
Radiation defect chemistry in GaAs and III-V's

Density functional theory (DFT): SeqQuest

Thursday, November 18, 2010, 10:00-10:30am

Peter A. Schultz
Multiscale Dynamic Materials Modeling Dept 1435

Radiation defects chemistry: Si

Need to know defects species, levels, chemical evolution ...
 DFT most accurate (sometimes only) probe of defect behavior
 This chemistry map almost entirely blank in GaAs, III-V's - unknown

Requirements for defect levels

- **Experimental uncertainties for defect levels 0.03 eV - 0.1 eV - unknown**
 - Ideally $kT=0.03$ eV - Si: A-center, $vv(+/0/1/2-)$, $v(2+/1+/0)$
 - Typically larger, 0.1 eV - Si: $B_i(-/0)/0.08$ eV, Bv : a mess($U>0.1$ eV), etc
 - Sometimes “infinite” - Si: $Pv(0/+)$ only recently identified in experiment
 - In GaAs, few levels <0.1 eV, mostly unknown (unknowable?) defects
- **Some numerical evidence from device simulations for 0.1-0.2 eV**
 - Sensitivity Analysis: results not strongly dependent on levels
 - Device simulations already use less accurate data (MD, BCA)
- **Required accuracy: 0.1-0.2 eV (awaiting refined guidance from SA)**
 - Matches accuracy of typical experimental data
 - Improves on existing device simulation practice

Need systematic numerically-driven SA guidance

DFT challenges

- **Conventional DFT failed for defect levels in semiconductors**
 - (1) “band gap problem” - DFT Kohn-Sham band gaps are awful
 - (2) defect level problem
 - reference level for charge unknown
 - location of band edges cf levels (related to band gap problem)
 - e.g.: 10 theory calculations for v_{Ga} levels = 10 different results
 - (3) unknown (and unassessable) accuracy
 - accuracy of functionals unknown
 - accuracy of pseudopotentials unproven (e.g. 3d: core vs. valence)
 - (4) computational limitations - cell size inadequate to isolate defects
 - (5) lack of good and sufficient data for validation (esp. III-V's)
 - lots of “point solutions” with DFT, but no robust, transferable methods
- **Need to build and justify new approaches, apply to new problems**

Strategy: incrementally build verified, validated models

Incremental development of DFT models

(1) Silicon: lots of good data, with some gaps and unknowns

- develop robust methods for defects (FDSM)
- verify models, validate against comprehensive defect data
 - DFT/SeqQuest with FDSM gives 0.1 eV average, 0.2 eV max error in levels
- predict gaps (interstitials, vacancies), discover unknowns (P_v, B_v)

(2) GaAs: more complex system, less good data

- verify models (e.g., PP, cells), learn how to validate with less data
- identify primary radiation defects, predict properties
 - Verified and validated same accuracy as Si, redefined defect assignments
- identify mobile species, and develop and quantify chemical networks

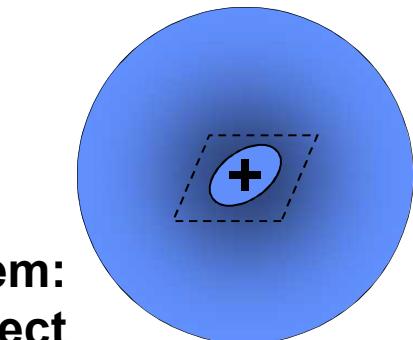
(3) III-V's: even less good data

- verify models (e.g., PP, cells), adapt validation
- identify primary radiation defects, predict properties
- identify mobile species, and develop and quantify chemical networks

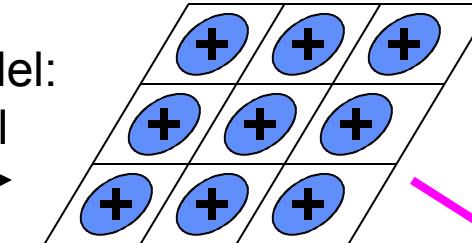
(4) Alloys, oxides and other materials important in HBT's.

Computational methods - GaAs and III-V's

- General purpose DFT code SeqQuest (<http://dft.sandia.gov/Quest>)
 - Version 2.61j, and development Version dev-2.62/j (equivalent to 2.61j)
 - well-converged (Gaussian-based) local orbital basis
 - both LDA and PBE functionals
 - converged norm-conserving pseudopotentials (Ga,In with both $Z_{\text{val}}=3,10$)
 - full force-relaxed (<1 meV total energies)
 - full FDSM ... robust control of boundary conditions
- Large bulk simulation supercells
 - $a_0=a_0(\text{theory})$ (GaAs:5.60Å(LDA),5.63Å(3d),5.74Å(PBE); $a_0(\text{expt})=5.65$ Å)
 - 216-, 512- and some 64-site (+defect) cubic III-V cells
 - k-sampling: (2^3 for 216- and 512-cells, 3^2 for 64-site cell)
 - real-space grids: 64/96³, 216/144³, 512/192³ (96³, 144³, 192³ for GaAs-d0)
 - fully calibrated, verified polarization model
 - all these computational parameters are tested for convergence

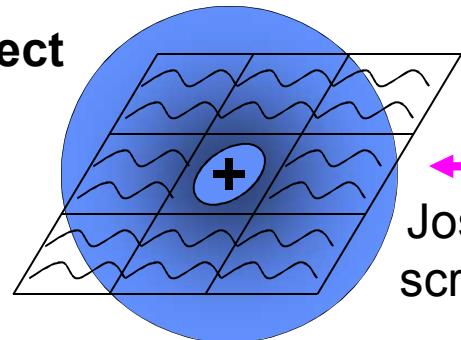
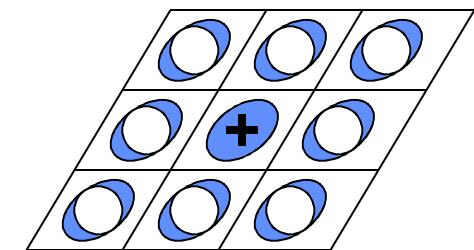

Comparable method to Si that yielded 0.1 eV accuracy

A supercell theory of defect energies


Peter A. Schultz, Phys. Rev. Lett. **96**, 246401 (2006).

Target system:
isolated defect
=
**Computational
model for
isolated defect**

(+ DDO
for defect
banding)

Standard
DFT model:
Supercell

LMCC to fix
boundary
conditions

Finite Defect Supercell Model

Jost Bulk
screening

Crystal embedding
to fix μ_e

FDSM - breakthrough for robust calculations of defect levels

Simple intrinsic defects in GaAs: LDA

P.A. Schultz and O.A. von Lilienfeld, MSMSE 17, 084007 (2009), 35pp.

