

FAST KATZ AND COMMUTERS

Quadrature Rules and Sparse Linear Solvers
for Link Prediction Heuristics

David F. Gleich
Sandia National Labs

la/opt seminar
October 14th 2010

With Pooya Esfandiar, Chen Grief,
Laks V. S. Lakshmanan, and Byung-Won On

MAIN RESULTS – SLIDE ONE

A – adjacency matrix

L – Laplacian matrix

Katz score :

$$K_{i,j} = [(\mathbf{I} - \alpha \mathbf{A})^{-1}]_{i,j}, i \neq j$$

Commute time:

$$C_{i,j} = L_{i,i}^+ + L_{j,j}^+ - 2L_{i,j}^+$$

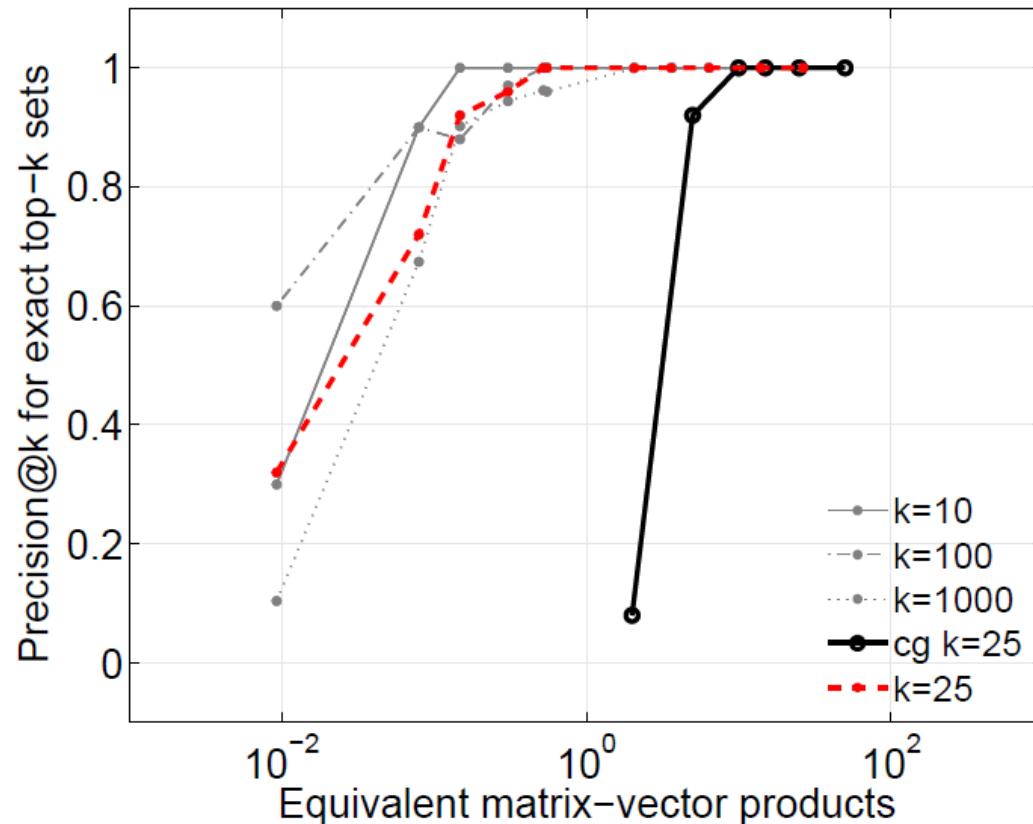
MAIN RESULTS – SLIDE TWO

For Katz Compute one $K_{i,j}$ fast
Compute top $K_{i,:}$ fast

For Commute
Compute one $C_{i,j}$ fast

For almost commute
Compute top $F_{i,:}$ fast

MAIN RESULTS – SLIDE THREE



OUTLINE

Why study these measures?

Katz Rank and Commute Time

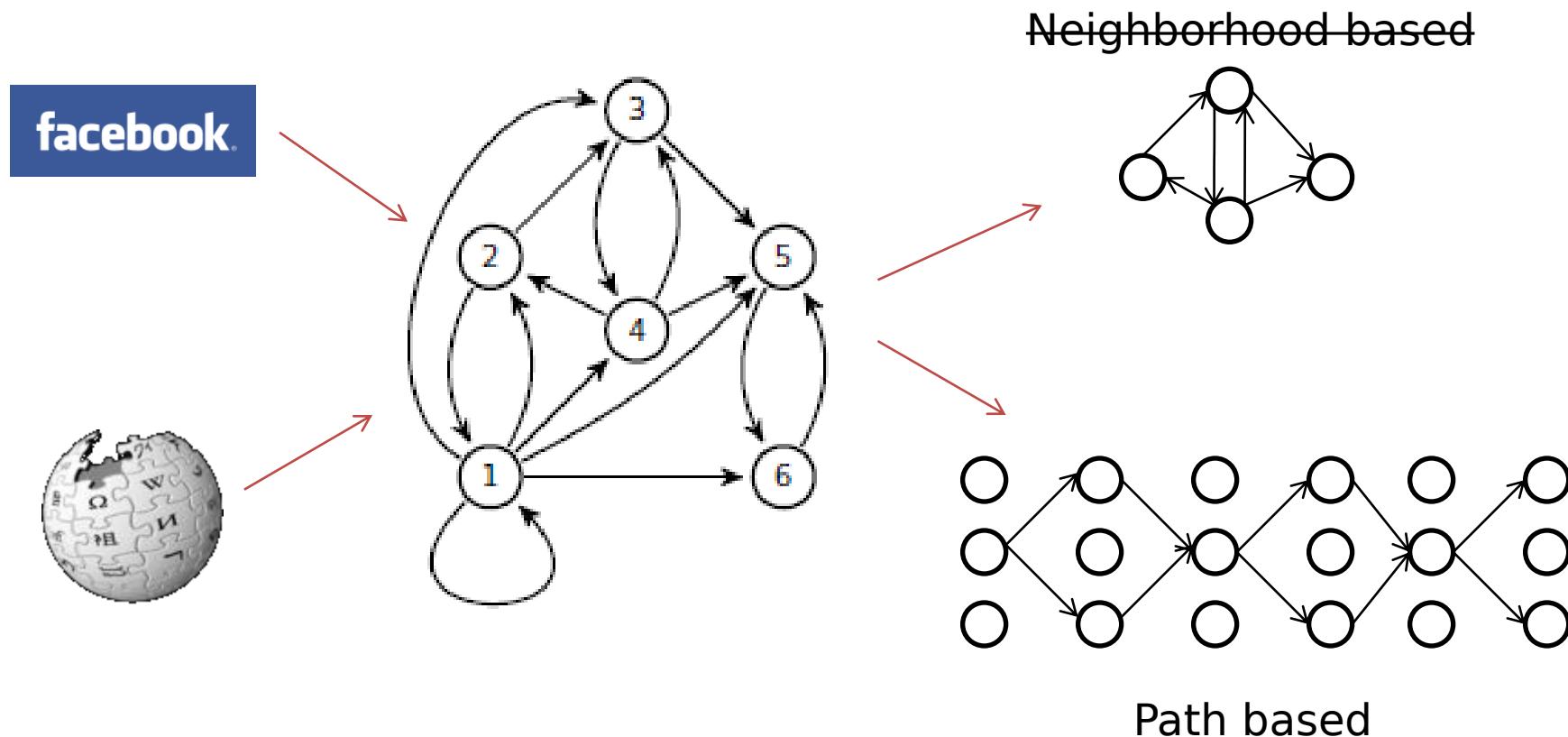
How else do people compute them?

