
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National

Nuclear Security Administration under contract DE-AC04-94AL85000.!

A Scalable Virtualization Environment
for HPC

SAND2010-8099P

Background – OS Virtualization

• Treat OS as an application
• Major trend in enterprise data center / IT industry
over last several years

• Motivations
– Server consolidation
– Dynamic workload balancing
– Enhanced security isolation
– On-demand compute capacity, Amazon EC2 “elastic

cloud”
• Powerful tool for developers, desktop power users

– Run Windows on Linux, run Cplant on laptop, etc.

Virtualization Seeing Explosive Growth
in General Computing Market

Sources: SC web sites, news articles, and blogs

HW-accelerated Virtualization
Will Be Baked In

• Any commercially viable platform will have a
virtualization story; increasingly sophisticated
support
– x86, AMD, Intel, …
– ARM
– PowerPC
– Self-virtualizing devices (NICs, GPUs, …)

• Public clouds beginning to target low/mid HPC
– Amazon’s EC2 Cluster Compute Instances

Can high-end HPC also leverage virtualization?
Does it enable new capabilities?

Key Questions

• What are the use cases for high-end HPC?
• What are the virtualization overheads?

– Compute
– Virtual Memory
–  I/O

• What can be done to mitigate the overheads?

Virtualization Use Cases

Use Case 1:
Augment lightweight kernel

with VMM to increase flexibility

• Original motivation
• LWK provides high perf.
native environment

• VMM allows full-featured
guest OS (e.g., Red Hat
Linux) to be loaded
on-demand
– Perl, python, matlab, …
– COTS databases, simulators, …
– You name it

• Approach applies to lightweight Linux
distributions like CLE as well

Kitten LWK supports running native
applications alongside guest OSes.

Use Case 2:
Tool allowing researchers to test
at scale on production machines

• Currently have to request dedicated system time
to test prototype system software at scale
– Long process, difficult to navigate
– Limited ability to iterate

• Incorporating virtualization into production
software stack would allow on-demand loading of
custom system software stack(s)
– Expose effects that only occur at scale
– VMM can provide enhanced debugging capability

compared to native
– VMM can simulate prototype hardware
–  Issue: performance may be different than native

Use Case 3:
Enable New Capabilities

• Perform cybersecurity experiments on capability
resources
– Run commodity OSes + software
– Multiple virtual nodes per physical node
– Simulate Internet-scale behavior

• Dynamically replace runtime with one more
suitable for the user’s workload (e.g., a massive
number of small jobs)

• System administrators test new vendor software
without taking machine out of production

• Provide backwards capability on future platforms

Virtualization Overheads

Compute Virtualization Essentially Zero

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

1 2 4 8

G
flo

p
s

Cores

HPCC HPL (single node)

h2
h4

h2g2
h4g2
h4g4
h2g4

Node Configuration:
Intel X5570 2.93 GHz (2 sockets, 8 cores)
24 GB RAM (3x 4GB DDR-1333 per socket)
Hyperthreading disabled
Turboboost disabled

Test Configuration:
Linux 2.6.35, KVM Hypervisor
VCPU to host CPU pinning
Expose NUMA topology to guest
VM uses EPT (aka nested paging)

Naming:
h2 = native 2MB paging
n4 = native 4 KB paging
h2g2 = guest memory
 mapped with 2MB
 pages, hpcc running
 in guest using 2 MB
 pages
h4g2 = guest memory mapped
 with 4KB pages, hpcc
 running in guest using
 2 MB pages
And so on

Memory Virtualization Has Overhead,
Using Large Pages Provides Mitigation

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

1 2 4 8

G
U

P
s

Cores

MPI RandomAccess (single node)

h2
h4

h2g2
h4g2
h4g4
h2g4

Node Configuration:
Intel X5570 2.93 GHz (2 sockets, 8 cores)
24 GB RAM (3x 4GB DDR-1333 per socket)
Hyperthreading disabled
Turboboost disabled

Test Configuration:
Linux 2.6.35, KVM Hypervisor
VCPU to host CPU pinning
Expose NUMA topology to guest
VM uses EPT (aka nested paging)

Naming:
h2 = native 2MB paging
n4 = native 4 KB paging
h2g2 = guest memory
 mapped with 2MB
 pages, hpcc running
 in guest using 2 MB
 pages
h4g2 = guest memory mapped
 with 4KB pages, hpcc
 running in guest using
 2 MB pages
And so on

Nested Paging Memory Virtualization

!"#
$

!"%
&

!"&
%

!"$
#

!"#
'

!"%
(

!"&
)

!"$
*

!"#
$$

!"%
$&

!"&
$%

!"$
$#

!"#
$'

!"%
$(

!"&
$)

!"$
$*

!"#
%$

!"%
%&

!"&
%%

+,-.,/0123,0.245,367

3"&
$8

3"%
$9

3"$
%8

3"#
9

:;7

3<=&

367>$$?8@

367>%8?$%@

367>%*?%$@

367>&(?&8@

367>#)?&*@

!<=&

A"B
C!.DE0
625F,

67

"&
G;H;I

"%
G;HI

"$
G;AI

"#
G;J"#I

67>$$?8@

67>%8?$%@

67>%*?%$@

67>&(?&8@

67>#)?&*@

9$%KB

$KB

%JB

#LB

;7

G2I G4I

K;7

!"$
%#

:;7 :;7 :;7 :;7 K;7

K
F,-.0123,0.245,

A"B
C!.DE
625F,

!"!