216-site results = 512-site

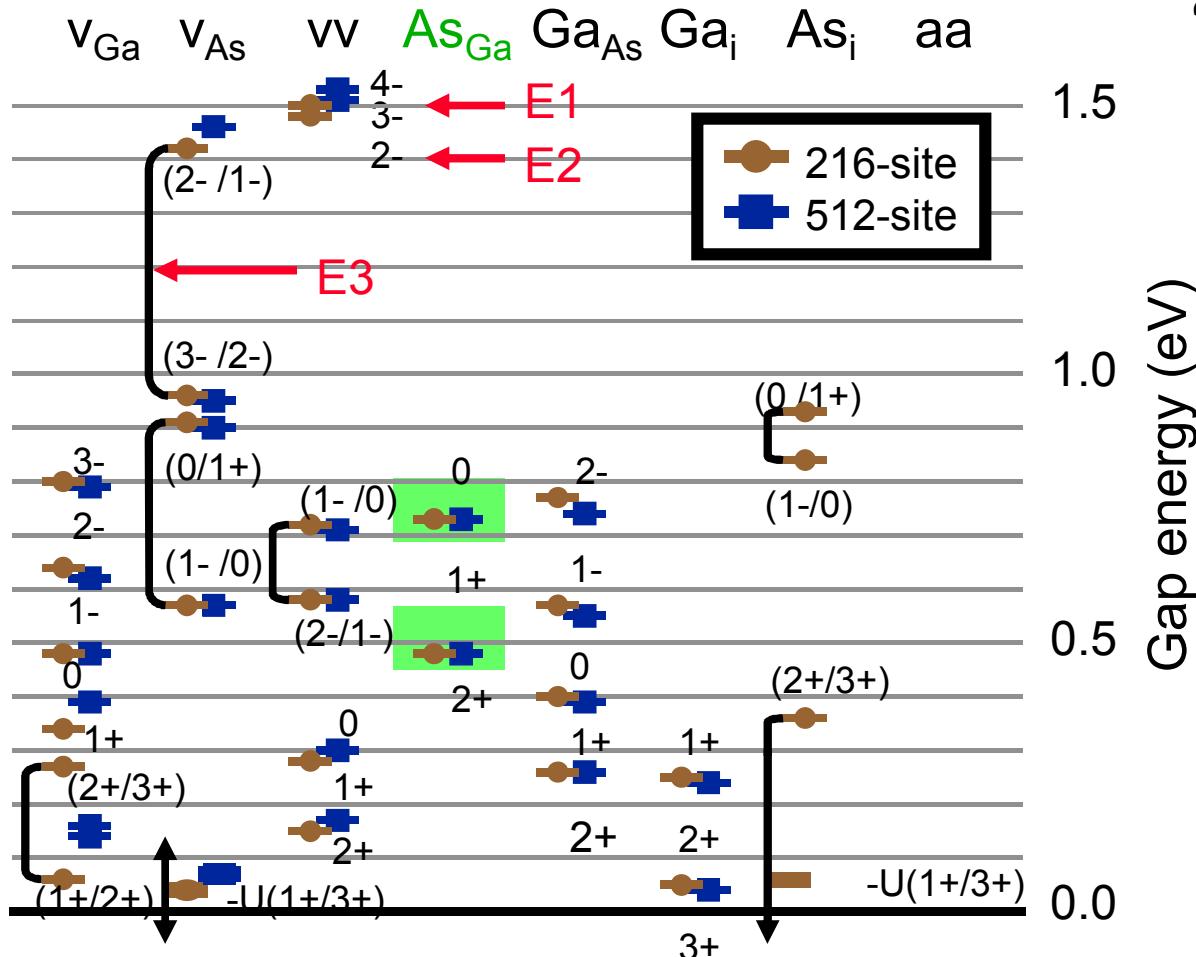
Verification: cell-converged

LDA-3d = LDA to ≤ 0.1 eV

Verification: PP converged

Defect band gap = ~ 1.54 eV

Validation: band gap (1.52)


As_{Ga} levels = EL2 levels

vGa levels below midgap

Validation: levels < 0.1 eV

DFT/SeqQuest-FDSM

V&V accuracy ~ 0.1 eV

Pure prediction: a GaAs radiation defects Rosetta Stone

Mobile species: interstitials

- **Unlike in Si, v:GaAs are (both) immobile**

- experiment observes these to be stable (until something else annihilates them)
- “simple” nearest-neighbor hops leave trail of high-energy antisites
- second-neighbor hops require strong bond breakings (high-energy)
 - v_{Ga} : El-Mellouhi & Mousseau, PRB **74**, 205207 (2006)
 - v_{As} : El-Mellouhi & Mousseau, Appl. Phys. A **86**, 309 (2007)
- while FDSM results contradict levels, they do not contradict lack of mobility

- **Ge_i is *thermally* mobile in *p*-type**

- migration barriers, T-H-T: $Ge_i[1+]$ 1.1 eV, $Ge_i[2+]$ 0.8 eV, $Ge_i[3+]$ 0.5 eV,

- **As_i is *thermally* mobile in *p*-type, likely in *n*-type**

- *p*-type migration barriers, T-H-T: $As_i[3+]$, $As_i[2+]$ <0.5 eV (~validated)
- *n*-type: flat (<1 eV) structural energy variations in other charge states

- **As_i is *athermally* mobile in *p*-type (~validated), just as in Si**

- e.g., $T[3+] + e^- \rightarrow H[2+] + h^+ \rightarrow T'[3+] + e^-$
- ~~recombination enhanced diffusion through bistabilities in other charge states~~

Transient effects dominated first by As_i , second by Ge_i

GaAs transient defect chemistry network

Primary defects ... secondary defects ... and more

As interstitial
 $As_i(1-,0,1+,2+,3+)$

Ga interstitial
 $Ga_i(1+,2+,3+)$

Antisites,
Annihilation

Vacancies

v_{Ga} , v_{As}
(3-2-,1-,0,1+,2+,3+)

$(v_x, a_x$ immobile)

Dopants:
 C_{As} , Si_{Ga}

?

?