Quadrature rules for pairwise scores

Sparse linear systems solves for top-k

As many results as we have time for...

WHY? LINK PREDICTION



Liben-Nowell and Kleinberg 2003, 2006 found that path based link prediction was more efficient

NOTE

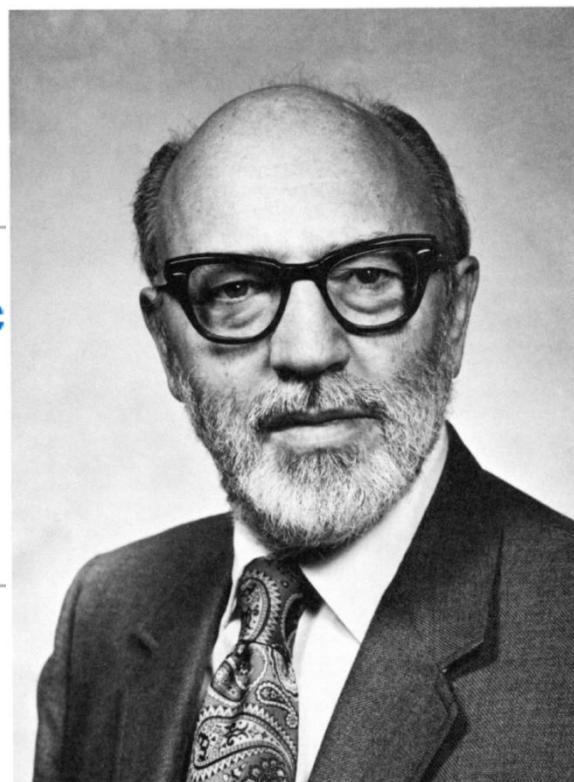
All graphs are undirected

All graphs are connected

Leo Katz (statistician)

From Wikipedia, the free encyclopedia

Leo Katz (born 29 November 1914 in Detroit - died 6 May 1976) was an American statistician. In 1953, he wrote a paper that already outlined the algorithm today known as [PageRank](#)^[1].



References

1. [^] Katz, Leo. "A new status index derived from social network analysis." *Psychometrika*, 18 (1953), 39-43

External links

- <http://www.jstor.org/pss/3213364> Obituary

NOT QUITE, WIKIPEDIA

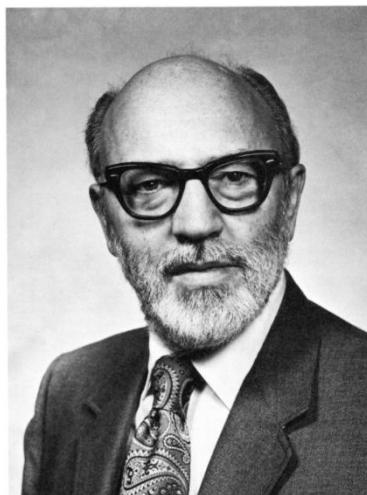
\mathbf{A} : adjacency, $\mathbf{P} = \mathbf{D}^{-1}\mathbf{A}$: random walk

PageRank $(\mathbf{I} - \alpha \mathbf{P}^T)^{-1} \mathbf{e}$

Katz $(\mathbf{I} - \alpha \mathbf{A}^T)^{-1} \mathbf{e}$

These are equivalent if G has constant degree

WHAT KATZ ACTUALLY SAID



“we assume that each link independently has the same probability of being effective” ...

“we conceive a constant α , depending on the group and the context of the particular investigation, which has the force of a probability of effectiveness of a single link. A k-step chain then, has probability α^k of being effective.”

“We wish to find the column sums of the matrix”

$$T = aC + a^2C^2 + \cdots + a^kC^k + \cdots = (I - aC)^{-1} - I.$$

Leo Katz 1953, A New Status Index Derived from Sociometric Analysis, *Psychometria* 18(1):39-43

