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Background – OS Virtualization 

• Treat OS as an application 
• Major trend in enterprise data center / IT industry 
over last several years 

• Motivations 
– Server consolidation 
– Dynamic workload balancing 
– Enhanced security isolation 
– On-demand compute capacity, Amazon EC2 “elastic 

cloud” 
• Powerful tool for developers, desktop power users 

– Run Windows on Linux, run Cplant on laptop, etc. 



Virtualization Seeing Explosive Growth 
in General Computing Market 

Sources: SC web sites, news articles, and blogs 



HW-accelerated Virtualization 
Will Be Baked In 

• Any commercially viable platform will have a 
virtualization story; increasingly sophisticated 
support 
– x86, AMD, Intel, … 
– ARM 
– PowerPC 
– Self-virtualizing devices (NICs, GPUs, …) 

• Public clouds beginning to target low/mid HPC 
– Amazon’s EC2 Cluster Compute Instances 

Can high-end HPC also leverage virtualization? 
Does it enable new capabilities? 



Key Questions 

• What are the use cases for high-end HPC? 
• What are the virtualization overheads? 

– Compute 
– Virtual Memory 
–  I/O 

• What can be done to mitigate the overheads? 



Virtualization Use Cases 



Use Case 1: 
Augment lightweight kernel 

with VMM to increase flexibility 

• Original motivation 
• LWK provides high perf. 
native environment 

• VMM allows full-featured 
guest OS (e.g., Red Hat 
Linux) to be loaded 
on-demand 
– Perl, python, matlab, … 
– COTS databases, simulators, … 
– You name it 

• Approach applies to lightweight Linux 
distributions like CLE as well 

Kitten LWK supports running native 
applications alongside guest OSes. 



Use Case 2: 
Tool allowing researchers to test 
at scale on production machines 

• Currently have to request dedicated system time 
to test prototype system software at scale 
– Long process, difficult to navigate 
– Limited ability to iterate 

• Incorporating virtualization into production 
software stack would allow on-demand loading of 
custom system software stack(s) 
– Expose effects that only occur at scale 
– VMM can provide enhanced debugging capability 

compared to native 
– VMM can simulate prototype hardware 
–  Issue: performance may be different than native 



Use Case 3: 
Enable New Capabilities 

• Perform cybersecurity experiments on capability 
resources 
– Run commodity OSes + software 
– Multiple virtual nodes per physical node 
– Simulate Internet-scale behavior 

• Dynamically replace runtime with one more 
suitable for the user’s workload (e.g., a massive 
number of small jobs) 

• System administrators test new vendor software 
without taking machine out of production 

• Provide backwards capability on future platforms 



Virtualization Overheads 



Compute Virtualization Essentially Zero 
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Memory Virtualization Has Overhead, 
Using Large Pages Provides Mitigation 
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Nested Paging Memory Virtualization 
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Figure 1. (a) Standard x86 page walk. (b) Two-dimensional page walk. Italics indicate column and row names; notations such as {nL1,gPA} and {G,gL1}
indicate entries in the indicated columns and rows.

address. This portion of the walk repeats for gL2 and gL1. The gL1

entry at step 20 determines the guest physical address of the base
of the guest data page.

At this point, the guest page table has been traversed, but one
final nested page walk (steps 21-24) is required to translate the
guest physical address of the datum to a usable system physical
address.

2.4 Large Page Size

While the diagrams in this paper show four levels of long mode
translation, some workloads have accesses which use only a subset
of them. The most important such case is large page support.1 Large
pages provide several advantages in both the native and nested
paging scenarios, including memory savings, a reduction in TLB
pressure, and shorter page walks.

With 4KB pages, an OS must use an entire L1 table, which
occupies 4KB of memory, to map a contiguous 2MB region of
virtual memory. If the OS can place all 512 4KB pages of that
2MB region into one contiguous, aligned 2MB block of physical
memory, then the OS can substitute a single large page mapping
and thus save the 4KB of memory used by the L1 table.

In addition to the memory savings, large pages can reduce TLB
pressure. Each large page table entry can be stored in a single TLB
entry, while the corresponding regular page entries require 512
4KB TLB entries to map the same 2MB range of virtual addresses.
Large page use allows the page walk hardware to skip L1 entirely
and use the L2 page entry directly to map a 2MB page, reducing
page walk latency due to the number of page entry references. A
large page entry encountered at L2 causes an early exit from the
standard walk shown in Figure 1(a) and a bypass from {G,gL2} to
step 21 in Figure 1(b).

In a nested paging environment, large pages can potentially
provide the same benefits in both dimensions of the 2D walk.
However, most large page benefits are neutralized if a guest uses
a large page to map a block of memory that the nested page
table maps with smaller pages. For correctness, the TLB must
consider the page size for a given translation to be the smaller

1 While AMD64 now adds support for a 1GB page size, this paper uses large page
interchangeably with 2MB page.

of the nested and guest page sizes, referred to as splintering [4].
This has important performance implications (discussed further in
Section 6.5), as a splintered 2MB page in the guest could require as
many as 512 4KB TLB entries.