Reactant initiation ranked by mobility:

As_i : "instant" athermal

~0.5 thermal

Ga_i : ~0.5 eV thermal in *p*-type

Reactant target ranked by concentrations:

C_{As} - in *p*-type

Si_{Ga} (Si_{As}) - in *n*-type

Ignore 2nd order (i-i, clusters) for now

The dopants - C:GaAs, Si:GaAs

SeqQuest version dev2.62/j, LDA, Ga(Z=3) PP, 216-site cell

	$C_{As}[1-]$	$C_{Ga}[1+]$	$Si_{As}[1-]$	$Si_{Ga}[1+]$
Formation Energy (eV)				
at CB (<i>n</i> -type)	1.42	4.56	0.34	0.95
at VB (<i>p</i> -type)	2.96	3.02	1.88	-0.59

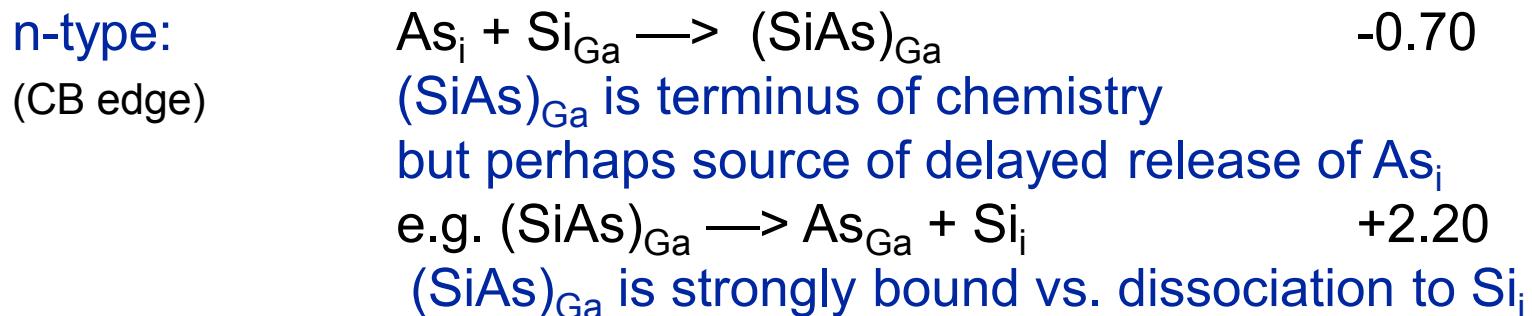
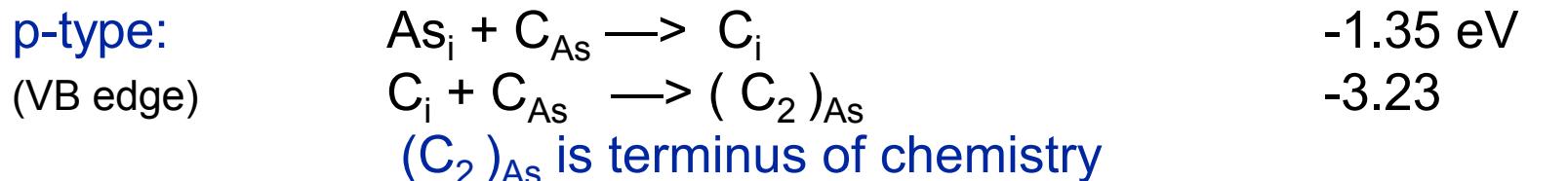
Energy Levels

(eV, cf. CB; n/x=not exist)

$E(1-/0)$	n/x	-0.28	n/x	n/x
$E(0/1+)$	n/x	-0.44	n/x	n/x

Carbon exclusively on As site

Si is amphoteric (dopant on Ga site, acceptor on As)



Consistent with experiment (and previous DFT)

Sanity check - not *quantitative* validation

Defect reactions and energies

Thermodynamic (non-charge conserving)

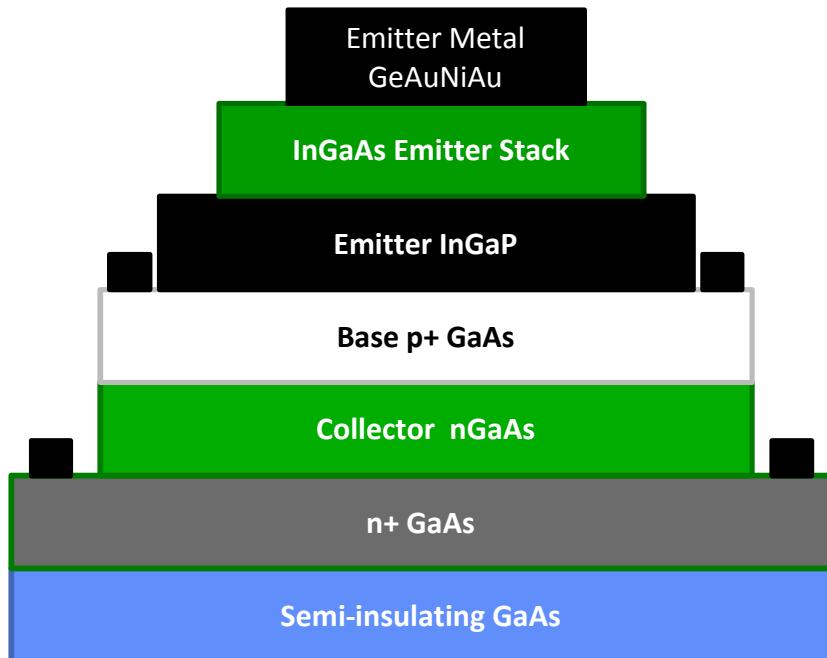
As interstitial:

Ga interstitial:

Defect complex energy levels

(in eV)	C_i (cf VB)	$(C_2)_{As}$ (cf VB)	Si_i (cf CB)	$(SiAs)_{Ga}$ (cf CB)
$E(2/-1-)$	+1.23	n/x	-0.14	-0.33
$E(1/-0)$	+1.04	+1.18	-0.03	+0.71
$E(0/1+)$	+0.53	+0.97	-0.71	-1.03
$E(1+/2+)$	+0.32	n/x	-0.40	-1.35