!""

!"#

!"$

!#$

%"$ %"# %"" %"! &

<=&

;7

Figure 1. (a) Standard x86 page walk. (b) Two-dimensional page walk. Italics indicate column and row names; notations such as {nL1,gPA} and {G,gL1}
indicate entries in the indicated columns and rows.

address. This portion of the walk repeats for gL2 and gL1. The gL1

entry at step 20 determines the guest physical address of the base
of the guest data page.

At this point, the guest page table has been traversed, but one
final nested page walk (steps 21-24) is required to translate the
guest physical address of the datum to a usable system physical
address.

2.4 Large Page Size

While the diagrams in this paper show four levels of long mode
translation, some workloads have accesses which use only a subset
of them. The most important such case is large page support.1 Large
pages provide several advantages in both the native and nested
paging scenarios, including memory savings, a reduction in TLB
pressure, and shorter page walks.

With 4KB pages, an OS must use an entire L1 table, which
occupies 4KB of memory, to map a contiguous 2MB region of
virtual memory. If the OS can place all 512 4KB pages of that
2MB region into one contiguous, aligned 2MB block of physical
memory, then the OS can substitute a single large page mapping
and thus save the 4KB of memory used by the L1 table.

In addition to the memory savings, large pages can reduce TLB
pressure. Each large page table entry can be stored in a single TLB
entry, while the corresponding regular page entries require 512
4KB TLB entries to map the same 2MB range of virtual addresses.
Large page use allows the page walk hardware to skip L1 entirely
and use the L2 page entry directly to map a 2MB page, reducing
page walk latency due to the number of page entry references. A
large page entry encountered at L2 causes an early exit from the
standard walk shown in Figure 1(a) and a bypass from {G,gL2} to
step 21 in Figure 1(b).

In a nested paging environment, large pages can potentially
provide the same benefits in both dimensions of the 2D walk.
However, most large page benefits are neutralized if a guest uses
a large page to map a block of memory that the nested page
table maps with smaller pages. For correctness, the TLB must
consider the page size for a given translation to be the smaller

1 While AMD64 now adds support for a 1GB page size, this paper uses large page
interchangeably with 2MB page.

of the nested and guest page sizes, referred to as splintering [4].
This has important performance implications (discussed further in
Section 6.5), as a splintered 2MB page in the guest could require as
many as 512 4KB TLB entries.

3. Page Walk Characterization
This section discusses the performance cost of page walks and
shows that guest and nested page entries exhibit both a high degree
of reuse and a reasonable amount of spatial locality, making them
good candidates for caching.

3.1 Page Walk Cost

Translation requests that miss in the TLB can degrade performance.
Thus, understanding the characteristics of how the TLB behaves in
virtualization workloads is key to improving paging performance.
Table 1 provides some basic information about TLB behavior.
The simulation parameters, methodology, and benchmarks used to
produce this data are discussed in detail in Section 5.

Table 1. TLB miss frequency, latency, and performance impact
Instruction and Data Translations

Walk Perfect TLB
TLB Misses Latency Opportunity

(Per 100K Inst.) 2D/Native Native 2D

MiscServer 294.3 4.01X 14.0% 75.7%

WebServer 129.0 3.90X 4.7% 44.4%

JavaServer 257.0 3.91X 13.5% 89.0%

IntCpu 70.4 4.57X 11.4% 48.6%

FpCpu 18.2 4.43X 5.7% 27.5%

These statistics were gathered on a model with no specialized page caching hardware
other than standard TLBs. Native refers to unvirtualized execution. The geometric
mean is used within the benchmark suites.

The TLB Misses column shows the average number of TLB
accesses that result in a page walk per 100,000 retired instructions
in each suite. This value applies to both native and virtualized guest
execution. The Walk Latency column shows the relative slowdown
of a 2D page walk with no page walk caching as compared to
a native table walk with no page walk caching. The slowdowns

28

Figure from: Ravi Bhargava, Ben Serebrin, Francesco Spanini, and Srilatha Manne.
Accelerating two-dimensional page walks for virtualized systems.
In Proceedings ASPLOS’08, March 2008.