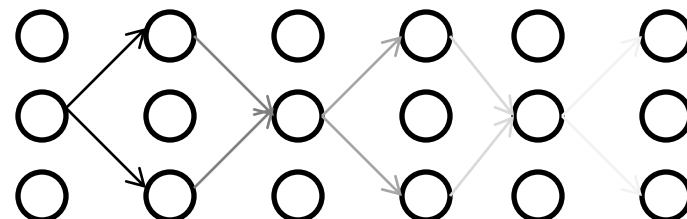
A MODERN TAKE

The Katz score (node-based) is

$$t_i = \sum_j \sum_{k=1}^{\infty} \alpha^k \text{nwalks}_{i,j}^{(k)}$$

The Katz score (edge-based) is

$$K_{i,j} = \sum_{k=1}^{\infty} \alpha^k \text{nwalks}_{i,j}^{(k)}$$



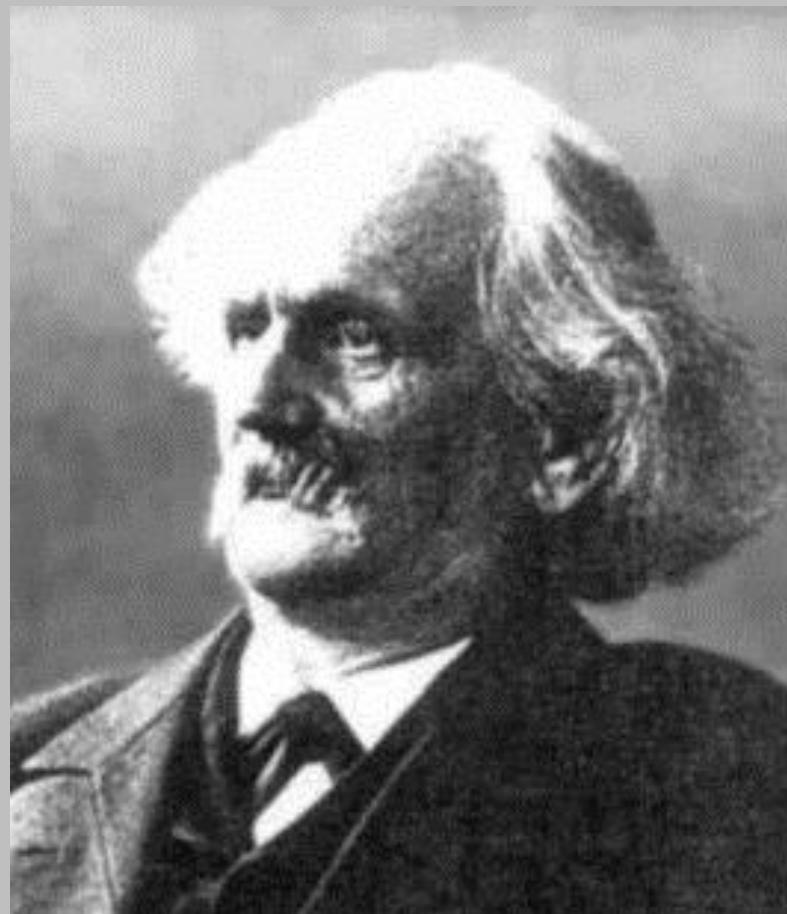
RETURNING TO THE MATRIX

$$nwalks_{i,j}^{(k)} = A_{i,j}^k$$

$$\mathbf{K} = \alpha \mathbf{A} + \alpha^2 \mathbf{A}^2 + \alpha^3 \mathbf{A}^3 + \dots$$

Carl Neumann $(\mathbf{I} - \mathbf{A})^{-1} = \sum_{k=0}^{\infty} \mathbf{A}^k$

$$\mathbf{K} = (\mathbf{I} - \alpha \mathbf{A})^{-1} - \mathbf{I}$$



Carl Neumann

I've heard the Neumann series called the “von Neumann” series more than I'd like! In fact, the von Neumann kernel of a graph should be named the “Neumann” kernel!

[Wikipedia page](#)

PROPERTIES OF KATZ'S MATRIX

\mathbf{K} is symmetric

\mathbf{K} exists when $\alpha \neq 1/\lambda(\mathbf{A})$

$(\mathbf{I} - \alpha\mathbf{A})$ is sym. pos. def. when $\alpha < 1/\|\mathbf{A}\|_2$

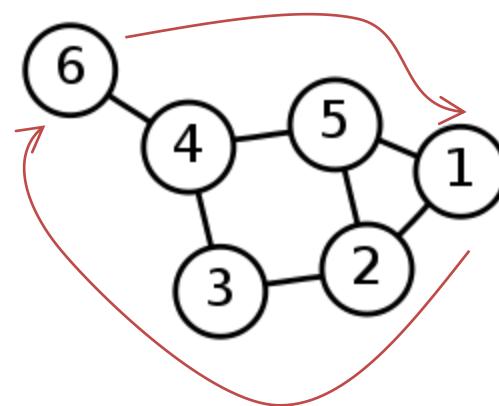
Note that $\alpha < 1/\text{max-degree}$ suffices

COMMUTE TIME

Consider a uniform random walk on a graph $\mathbf{P} = \mathbf{D}^{-1} \mathbf{A}$

$$C_{i,j} = E[T \mid X_0 = i, \dots, X_T = j] + E[T \mid X_0 = j, \dots, X_T = i]$$

Also called the hitting time from node i to j , or the first transition time



SKIPPING DETAILS

L= D- A : graph Laplacian

$$C_{i,j} = \text{Vol}(G)(\mathbf{e}_i - \mathbf{e}_j)^T \mathbf{L}^+ (\mathbf{e}_i - \mathbf{e}_j)$$

L e= 0 is the only null-vector

WHAT DO OTHER PEOPLE DO?

- 1) Just work with the linear algebra formulations
- 2) For Katz, Truncate the Neumann series as a few (3-5) terms (*I'm searching for this ref.*)
- 3) Use low-rank approximations from EVD(A) or EVD(L)
- 4) For commute, use Johnson-Lindenstrauss inspired random sampling
- 5) Approximately decompose into smaller problems

THE PROBLEM

All of these techniques are preprocessing based because most people's goal is to compute *all* the scores.

**We want to avoid
preprocessing the graph.**

There are a few caveats here! i.e. one could solve the system instead of looking for the matrix inverse

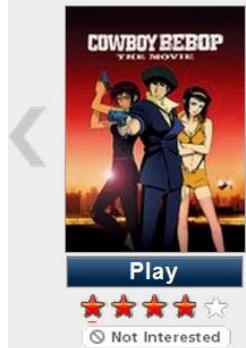
WHY NO PREPROCESSING?

The graph is constantly changing
as I rate new movies.

WHY NO PREPROCESSING?

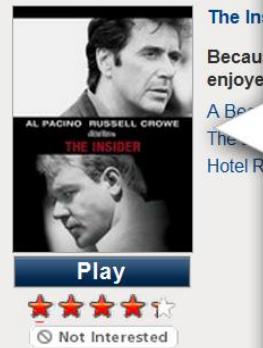
Suggestions in **All Genres**

Suggestions to Watch Instantly



[Cowboy Bebop: The Movie](#)

Because you enjoyed:
Ghost in the Shell
Spirited Away
Firefly: The Complete Series



[The Insider](#)

1999 **R** 157 minutes

Nominated for seven Oscars, this thriller from director Michael Mann story of a Big Tobacco scientist w secrets and the newsman who fou have squelched the story.

Starring: Al Pacino, Russell Crowe

Director: Michael Mann

Genre: Dramas Based on True Stories

Format: DVD and streaming

4.1 Our best

Recommended based on your viewing history, *Others*, *A Beautiful Mind* and *Gladiator*

NETFLIX

Pairwise scores give user similarity

Top-k predicted “links” are movies to watch!

Dr. HANK

Long ago, far away was a girl I called "Staten Island Rita". She treasured movies; through New York she trekked, burning through her inventory. A sweetheart! So, now I get it. sthenry@bellsouth

121 ratings

53 reviews

Location: Lake Worth, FL

Reviewer Rank: 253765

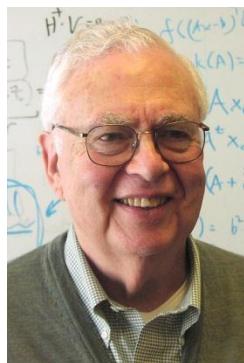
Member Since: January 2004

Similarity: 62%

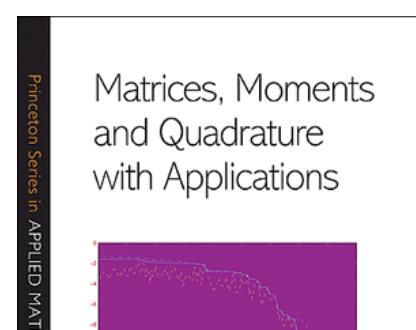
PAIRWISE ALGORITHMS

Katz $\mathbf{e}_i^T(\mathbf{I} - \alpha \mathbf{A})^{-1} \mathbf{e}_j$

Commute $(\mathbf{e}_i - \mathbf{e}_j)^T \mathbf{L}^+ (\mathbf{e}_i - \mathbf{e}_j)$