Complexes have complicated structures, bistabilities


Lead to -U transitions in several places

$(SiAs)_{Ga}[2-]$, $[1-]$ states thermodynamically inaccessible

Levels can be used to extend defect physics package in GaAs

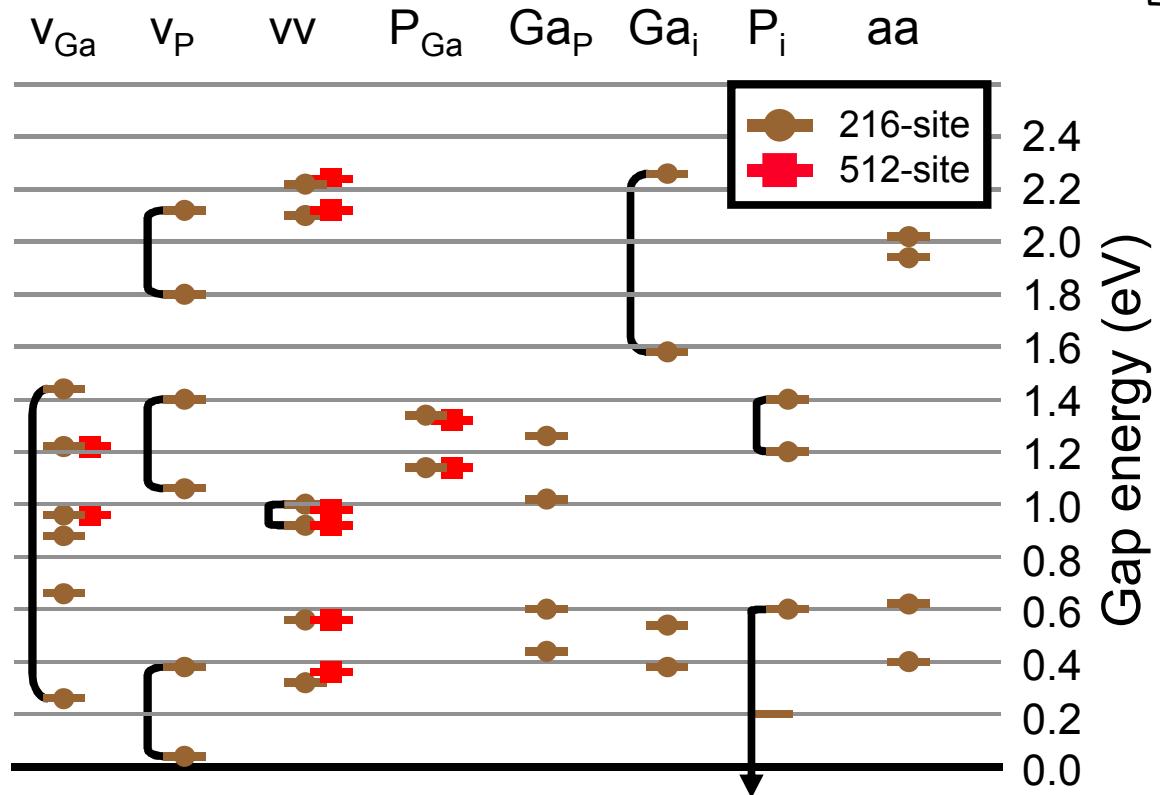
HBT model need more than GaAs

HBT stack

AlGaAs and InGaP
are important in HBT devices

Need defect physics for:
InP and GaP, AlAs

Then need to extend that
defect physics to alloys.

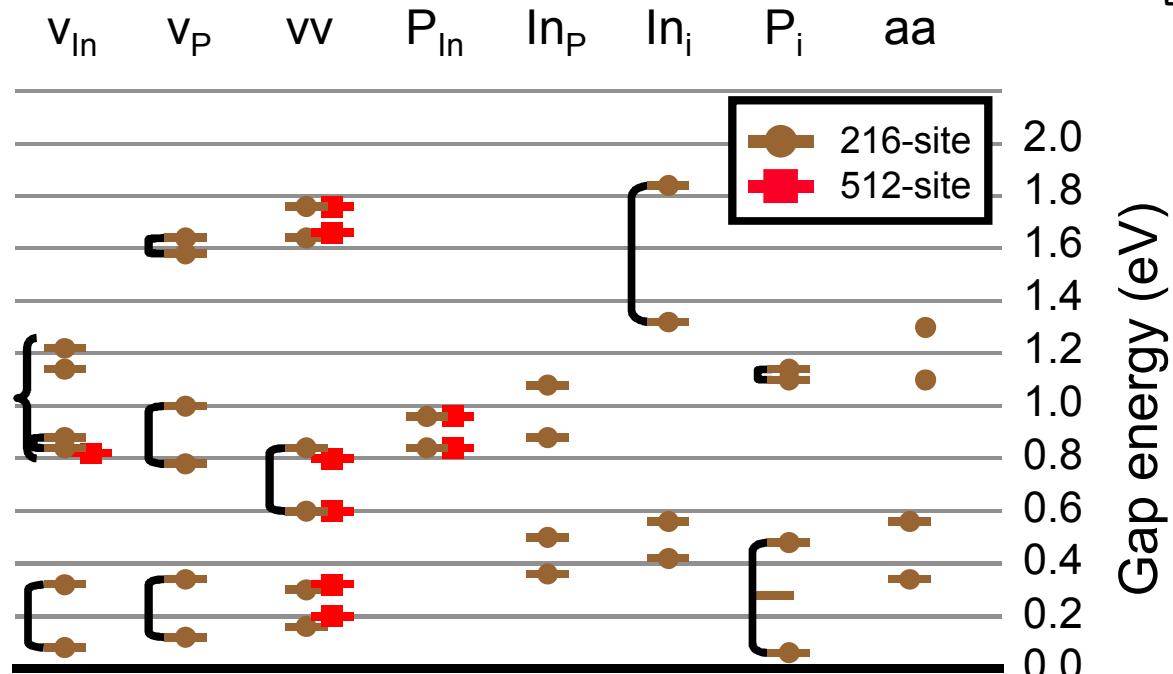

GaP: Simple intrinsic defects

216-site results = 512-site
Verification: cell-converged

Defect band gap = ~ 2.4 eV
Validation: band gap (2.35)

Mobile species:
 P_i , thermal (~ 0.5 eV)
 and athermal p-type
 Ga_i , migration barriers ~ 1.0

Similar to GaAs ...
 ... with some differences

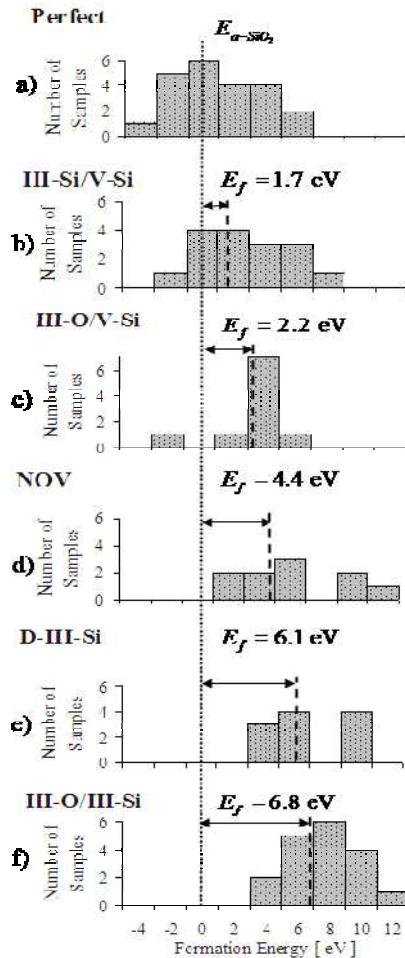

Pure prediction: defect physics of GaP almost unknown

InP: Simple intrinsic defects

216-site results = 512-site
Verification: cell-converged

Defect band gap = ~1.7 eV
Validation: band gap (1.42)

Mobile species:
 P_i , thermal (~0.5 eV)
 and athermal p-type
 In_i , barriers > 0.7 eV


Similar to GaAs, GaP
Some difference, but same mobile species -> similar defect chemistries

InGaP alloy within reach, intermediate between InP, GaP?