Normal – 4 levels Nested – up to 24 memory accesses

Red Storm Virtualization Experiments

• Testing performed on up to 6240 quad-core Red
Storm nodes, also on 48-node test system

• Compared native to guest performance
– Native = Catamount running on bare metal
– Guest = Kitten+Palacios running on bare metal,

Catamount running as guest OS
• Seastar mapped directly through to guest, interrupts
managed by Kitten+Palacios, forwarded to guest
– Also tested “accelerated portals”, no interrupts

• Compared two guest OS memory management
strategies: shadow paging and nested paging

Red Storm PingPong Latency
(Inter-node, SeaStar Passed Through to Guest)

 0

 5

 10

 15

 20

 25

 30

 1 4 16 64 256 1024

L
a
te

n
cy

 (
m

ic
ro

se
co

n
d
s)

Message Size (bytes)

Native
Guest, Nested Paging

Guest, Shadow Paging
Native, Accel Portals
Guest, Accel Portals

•  Interrupt virtualization adds 7 to 14 us overhead for small messages
•  Accelerated portals is polling base, so no interrupts.

•  Performance matches native

Red Storm PingPong Bandwidth
(Inter-node, SeaStar Passed Through to Guest)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

32 1024 32768 1048576

B
a
n
d
w

id
th

 (
M

b
yt

e
s/

s)

Message Size (bytes)

Native
Guest, Nested Paging

Guest, Shadow Paging
Native, Accel Portals
Guest, Accel Portals

 All cases reach same asymptotic bandwidth

Red Storm Reduce and AllReduce Latency
(SeaStar Passed Through to Guest)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 1 4 16 64 256 1024 4096

L
a

te
n

cy
 (

m
ic

ro
se

co
n

d
s)

Nodes

Native
Guest, Nested Paging

Guest, Shadow Paging
Native, Accel Portals
Guest, Accel Portals

 0

 50

 100

 150

 200

 250

 300

 1 4 16 64 256 1024 4096

L
a

te
n

cy
 (

m
ic

ro
se

co
n

d
s)

Nodes

Native
Guest, Nested Paging

Guest, Shadow Paging
Native, Accel Portals
Guest, Accel Portals

Accelerated Portals Matches Native;
Generic Portals suffers from Interrupt Virtualization

Overhead

Application Results from
Red Storm Virtualization Experiments

 0

 50

 100

 150

 200

 250

 300

 350

 400

 64 128 256 512 1024 2048 4096

T
im

e
 (

se
co

n
d

s)

Nodes

Native
Guest, Nested Paging

Guest, Shadow Paging
 0

 200

 400

 600

 800

 1000

 64 128 256 512 1024 2048 4096

T
im

e
 (

se
co

n
d

s)

Nodes

Native
Guest, Nested Paging

Guest, Shadow Paging

CTH Hydrocode (SNL App) Sage Hydrocode (LANL App)

Measured < 5% virtualization
overhead for both applications

Current Project: DOE/ASCR X-Stack
•  Objective: Enable X-Stack research and HW/SW co-design for exascale

systems by leveraging the virtualization capabilities in modern
processors

•  Desired Capabilities
–  Enable X-Stack researchers to run new OS stacks at scale on production

ASCR systems
–  Test potential architectural innovations at scale as extensions to the virtual

machine
–  Measure system performance across multiple hardware/software

boundaries

•  Example Research
–  Scalable virtualization, VM management tools on modern HPC systems
–  Integration with cycle-accurate simulation/large-scale emulation techniques
–  Explore novel techniques in the VMM, both proposed and potentially in

collaboration with other X-Stack or Critical Tech. researchers
•  Consortium of researchers from Univ. New Mexico, Northwestern

University, Oak Ridge, and Sandia

Conclusion

• Applying virtualization technology to HPC
– Compelling use cases, enable new capabilities
– Manageable overheads even at scale

• Next steps:
– Test more applications, better characterize overheads

for different workload classes
– Push vendors to incorporate virtualization support in

production software stacks
– Leverage virtualization in exascale research

Backup Slides

Shadow vs. Nested Paging
No Clear Winner

Shadow Paging
O(N) memory accesses

per TLB miss

Page tables the
guest OS thinks it

is using

Palacios managed
page tables used by

the CPU

Nested Paging
O(N^2) memory accesses

per TLB miss

Guest OS managed
guest virt to guest phys

page tables

Palacios managed
guest phys to host phys

page tables

CPU MMU Page Faults

Memory Management Depends on Guest

Compute Node Linux Catamount

•  Poor performance of shadow paging on CNL due to context switching.
 Could be partially avoided by adding page table caching to Palacios.

Higher is Better

•  Catamount is essentially doing no context switching, benefiting
 shadow paging (2n vs. n^2 page table depth issue)‏

48 node MFLOPs/node:
Native: 544
Nested: 495
Shadow: ‏(5.1%-) 516

48 node MFLOPs/node:
Native: 540
Nested: ‏(6.1%-) 507
Shadow: 200

HPCCG CG “Mini-application”

