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. Full Waveform Inversion (FWI)

* Seismic Imaging (traditional)
— Acoustic wave propagation

Seismic Experiment (“shot”) — “Manually” inverting for wave speed
— Primarily utilizes travel time
— Methods neglect waveform/amplitude
— ~20 exaFLOP (FD elastic)
B ot & Seismic Inversion (FWI)
— Matching full waveform of the wavelets

Seoce,
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— Acoustic, Elastic, Attenuation, Anisotropic

— Inverting for wave speeds and density
O(108) parameters

— ~20,000 exaFLOP (FD elastic)

% 100,000’s shots per survey * Interest to Sandia and DOE

% 1000’s receivers per shot — Nuclear non-proliferation monitoring

% |2 seconds at Imsec sampling — Underground structure identification
= 4.8 TB of data per survey! — Site characterization

(CO, sequestration and waste repositories)



Project Goals

Investigate use of unstructured Discontinuous Galerkin (DG)
for seismic modeling & inversion
Leverage DG capabilities for seismic modeling

— Unstructured meshes can accurately capture discontinuous
material interfaces (faults, ocean bottom, salt structures).

— Local polynomial refinement enables improved resolution for
localized geological features.

Demonstrate DG for seismic inversion

— Utilizing above advantages

— Use Simultaneous Source Inversion (SSI), see Krebs et al. 2009

Utilize algorithms from Trilinos and Dakota toolkits
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Why discontinuous Galerkin?

B — %%

== —

* Finite Difference * Discontinuous Galerkin
— Uniform structured mesh — Unstructured mesh
* Hard to coarsen with depth * Can coarsen with depth
* Hard to refine near targets * Can refine near targets
* “Stair-step” interfaces  Exact interfaces
— Difficulty aligning mesh with — Can match
* Surface topologies * Surface topologies
 Material interfaces  Material interfaces
— Can high order be maintained? — Provably high order
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Discontinuous Galerkin
Q=0;+Q,

Strong form:
U’t—|—F@',i:S, in €
U(x,0) =Uqy(x), at t=0
and appropriate boundary conditions on 0.

Partition (2 into N subdomains (2.

/ (WU, - WIF;) da + / WTF, ds = / WS ds
Qe 0, e

Introduce numerical fluxes F',,(U) — ﬁ‘n(U_, U™) and sum over all elements

N
Z / (WTU,t — W:I;F@ — WTS) dx + / WTﬁn(U_, U+) ds — 0
e=1 Q. ey

for all W € V.

Benefits: High accuracy, unstructured, local hp-refinement, local conservation
6



DGM Toolkit

* High-order on unstructured meshes

— Line, Quad, Tri, Hex elements
* Supports local, p-refinement
* Object-oriented software design o ey

* Physics independent: examples for
— Compressible Euler & Navier-Stokes (with LES)

rrrrrrrr

— Incompressible Euler & Navier-Stokes
— Advection-diffusion, Burgers, Darcy, Helmholtz

* Designed for adjoint-based optimization

— Steady-state and transient with checkpointing / )
* MPI with MPI-IO - o
* Version 0.0 released open-source (Rice) \ /

* Version |.0 on the way...




GM Inversion Infrastructure

Adjoint

compute

OptProblem
solve
4
ti
State Control Ot
database list<Ctri*> optimize Obhcllv 2
compute npredict advance list<Obs*>
tost inner_product check orad npredict
advance norm 08
cost terminal_cost
| gradient end_condition
ObjFunc
{ initialize
evaluate
Ctrl | gradient Y
penaity Obs
inner_product penalty
norm cost
cost end_condition
gradeent
set_direction
BC Source
apply apply
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i Ichos

 Discontinuous Galerkin
Unstructured meshes

Variable-order polynomial representation
» For both the solution and the media
Local polynomial de-/refinement

Curved and non-simplicial elements

« Component Technology
— Built on DGM Toolkit

» Component-based software design for DG

— Agile Components (ModelEvaluator) - o4 :E:

» Access to Trilinos (OptiPack) and Dakota
— Multiple physics (acoustic, elastic and attenuation)
 Optimization and Inversion
— Transient optimization
— Adjoint-based optimization/inversion
— Simultaneous Source Inversion

(Greek for sound or Tune)

Agile Components
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* SVN/CVS repositories

* Mailman email lists
* Trac project web-site

* Hudson continuous testing
— Linux
— Mac

— Clusters

* Full Doxygen
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~ roject Management

o Inversion for ane

Some useful inform

1. Basic information
2. Teleconference

Project ichos-build-li
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Project Statement:
Develop software and aigorithms to perform large-scale full-wavefield inversion.
Aress of interest for research and development:
o Inversion methads and algorithems for large-scale seismic inversion
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Pidima Discontinuous Galerkin Application
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Overview

This is the Fidima apalianon which i Dulld on the DOM SDrary which seppons Myind, one -, two -« and thiee ~dmensional
Sacretizations forAdv_ DAY, Burgers, Duder, Unluler_quas!, Navier_Stokes, Tuferdd, Navier_Stokes 3d, Acoustic,
ConsAcoustic, Anacoustic, Blasuc, Darcyflow, and PorcusMediaequatons. Note that nec all PDEs can be solved an alf spacad
Smensions 30 see the particular module 5o learn moce

Pidima & designed using an chject-orented approach 10 POE simalanon and optimizanon/isversion. The class heirarchy
Deging at the Righest level with the Problem class which defines 3 smple forward problem cn a space -time Domain, ()

One can dlso derve off of Problem 10 QEnerate ORUMIZATON, CONLACY, OF &Mror ESUManon Preblems and examples of each
are provided

The neat level in the heirarchy is the Domain class that holds 2 space ~Time domain That log cally COMains a prescrided set
of phyiics, The physics must be an equivalent first-ceder POE suitable for Siscontinuoss Galerkin methods of e form

U+ FoU)-F Uy =8

where [/ o the solbon wecior, which in DCM notation & called & viiedd (s80rt for vector Fleid) The comectve fax in the
S directon is (1) and the diffusive (0r viscous) fux in the o directon s J7(1/). Note that derivatives are denoted
by wbacripts following 4 comma with summation over repeated ndices and ¢ denotes time.
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Forward Modeling
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Discretization Challenges

Traditional structured meshes have difficulty
capturing geological features accurately

92 Discretization 02 Free of
Artifacts Artifacts
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12 Triangle: p=10 uniform mesh Triangle: p=10 unstructured Laboratories
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Code Verification

Mesh Refinement Polynomial Refinement
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Topology Capturing

Sinusoidal Ocean Bottom v - v y " "Flat —

& Sine-wave
4e-15 f Sawtooth e 1

* For example:

— Ocean floor _ eesf
."5
— Faults § o
N
— Salt structures > 2e5 |
-4e-15 F

— Even ocean waves...
* Elastic and Acoustic [+

Ocean Waves
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Pressure Wavefield, t=1.25 s

Wavy Sea Floor
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See: Smith, Collis, Ober, Overfelt, Schwaiger, SEG 2010. |
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Ichos Performance

Weak Parallel Scaling on RedSky
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Seismic Inversion

)
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* PDE constrained optimization problem

* Approach

18

Inversion Formulation

2

1N7‘ T N
min — (X X, t) — weP(X, T dx dt
miy 53 ) [ 00 (pont) = Dt

 Subject to acoustic wave equations in conservative form

ﬂ%—I—V-V:ﬁd) in 2 x (0,7

ov
P ot

p(x,0) =0 forx e
v(x,0) =0 forx e

— Simultaneous Source Inversion
» Krebs et al. (2009)

» Phase Encoding — Romero et al. (2000)
» Speedup of 50x in 2D; ~2000x in 3D

— Gradient-based optimization...