Enabling progress on oxides

Collaboration with Purdue (ASC/PSAAP program) and PNNL

N. Anderson, R. Vedula, A. Strachan (Purdue), R. Van Ginhoven (PNNL)

Strategy:

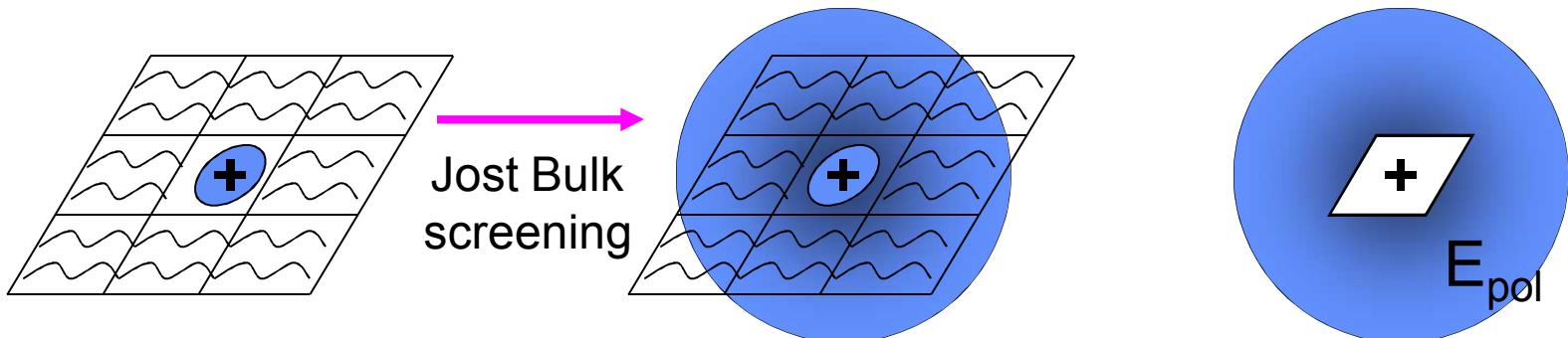
- (1) MD (ReaxFF) to generate **many** hi-fidelity samples both stoichiometric and O-deficient (60 each)
- (2) DFT (SeqQuest/PBE) to screen structures
- (3) identify non-artifact “defects”, compute energies
- (4) model charge states, diffusion and surfaces

Advance: accurate, statistical approach for $a\text{-SiO}_2$
 Prediction: isolated III-Si (E' centers), without v_O

Advance: FDSM approach for amorphous systems
 New capability: defect levels (charge traps) in oxides

Progress made outside of QASPR
 Methods now enable quantitative studies of oxides

Path forward

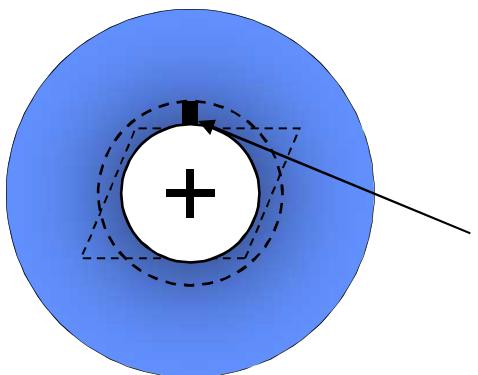

- Impurity-defect chemistry - Si (*n*-type), C (*p*-type)
 - clean up chemical networks, need experiment to filter possibilities
 - submitted to HEART-2011, to be submitted to peer-reviewed journal - March?
- Set up baseline defect physics for other III-V - get ahead of engineering needs
 - write/publish GaP/InP defect physics - Spring?
 - AlAs defects submitted to MRS 2011 Spring Meeting
 - identify mobile species, and begin to scope radiation chemistry networks
 - scope issues for extending to HBT-relevant alloys, e.g. InGaP
- Nurture oxide collaborations: ASC/PSAAP, AFRL, quantum computing
 - SiO₂ bulk and SiO₂/Si interfaces (PRL submitted, more papers coming)
- Comprehensive VV-UQ plan for DFT for defect physics - Fall 2011?
 - methods now sufficiently developed to enable meaningful plan

DFT has achieved accuracy necessary for engineering needs
DFT studies can meet engineering timeline constraints

- extra slides -

The polarization model and verification

For extrapolation to infinite cell, need energy of screening outside of cell. E_{pol}