*Golub and Meurant
to the rescue!*



MMQ - THE BIG IDEA

Quadratic form $\mathbf{v}^T f(\mathbf{E}) \mathbf{v}$

Think $f(x) = x^{-1}$

Weighted sum $\sum_{i=1}^n w_i^2 f(\lambda_i)$

A is s.p.d. use EVD

Stieltjes integral $\int_a^b f(\lambda) dw(\lambda)$

“A tautology”

Quadrature approximation $\sum_{j=1}^k f(\eta_j) \omega_j$

Matrix equation $\mathbf{e}_1^T f(\mathbf{T}_k) \mathbf{e}_1$

Lanczos

LANCZOS

\mathbf{A} , \mathbf{b} , k -steps of the Lanczos method produce

$$\mathbf{A}\mathbf{v}_k = \mathbf{v}_{k+1}\mathbf{T}_{k+1,k} \text{ and } \mathbf{v}_k \mathbf{e}_1 = \rho \mathbf{b}$$

$$\begin{matrix} \mathbf{A} \\ \mathbf{v}_k \end{matrix} = \begin{matrix} \mathbf{v}_{k+1} \\ \mathbf{T}_{k+1,k} \end{matrix}$$

PRACTICAL LANCZOS

Only need to store the last 2 vectors in \mathbf{V}_k

Updating requires $O(\text{matvec})$ work

\mathbf{V}_k is not orthogonal

MMQ PROCEDURE

Goal $b = \mathbf{u}^T \mathbf{E}^{-1} \mathbf{u}$

Given $l < \lambda(\mathbf{E}) < u$

1. Run k-steps of Lanczos on \mathbf{E} starting with \mathbf{u}
2. Compute \mathbf{T}_u, \mathbf{T} with an additional eigenvalue at u ,
set $b_u = \mathbf{e}_1^T \mathbf{T}_u^{-1} \mathbf{e}_1$ Correspond to a Gauss-Radau rule, with u as a prescribed node
3. Compute \mathbf{T}_l, \mathbf{T} with an additional eigenvalue at l , set
 $b_l = \mathbf{e}_1^T \mathbf{T}_l^{-1} \mathbf{e}_1$ Correspond to a Gauss-Radau rule, with l as a prescribed node
4. Output $[b_l, b_u]$ as lower and upper bounds on b

PRACTICAL MMQ

Increase k to become more accurate

Bad eigenvalue bounds yield worse results

\mathbf{T}_u and \mathbf{T}_l are easy to compute

\mathbf{T}_u^{-1} not required, we can iteratively update it's LU factorization

PRACTICAL MMQ

Algorithm 1 Computing Score Bounds

Input: $E, u, a < \lambda_{\min(E)}, b > \lambda_{\max(E)}, k$

Output: $\underline{b}_k \leq u^T E^{-1} u \leq \overline{b}_k$

- 1: **Initial step:** $h_1 = 0, h_0 = u, \omega_1 = u^T Eu, \gamma_1 = \|(E - \omega_1 I)u\|, b_1 = \omega_1^{-1}, d_1 = \omega_1, c_1 = 1,$
 $\underline{d}_1 = \omega_1 - a, \overline{d}_1 = \omega_1 - b, h_1 = \frac{(E - \omega_1 I)u}{\gamma_1}.$
 - 2: **for** $j = 2, \dots, k$ **do**
 - 3: $\omega_j = h_{j-1}^T Eh_{j-1}$
 - 4: $\tilde{h}_j = (E - \omega_j I)h_{j-1} - \gamma_{j-1}h_{j-2}$
 - 5: $\gamma_j = \|\tilde{h}_j\|$
 - 6: $h_j = \frac{\tilde{h}_j}{\gamma_j}$
 - 7: $b_j = b_{j-1} + \frac{\gamma_{j-1}^2 c_{j-1}^2}{d_{j-1}(\omega_j d_{j-1} - \gamma_{j-1}^2)}$
 - 8: $d_j = \omega_j - \frac{\gamma_{j-1}^2}{d_{j-1}} ; c_j = c_{j-1} \frac{\gamma_{j-1}}{d_{j-1}}$
 - 9: $\underline{d}_j = \omega_j - a - \frac{\gamma_{j-1}^2}{d_{j-1}} ; \overline{d}_j = \omega_j - b - \frac{\gamma_{j-1}^2}{d_{j-1}}$
 - 10: $\underline{\omega}_j = a + \frac{\gamma_j^2}{d_j} ; \overline{\omega}_j = b + \frac{\gamma_j^2}{d_j}$
 - 11: $\underline{b}_j = b_j + \frac{\gamma_j^2 c_j^2}{d_j(\underline{\omega}_j d_j - \gamma_j^2)} ; \overline{b}_j = b_j + \frac{\gamma_j^2 c_j^2}{d_j(\overline{\omega}_j d_j - \gamma_j^2)}$
-

ONE LAST STEP FOR KATZ

$$\text{Katz} \quad \mathbf{e}_i^T (\mathbf{I} - \alpha \mathbf{A})^{-1} \mathbf{e}_j$$

$$\mathbf{u} \neq \mathbf{v} \quad \text{:(}$$

$$\begin{aligned} \mathbf{u}^T f(\mathbf{E}) \mathbf{v} &= 1/4 [(\mathbf{u} + \mathbf{v})^T f(\mathbf{E}) (\mathbf{u} + \mathbf{v}) \\ &\quad - (\mathbf{u} - \mathbf{v})^T f(\mathbf{E}) (\mathbf{u} - \mathbf{v})] \end{aligned}$$

TOP-K ALGORITHM FOR KATZ

Approximate \mathbf{x}

$$(\mathbf{I} - \alpha \mathbf{A})\mathbf{x} = \mathbf{e}_i$$

where \mathbf{A} is sparse

Keep \mathbf{x} sparse too

Ideally, don't “*touch*” all of \mathbf{A}

INSPIRATION - PAGERANK

Approximate \mathbf{x}

$$(\mathbf{I} - \alpha \mathbf{P})\mathbf{x} = \mathbf{e}_i$$

where \mathbf{P} is sparse

Keep \mathbf{x} sparse too? YES!

Ideally, don't “*touch*” all of \mathbf{A} ? YES!

THE ALGORITHM - MCSHERRY

For $\mathbf{Ex} = \mathbf{b}$

Start with the Richardson iteration

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \omega(\mathbf{b} - \mathbf{Ex}^{(k)})$$

Rewrite

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \omega \mathbf{r}^{(k)}$$

Richardson converges if $\rho(\mathbf{I} - \mathbf{A}) < 1$

THE ALGORITHM

Note \mathbf{b} is sparse.

If $\mathbf{x}^{(0)} = 0$, then $\mathbf{r}^{(0)}$ is sparse.