+Vp=0 inQx(0,7]

B =1/(pc*) — compressibility
B = space of admissible media
p = mass density
¢ = wave speed
() = computational domain
T = time horizon

N,. = number of receivers

N¢ = number of sources

wg € {—1, 1} — random phase encoding
N

¢ = g wsw(t)€s(x) — encoded sources
s=1

p = measured pressure data

&, & = spatial kernel for receiver, source



odel Problem - Marmousi2®

* True Model

— 500m sponge on bottom P
— 500m sponge on ends ' ‘
— Fixed spread of receivers i

X, = r*200+500 (0 < r £ 75)

y.= 100m

— Uniformly spaced sources
x, = s¥1000m (I < s < 15)
Y, = 300m
* Projected Model

— 80 x 20 =1600 elements
= 57.6k dof

* Martin, G. S., R. Wiley, and K. J. Marfurt,
— FD 20m cells = 160k dof 2006, Marmousi2: An Elastic Upgrade for

Marmousi: The Leading Edge, 25, 156-166.

 Smoothed Initial Model
Sandia

— Damped least-squares method National
19



Initial Model

Inverted Model

380

360

340 f
320 }
300 p
280 r

260 r

240

Acoustic Inversion

Convergence of Model Fit

... 23% CPU savings

T=2.67s
T=5.335 llllllllll
restart T=5.33s ]

....’
e ™
.-'-u......

50

100 150 200 250 300 350 400
Iteration

See: Collis, Ober, van Bloemen
Waanders, SEG 2010.
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: Acoustic Inversion

Marmousi2 True Model (h = 200m; p = 5) FD SSI — Krebs et al. (2009) (h = 20m; 8t order)

Initial Model Initial Model

Inverted Model Inverted Model

/A.-;\
Inverted - True Inverted - True
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Ichos Acoustic Inversion

15 sources at 1000m spacing, 76 receivers at 200m spacing

Uniform Mesh

=5,8

Mesh

h~200m,p

S 1 3 - e




- Ichos Acoustic Inversion

15 sources at 1000m spacing, 76 receivers at 200m spacing

Local Polynomial Refinement

=5,8

Mesh

h~200m,p

EEEE Z : ] ' 1




- Ichos Acoustic Inversion

15 sources at 1000m spacing, 76 receivers at 200m spacing

Unstructured Mesh

=5,8

Mesh

h~200m,p

Inverted
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Closing Comments

* lchos demonstrates the potential of high-order DG methods
— Based on flexible DGM toolkit + Trilinos + Dakota
— Acoustic and Elastic wave propagation in 1d, 2d, and 3d

— Infrastructure in place for gradient-based inversion in 1d, 2d and 3d

* Proof-of-principle inversion studies:

— Uniform structured mesh: similar accuracy, fewer degrees of freedom

— Local p-refinement improves representation of localized geological
features

— Unstructured meshes accurately capture discontinuous material
interfaces (faults, ocean bottom, salt structures).

— Simultaneous Source Inversion (SSI) offers significant algorithmic
speedup

* Component-based approach: key to scalability, sustainability

and agility...
Sandia
@ National
Laboratories
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Extras
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Linear Elastodynamics

ovi(x,t)  0dojij(x,t) omg;(x, 1)
p(x) - = fi(x,t) + :
doij(x,1) Quk(x,t) o dvi(x,t)  Ovj(x,t)]  Omi;(x,1)
ot A % ) | = T T | T T

Stress tensor: o;;(x,1)
Particle velocity: v;(x,1t)

Force vector: f;(x,1)
Moment tensor: m;;(x,t)

Mass density: p(x)

Lame’s first parameter: A\(x) = p(V? — 2V?)

Shear modulus: pu(x) = pV.2

Compressional wave speed: V,(x)

Shear wave speed: Vi(x) Sandia

National
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Seismic Explosion

* Source composed with sum of shots
N
o(x,t) = Y wsw(t)és(x)
s=1

* Encoding ws € {—1,1}
* Ricker wavelet

w(t) = (1= 277 £, (t — to)) exp(—7f, (t — t0)*)

* Gaussian spatial “ball” or Delta function

1o\ — x4|?
€S(X)=<a %) exp(|x2;|>

£5(x) = 0(x — xg)

)
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