Jost model: $E_{\text{pol}} = \frac{(1 - 1/\epsilon_0) q^2}{R_{\text{jost}}}$

$$R_{\text{jost}} = R_{\text{vol}} - R_{\text{skin}}$$

q = charge on defect

$$R_{\text{jost}} = R_{\text{vol}} - R_{\text{skin}}$$

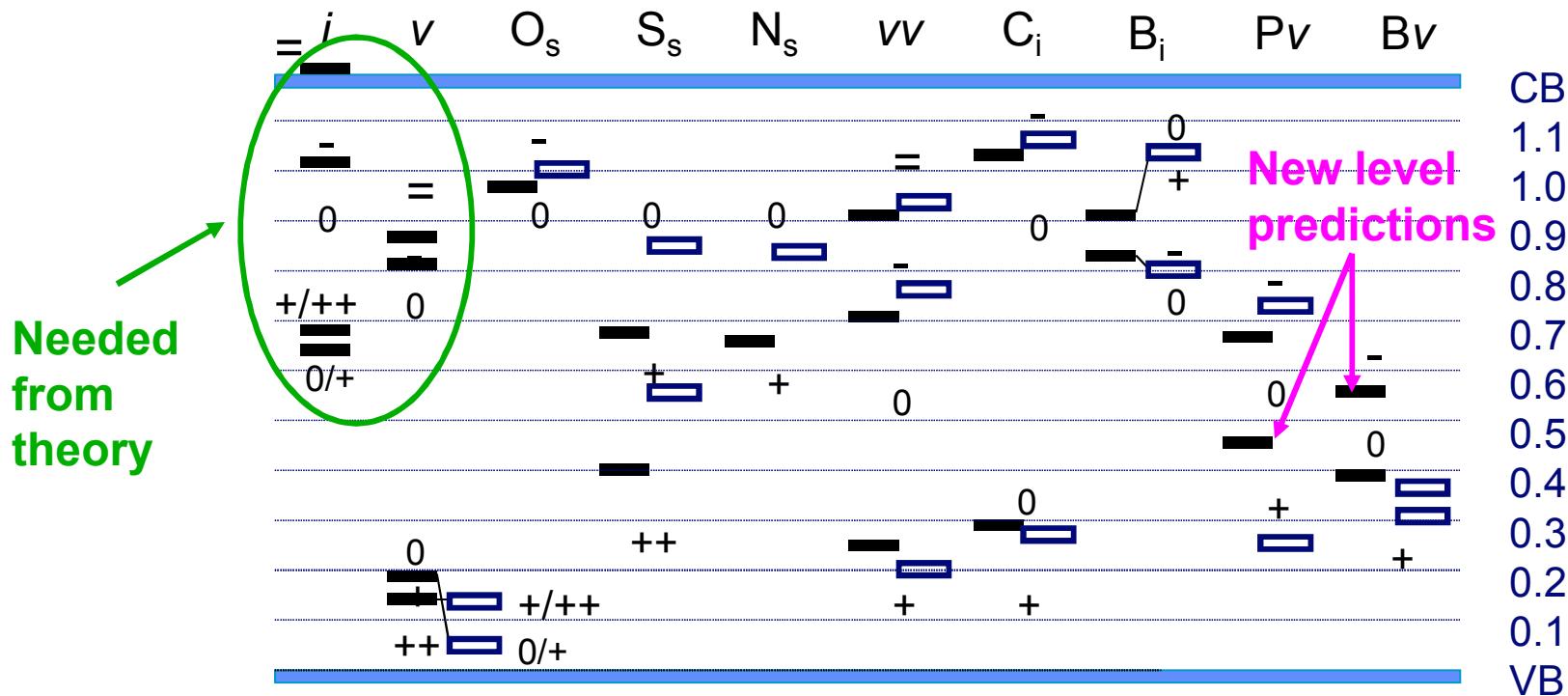
R_{vol} = radius of volume sphere

Two parameters for any material

R_{skin} = unscreened volume **inside** cell.
fit: = 1.5(1) bohr

ϵ_0 = static dielectric constant - expt
 Si GaAs InP GaP AlAs InAs
 11.8 13 12.5 11.2 10.1 15.15

III-V: The DFT Defect Gap


- Usual band gap definition: CB to VB energy
 - cannot compute directly in DFT (Kohn-Sham (KS) gap is wrong predictor)
- Defect band gap: range of transition energies for local defects

Si	1.17 eV		AlAs	2.16 ⁱ eV			
	KS	Defect		KS	Def.	$\varepsilon_0 = \varepsilon_0(\text{expt})$	$R_{\text{skin}} = 1.6(1)$
lda	0.49	1.2	lda	1.37	2.2	Verified polarization model	
pbe	0.62	1.2	pbe	1.53	n/a		

GaAs	1.52 eV		GaP	2.35 eV		InP	1.42 eV	
	KS	Def.		KS	Def.		KS	Def.
lda	0.83	1.54	lda	1.51	2.3	lda	0.67	1.7
lda-3d	0.47	1.51	lda-3d	1.47	n/a	lda-3d	0.66	1.7
pbe	0.45	1.44	pbe	1.74	n/a	pbe	0.47	n/a
pbe-3d	0.13	n/a	pbe-3d	1.52	n/c	pbe-3d	0.46	n/c

DFT: defect band gap accurate for interesting III-V

Si: DFT/PBE vs. Experimental Levels

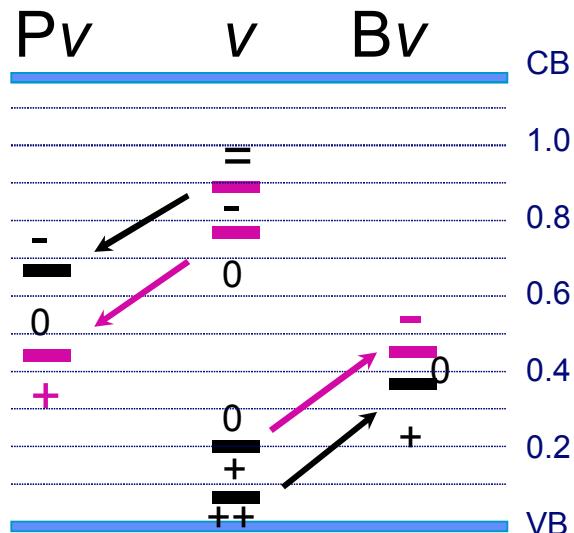
... and $v_2P(=/-/0/+), vP_2(-/0), v_2O(=/-/0/+2+), v_2O_2(=/-/0/+2+), H_i(-/0/+) \dots O_i, P_s, B_s, C_s$,

DFT “defect gap” matches experiment.

DFT/PBE max error=0.20 eV, mean |error|=0.10 eV - VALIDATION

Band gap problem not seen in **total-energy-based** defect levels

Si: new P-v and B-v charge states


- Silicon level calculations - over 15 defects with levels

$i(=/-/0/+/++)$, $v(=/-/0/+/++)$, $vv(=/-/0/+)$, $C_i(-/0/+)$, $B_i(-/0/+)$, **Pv**, **Bv**

O_s (A-center), O_i , N_s , S_s , v_2O , v_2O_2 , H_i , vP_2 , v_2P , ...

DFT “defect band gap” matches experiment (1.2 eV)

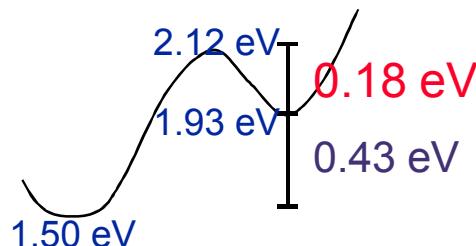
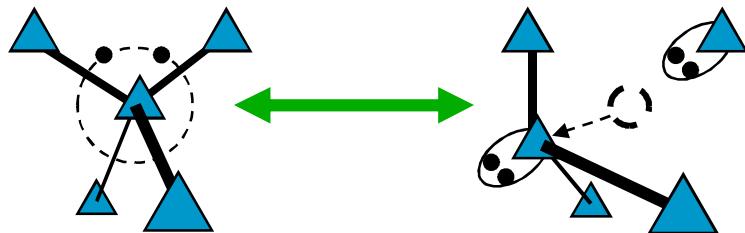
DFT: mean $|error| = 0.10$ eV, max error~0.2 eV

Task: Theory quantified $v(=/-)$, $v(-/0)$

Discovery: Theory *predicted* Pv(+) and Bv(-)

“Absolute prediction”

new levels >0.4 eV from band edge



validation error: 0.2

Pv(0+) subsequently confirmed in experiment
[Larsen, et al PRL 97, 106402 (2006)]