Idea

only add one component of $\mathbf{r}^{(k)}$ to $\mathbf{x}^{(k)}$

THE ALGORITHM

For $\mathbf{Ex} = \mathbf{b}$

Init: $\mathbf{vx}^{(0)} = 0, \mathbf{r}^{(0)} = \mathbf{b}$

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \omega r_j^{(k)} \mathbf{e}_j$$

$$\mathbf{r}^{(k+1)} = \mathbf{r}^{(k)} + \omega r_j^{(k)} \mathbf{Ee}_j$$

How to pick j ?

THE ALGORITHM FOR KATZ

For $(\mathbf{I} - \alpha \mathbf{A})\mathbf{x} = \mathbf{e}_i$

Init: $\mathbf{x}^{(0)} = 0, \mathbf{r}^{(0)} = \mathbf{e}_1$

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + r_j^{(k)} \mathbf{e}_j$$

$$\mathbf{r}^{(k+1)} = \mathbf{r}^{(k)} - r_j^{(k)} \mathbf{e}_j + \alpha r_j^{(k)} \mathbf{A} \mathbf{e}_j$$

Pick j as $\max r_j^{(k)}$

Storing the non-zeros of the residual in a heap makes picking the max $\log(n)$ time. See Anderson et al. FOCS2008 for more

CONVERGENCE?

If you pick j as the maximum element, we can show this is convergent if Richardson converges. This proof requires \mathbf{E} to be symmetric positive definite.

RESULTS - DATA

Graph	Nodes	Edges
dblp	93,156	178,145
arxiv	86,376	517,563
flickr	513,969	3,190,452