3. Page Walk Characterization
This section discusses the performance cost of page walks and
shows that guest and nested page entries exhibit both a high degree
of reuse and a reasonable amount of spatial locality, making them
good candidates for caching.

3.1 Page Walk Cost

Translation requests that miss in the TLB can degrade performance.
Thus, understanding the characteristics of how the TLB behaves in
virtualization workloads is key to improving paging performance.
Table 1 provides some basic information about TLB behavior.
The simulation parameters, methodology, and benchmarks used to
produce this data are discussed in detail in Section 5.

Table 1. TLB miss frequency, latency, and performance impact
Instruction and Data Translations

Walk Perfect TLB
TLB Misses Latency Opportunity

(Per 100K Inst.) 2D/Native Native 2D

MiscServer 294.3 4.01X 14.0% 75.7%

WebServer 129.0 3.90X 4.7% 44.4%

JavaServer 257.0 3.91X 13.5% 89.0%

IntCpu 70.4 4.57X 11.4% 48.6%

FpCpu 18.2 4.43X 5.7% 27.5%

These statistics were gathered on a model with no specialized page caching hardware
other than standard TLBs. Native refers to unvirtualized execution. The geometric
mean is used within the benchmark suites.

The TLB Misses column shows the average number of TLB
accesses that result in a page walk per 100,000 retired instructions
in each suite. This value applies to both native and virtualized guest
execution. The Walk Latency column shows the relative slowdown
of a 2D page walk with no page walk caching as compared to
a native table walk with no page walk caching. The slowdowns

28

Figure from:  Ravi Bhargava, Ben Serebrin, Francesco Spanini, and Srilatha Manne.  
Accelerating two-dimensional page walks for virtualized systems.  
In Proceedings ASPLOS’08, March 2008. 

Normal – 4 levels Nested – up to 24 memory accesses 



Red Storm Virtualization Experiments 

• Testing performed on up to 6240 quad-core Red 
Storm nodes, also on 48-node test system 

• Compared native to guest performance 
– Native = Catamount running on bare metal 
– Guest = Kitten+Palacios running on bare metal, 

Catamount running as guest OS 
• Seastar mapped directly through to guest, interrupts 
managed by Kitten+Palacios, forwarded to guest 
– Also tested “accelerated portals”, no interrupts 

• Compared two guest OS memory management 
strategies: shadow paging and nested paging 



Red Storm PingPong Latency 
(Inter-node, SeaStar Passed Through to Guest) 
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•   Interrupt virtualization adds 7 to 14 us overhead for small messages 
•   Accelerated portals is polling base, so no interrupts. 

•   Performance matches native 



Red Storm PingPong Bandwidth 
(Inter-node, SeaStar Passed Through to Guest) 
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  All cases reach same asymptotic bandwidth 



Red Storm Reduce and AllReduce Latency 
(SeaStar Passed Through to Guest) 
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Application Results from 
Red Storm Virtualization Experiments 
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Current Project: DOE/ASCR X-Stack 
•  Objective: Enable X-Stack research and HW/SW co-design for exascale 

systems by leveraging the virtualization capabilities in modern 
processors 

•  Desired Capabilities 
–  Enable X-Stack researchers to run new OS stacks at scale on production 

ASCR systems 
–  Test potential architectural innovations at scale as extensions to the virtual 

machine 
–  Measure system performance across multiple hardware/software 

boundaries 

•  Example Research 
–  Scalable virtualization, VM management tools on modern HPC systems 
–  Integration with cycle-accurate simulation/large-scale emulation techniques 
–  Explore novel techniques in the VMM, both proposed and potentially in 

collaboration with other X-Stack or Critical Tech. researchers 
•  Consortium of researchers from Univ. New Mexico, Northwestern 

University, Oak Ridge, and Sandia 



Conclusion 

• Applying virtualization technology to HPC 
– Compelling use cases, enable new capabilities 
– Manageable overheads even at scale 

• Next steps: 
– Test more applications, better characterize overheads 

for different workload classes 
– Push vendors to incorporate virtualization support in 

production software stacks 
– Leverage virtualization in exascale research 



Backup Slides 



Shadow vs. Nested Paging 
No Clear Winner 

Shadow Paging 
O(N) memory accesses 

per TLB miss 

Page tables the 
guest OS thinks it 

is using 

Palacios managed 
page tables used by 

the CPU 

Nested Paging 
O(N^2) memory accesses 

per TLB miss 

Guest OS managed 
guest virt to guest phys 

page tables 

Palacios managed 
guest phys to host phys 

page tables 

CPU MMU Page Faults 



Memory Management Depends on Guest 

Compute Node Linux Catamount 

•   Poor performance of shadow paging on CNL due to context switching. 
   Could be partially avoided by adding page table caching to Palacios. 

Higher is Better 

•   Catamount is essentially doing no context switching, benefiting  
    shadow paging (2n vs. n^2 page table depth issue)‏ 

48 node MFLOPs/node: 
Native:  544 
Nested:  495 
Shadow:  ‏(5.1%-) 516 

48 node MFLOPs/node: 
Native:  540 
Nested:  ‏(6.1%-) 507 
Shadow:  200 

HPCCG CG “Mini-application” 