VALIDATION is key to quantitative DISCOVERY - GaAs is ALL discovery

V&V: EL2 and the As antisite

EL2 = antisite $\text{As}_{\text{Ga}}(0)$

216-site =
512-site
(~ 64-site)

	Experiment -EL2	SeqQuest/FDSM - As_{Ga}
EL2(0/1+)	E_c -0.74 eV	E_c -0.81 eV
EL2(1+/2+)	E_v +0.54 eV	E_v +0.48 eV
Splitting:	0.24 eV ($E_g = 1.52$)	0.25 eV
EL2*	no donor states	no donor states
Reorientation:	~0.3 eV	~0.2 eV

Verification: 64-216-512-site supercell results match

Validation: DFT matches experiment for EL2 w/in 0.1eV

The divacancy is the E1-E2 radiation center

P.A. Schultz, PRL, submitted

Rewriting radiation physics in GaAs

Old (experimental) lore, back to 1988:

E1, E2 center = $v_{As}(-/0)$, $v_{As}(0/+)$

$$E_3 = V_{AS} + i$$

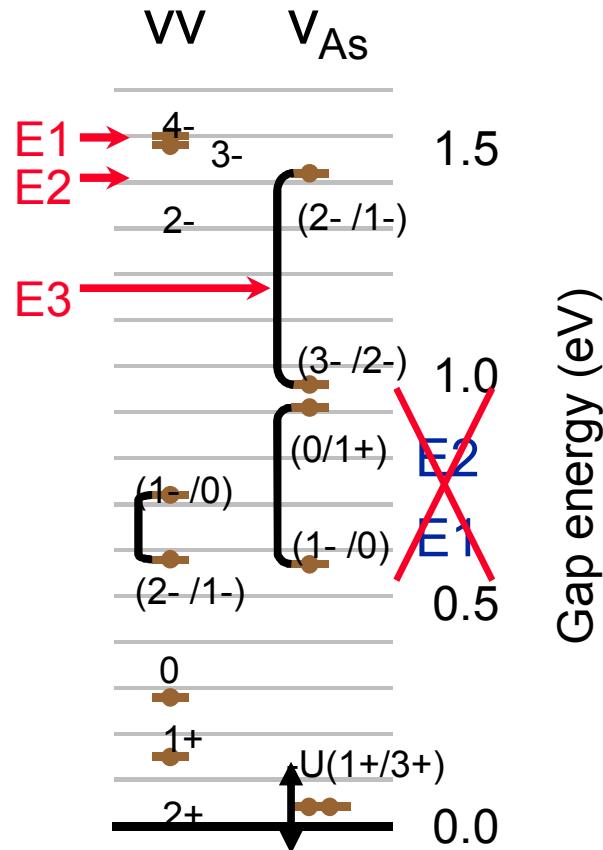
vv is dismissed

New results:

$v_{\text{As}}(-/+)$ is mid-gap negative-U (only one level)

v_{As} (3-/1-) is upper-gap -U (one level)

$\nu\nu(4-/3-/2-)$ near conduction band

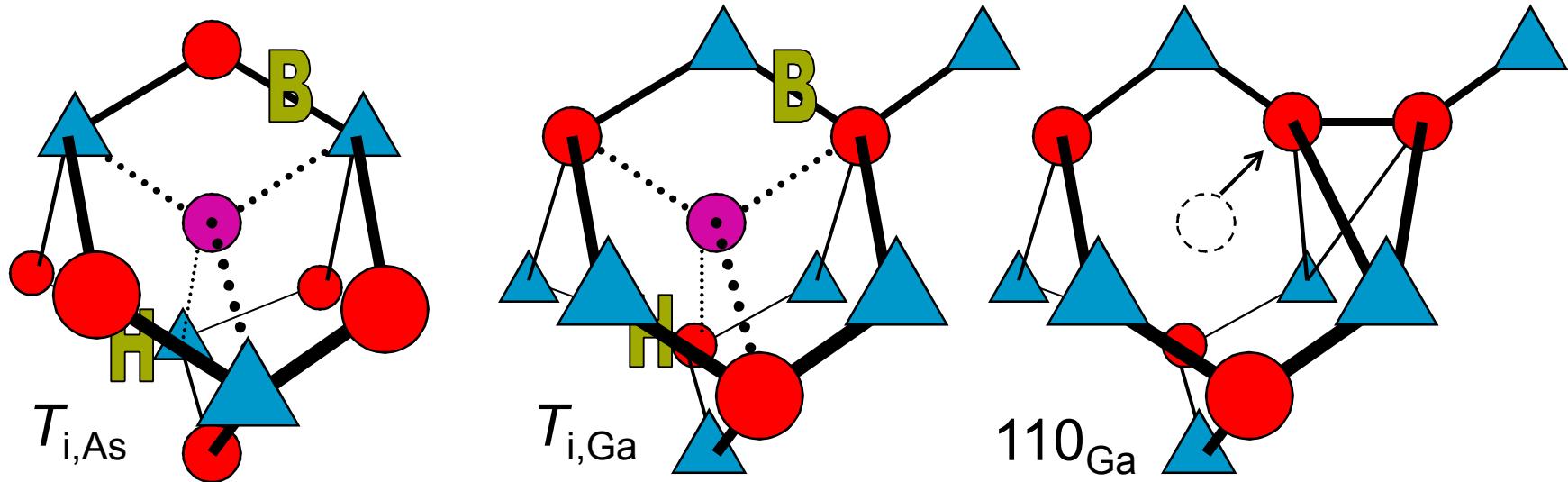

Re-analysis of expt (positron, displacement)

vv is major radiation defect: E1-E2

vAs(3-/1-) transition is the E3

Differential diffusion of Ga_i and As_i is crucial element

First identified radiation defects in GaAs (EL2 was non-rad)



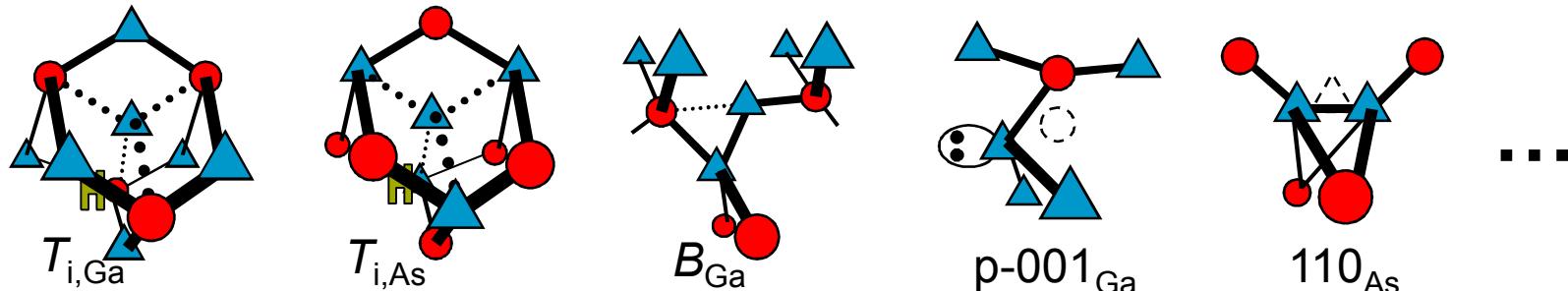
GaAs defects: principal findings (thus far)

