Data are available from worldwide sources to assess degradation of UOX fuel matrix and release of gap and grain-boundary inventories
 - The UOX and MOX matrix degradation processes are well understood and depend on the redox conditions in the disposal environment
 - UOX Degradation models have been developed for oxidizing and reducing environments
- **Basis for evaluating DOE-owned fuels is less mature**
 - N Reactor uranium metal fuel degrades rapidly under aqueous oxidizing and reducing conditions

UFD FEP Evaluations – HLW Waste Forms (ANL)

- **Initial evaluations focused on current HLW waste forms and similar materials that are baseline waste forms for advanced processing of used fuels**
- **Basis for evaluating degradation of HLW glass is extensive**
 - Data are available from worldwide sources on processes controlling hydrolysis and dissolution of glass network
 - *disagreements concerning long-term extrapolation of degradation rates*
 - The important environmental factors (T, pH, dissolved silica) are likely to be controlled by the waste form and EBS
- **Basis for evaluating ceramics (e.g., glass bonded sodalite) and metal alloys (e.g., SS 15Zr) is less extensive**
 - Metal alloy waste form degradation will depend on the redox conditions and halide ion concentration in the disposal settings

<i>EBS Environment</i>		<i>Geosphere Environment</i>	<i>Biosphere Environment and Dose Factors</i>
<i>Source Term</i>	<i>EBS Transport</i>	<i>Geosphere Transport</i>	<i>Biosphere Transport</i>

■ Schematic of Model Components