All unweighted, connected graphs

RESULTS – KATZ ALPHAS

Easy α

$$1/(10\|\mathbf{A}\|_1 + 10)$$

Hard α

$$1/(\|\mathbf{A}\|_2 + 1)$$

PAIRWISE RESULTS

Katz upper and lower bounds

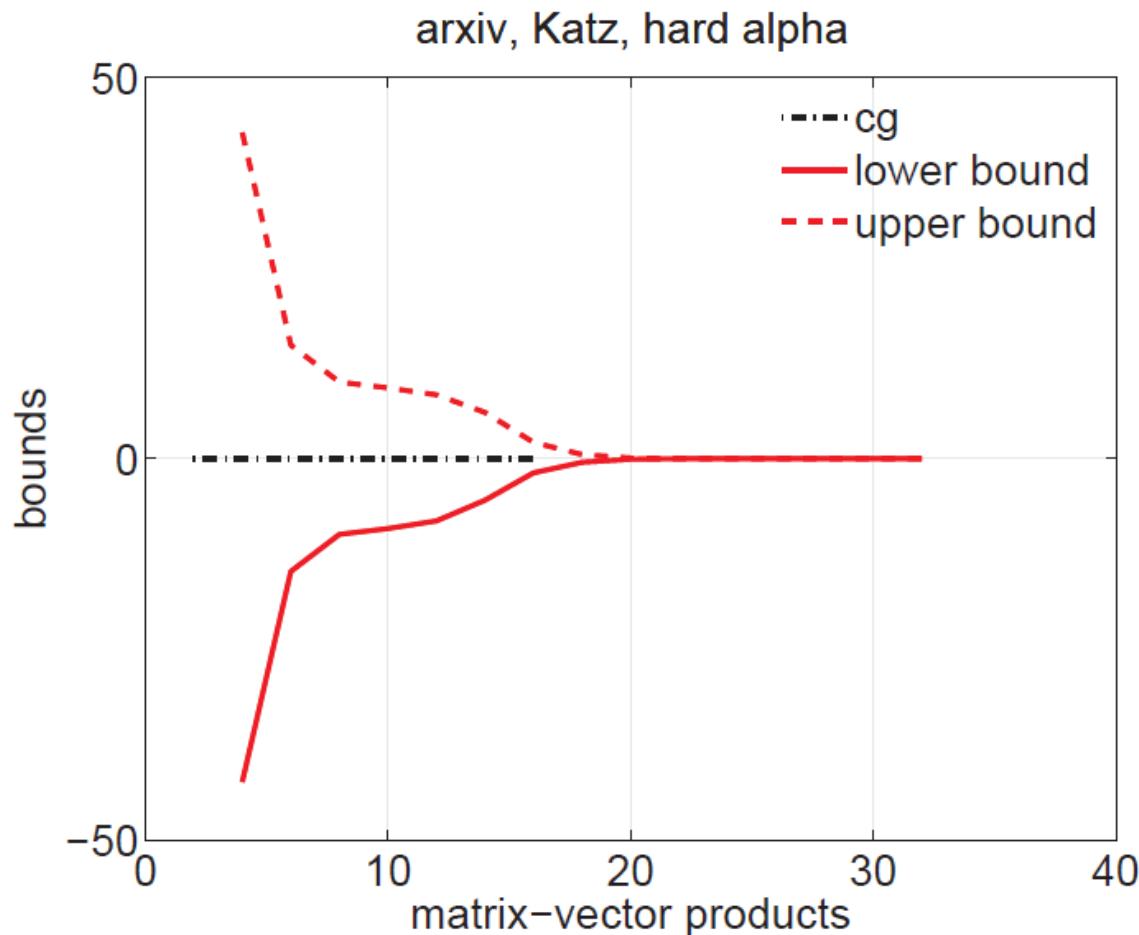
Katz error convergence

Commute-time upper and lower bounds