- “Simple” intrinsic defects very complicated
 - more charge states, bi/meta-stabilities, negative-U ... need theory
- Mono-vacancies have global site-shift bistability, $v_X \leftrightarrow v_Y Y_X$
 - bistability must be included in unified description of vacancy
- Simple chemical motifs described bonding in ground state
 - As-pyramid (lone-pair), trivalent-Ga, weak Ga-Ga pairs across v
- Interstitials have low thermal barriers for diffusion
 - Ga_i : 1 eV, As_i : <0.5 V, these will be active species
- The As_i will also diffuse athermally
- The divacancy is important radiation defect (so is v_{As})

DFT-SeqQuest/FDSM levels good enough to identify GaAs defects strictly on quantitative defect level calculations

Ga_i - gallium interstitial

Ga_i only thermodynamically stable (1+) to (3+); **no stable $\text{Ga}_i(0)$**


Off-network $T_{i,Ga}$ is ground state, (1+) across full band gap

Off-network $T_{i,As}$ is 0.27 eV higher, through 1.15(10) eV H -site barrier

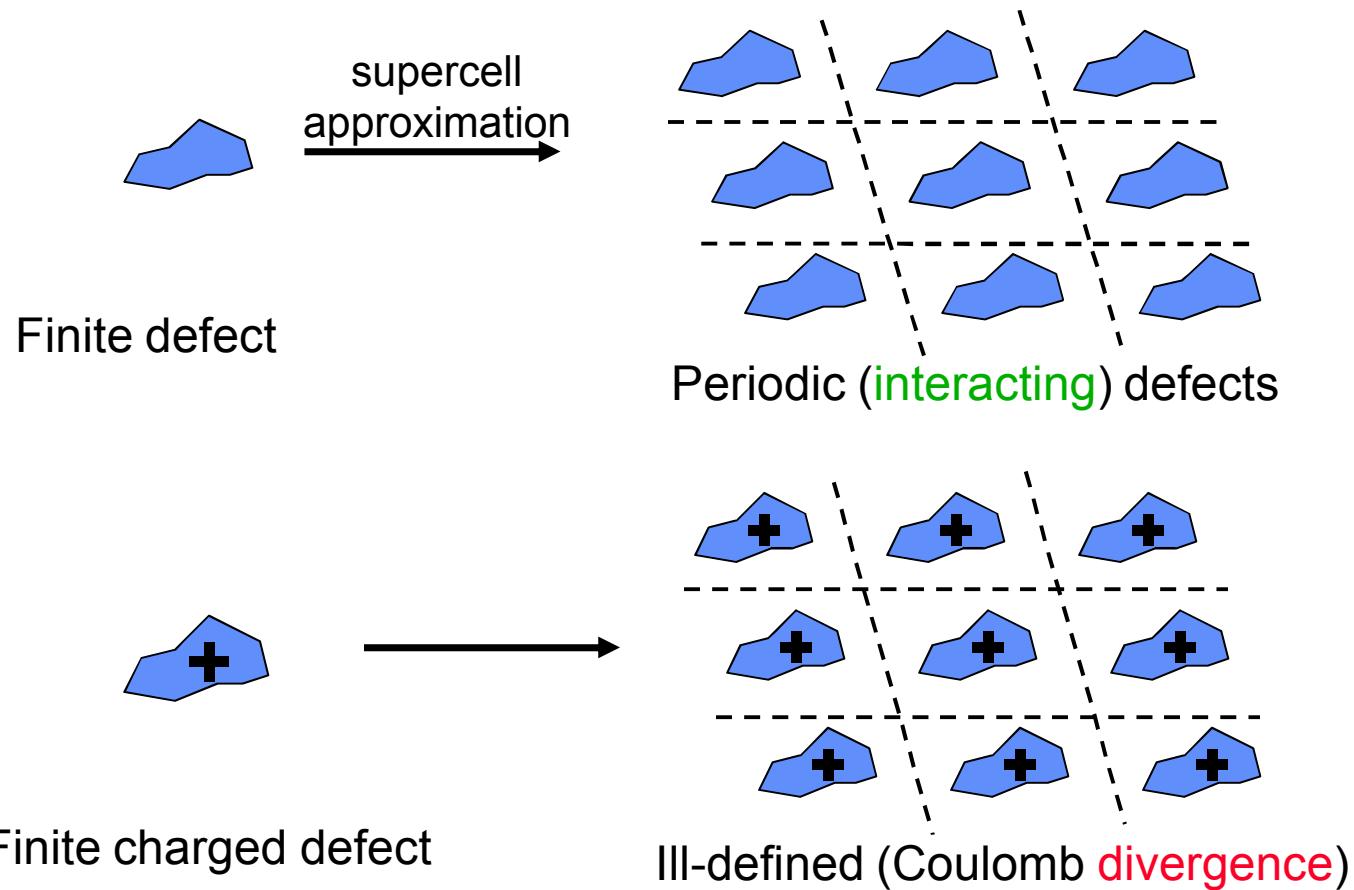
$T_{i,As}$ takes charge states from (1+) to (3+)

Ga_i electrically active (may be visible), thermally mobile (0.5-1.1 eV)

As_i - arsenic interstitial

$As_i(q)$	ground state	next	barrier
(1-)	110_{As}	B_{Ga} (+0.5 eV)	>0.5 eV
(0)	110_{As}	B_{Ga} (+0.2)	>0.2 eV
(1+)	$p-001_{Ga}$	$H(+0.3); B_{Ga}(+0.4)$	>0.4 eV
(2+)	$H \sim B_{Ga}$	$T_{i,Ga}(+0.2); T_{i,As}(+0.4)$	~0.4 eV
(3+)	$T_{i,Ga} \sim T_{i,As}$	$H(+0.4)$	~0.4 eV

Charge states from (1-) to (3+)


Multiply metastable, bistable from in-network(-) to off-network(+)

Low thermal barriers for diffusion: < 0.5 eV

Athermal diffusion (esp. p-type), e.g.: $T(3+) - H(2+) - T(3+)$

As_i active, thermally mobile (<0.5 eV), athermal diffusion

The supercell approximation

Interactions and divergence are key issues