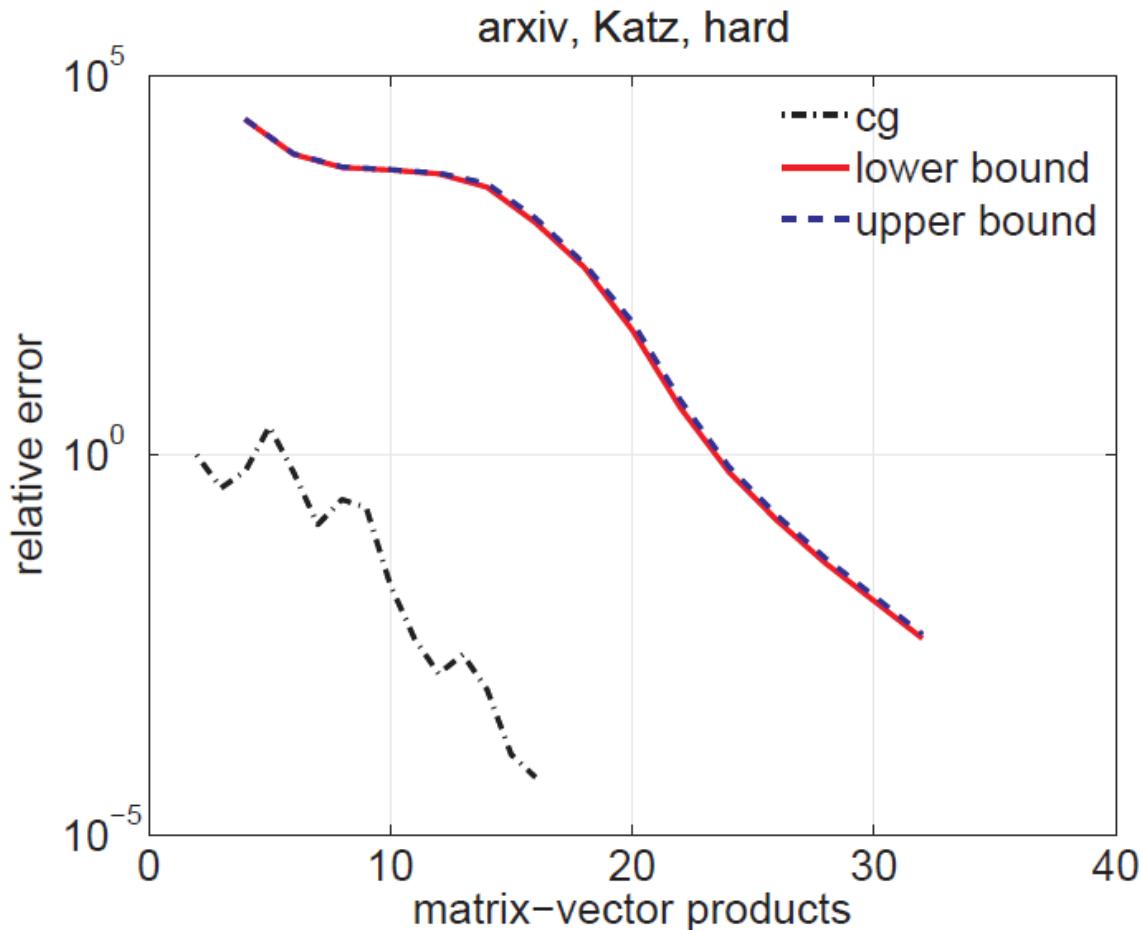
Commute-time error convergence

For the arXiv graph here

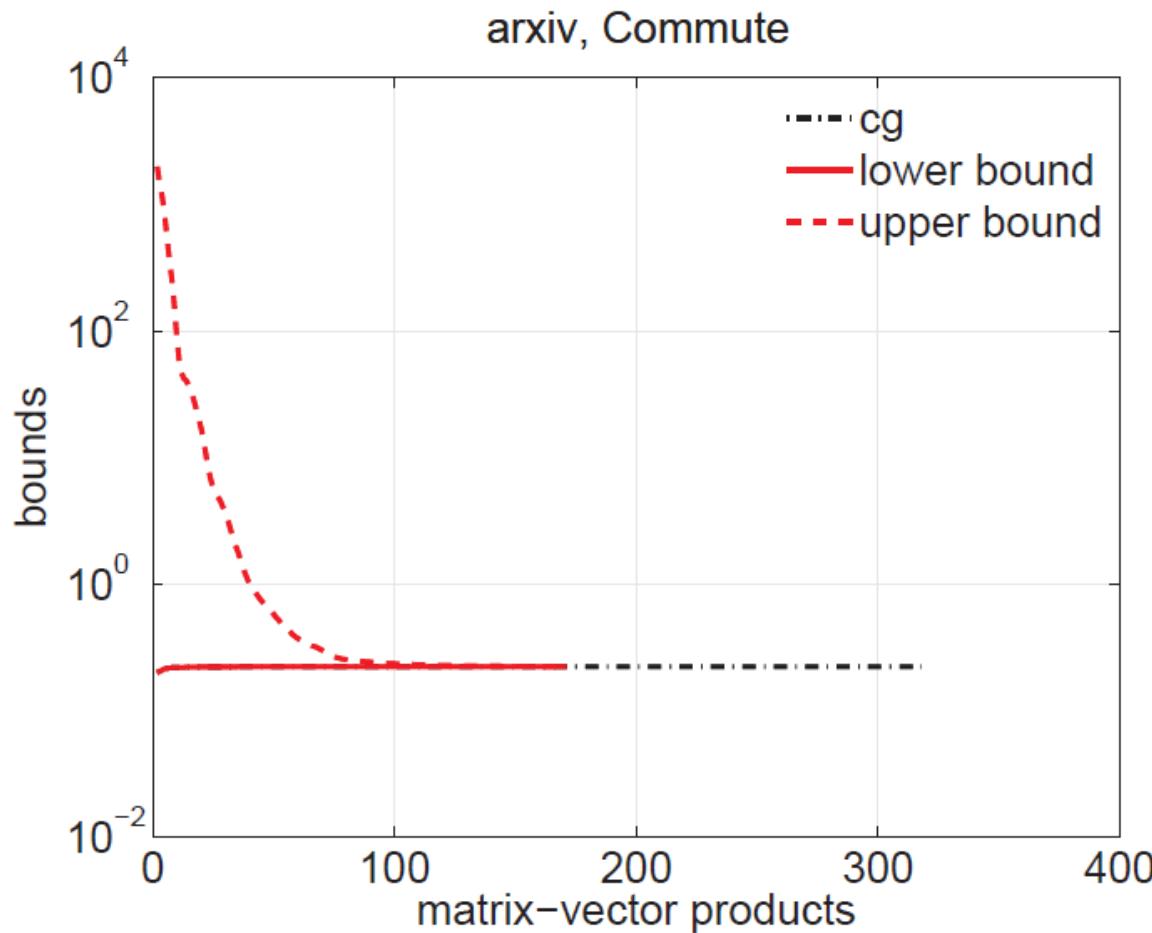
KATZ BOUND CONVERGENCE



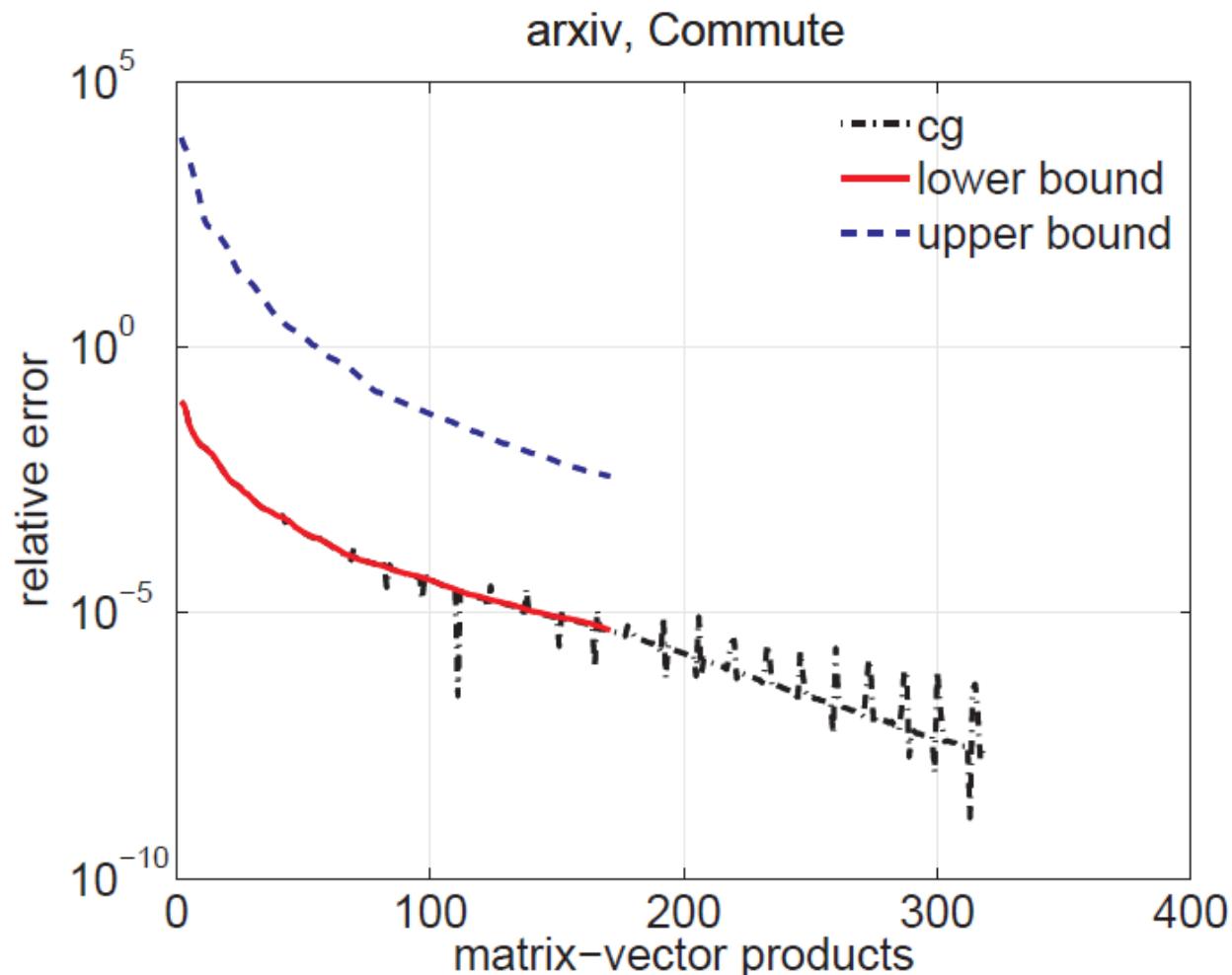
KATZ ERROR CONVERGENCE



COMMUTE BOUND CONVERG.



COMMUTE ERROR CONVERG.



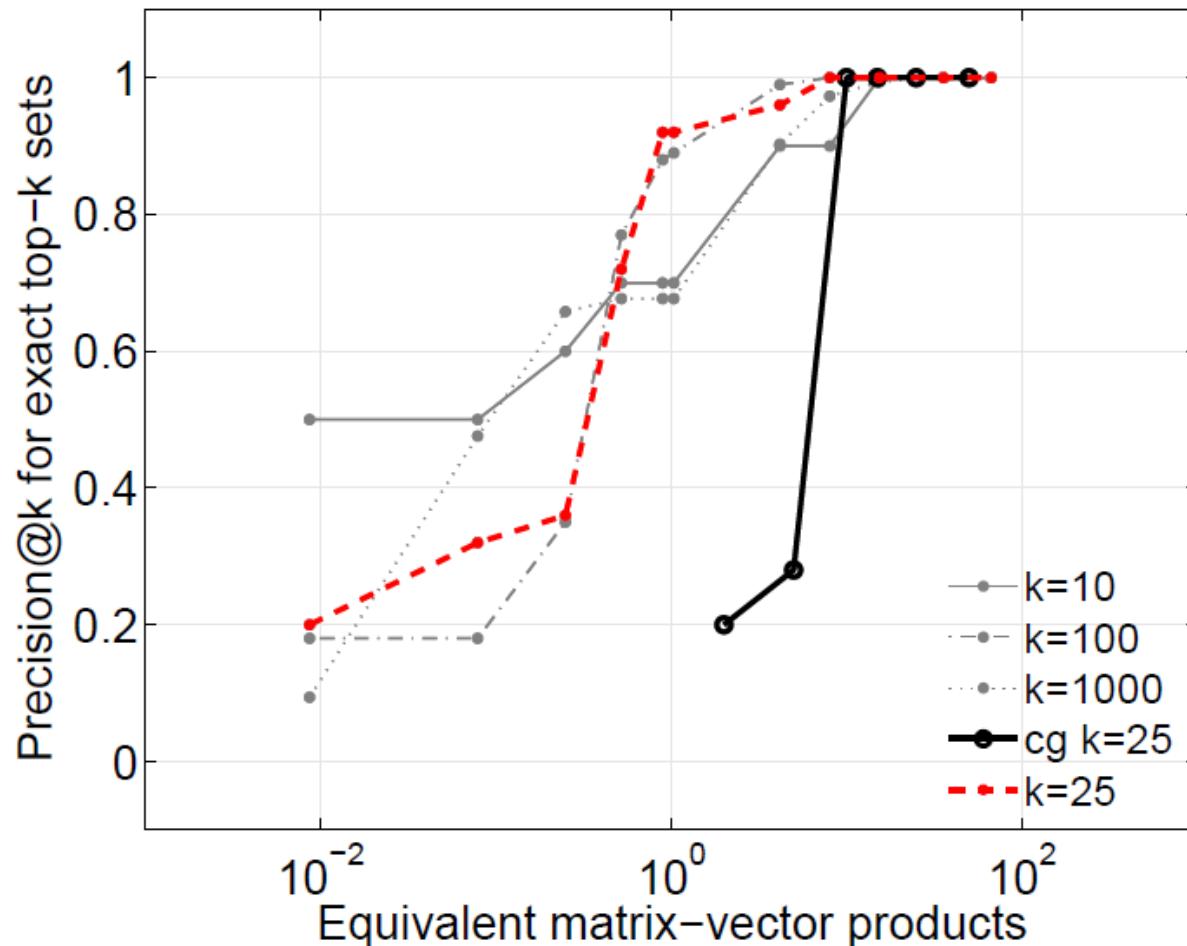
TOP-K RESULTS

Katz set convergence

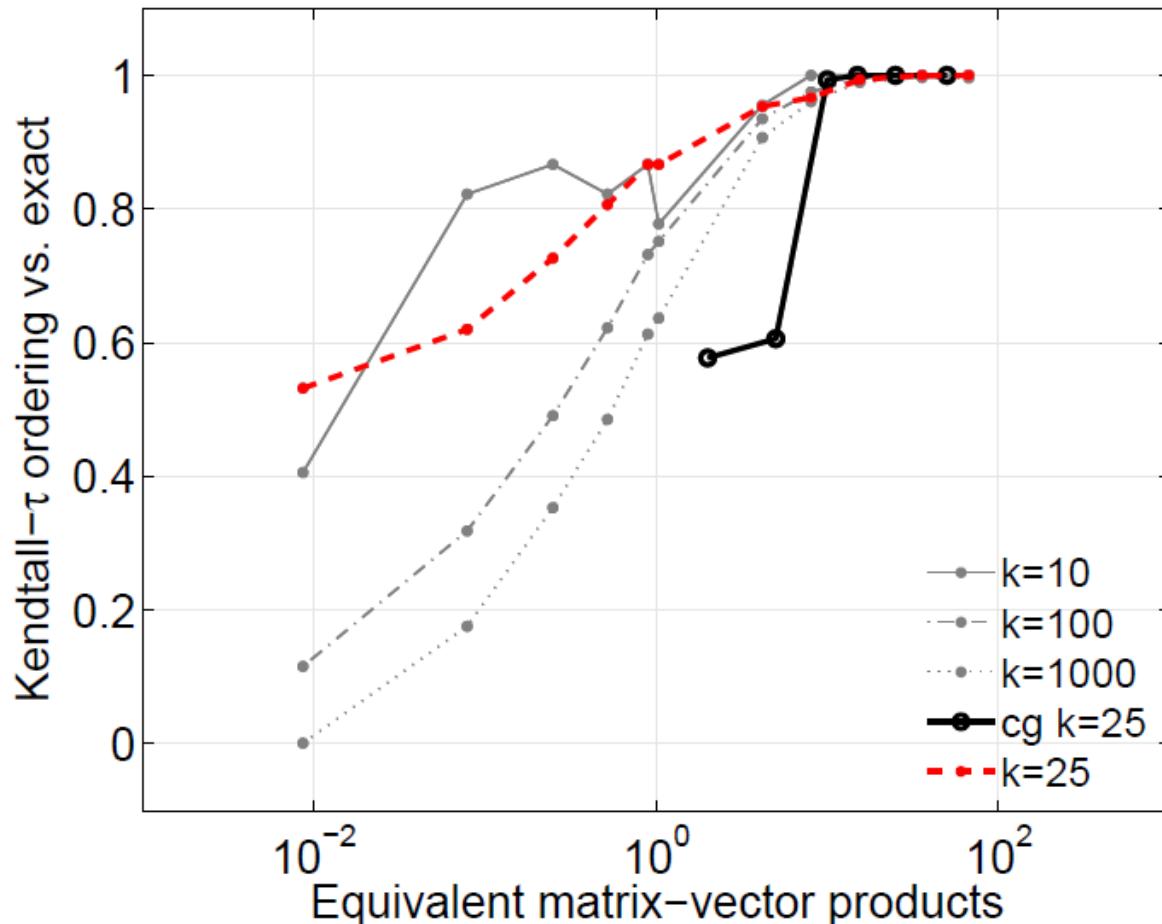
Katz order convergence

For arXiv graph

KATZ SET CONVERGENCE



KATZ ORDER CONVERGENCE



CONCLUSIONS

These algorithms are faster than many alternatives.

For pairwise commute, stopping criteria are simpler

For top-k, we often need less than 1 matvec for good enough results

WARTS

Stopping criteria on our top-k algorithm
can be a bit hairy

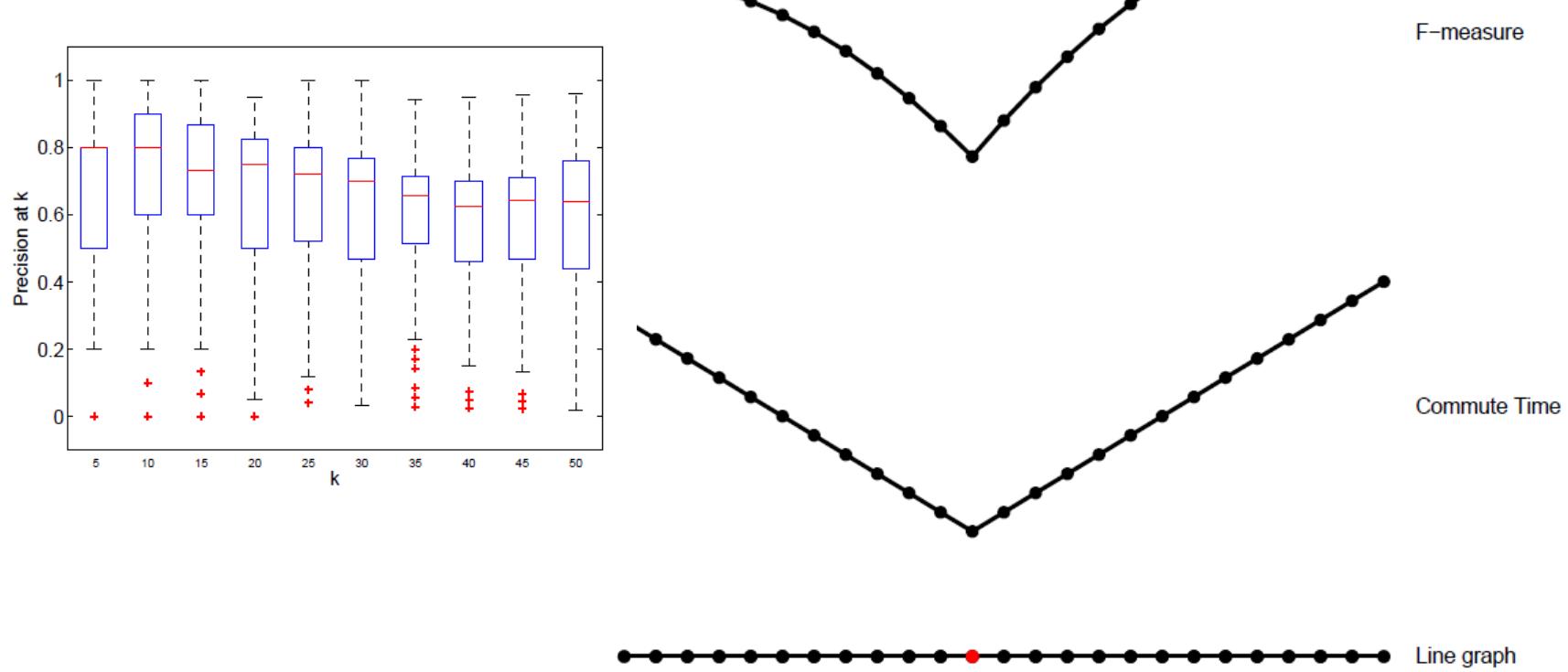
The top-k approach doesn't work right for
commute time

TODO

Try on netflix data! ☺

Explore our “almost commute measure more”

F-MEASURE



By AngryDogDesign on DeviantArt

Preprint available by request

Slides should be online soon

Code is online already

[stanford.edu/~dgleich/
publications/2010/codes/fast-katz](http://stanford.edu/~dgleich/publications/2010/codes/fast-katz)