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MAIN RESULTS –SLIDE ONE 

A – adjacency matrix 

L – Laplacian matrix 

Katz score :   

                                                  

Commute time: 
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MAIN RESULTS – SLIDE TWO 

For Katz  Compute one        fast 

 Compute top        fast 

 

For Commute 

 Compute one        fast 
 

 

For almost commute 

 Compute top        fast 
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MAIN RESULTS – SLIDE THREE 
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OUTLINE 

Why study these measures? 

Katz Rank and Commute Time 

How else do people compute them? 

Quadrature rules for pairwise scores 

Sparse linear systems solves for top-k 

As many results as we have time for… 
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WHY?  LINK PREDICTION 

David F. Gleich (Sandia) ICME la/opt seminar 

Liben-Nowell and Kleinberg 2003, 2006 found that path based link prediction was more efficient 

Neighborhood based 

Path based 
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NOTE 

 

 

All graphs are undirected 

 

All graphs are connected 
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LEO KATZ 
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NOT QUITE, WIKIPEDIA 

     : adjacency,                      : random walk 

 

 PageRank                           

 

 Katz                          

 

These are equivalent if      has constant 
degree 
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WHAT KATZ ACTUALLY SAID 

Leo Katz 1953, A New Status Index Derived from Sociometric Analysis, Psychometria 18(1):39-43 

“we assume that each link independently has the 

same probability of being effective” … 

 

“we conceive a constant     , depending 

on the group and the context of the particular 

investigation, which has the force of a probability 

of effectiveness of a single link. A k-step chain 

then, has probability        of being effective.” 

 

“We wish to find the column sums of the matrix” 
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A MODERN TAKE 

The Katz score (node-based) is 

                     
 

The Katz score (edge-based) is 
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RETURNING TO THE MATRIX 

                       
 

                                                       

   

Carl Neumann                            
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Carl Neumann 

I’ve heard the Neumann series called the “von Neumann” 

series more than I’d like!  In fact, the von Neumann kernel 

of a graph should be named the “Neumann” kernel! 
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Wikipedia page 
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PROPERTIES OF KATZ’S MATRIX 

     is symmetric 

 

     exists when                        

 

               is sym. pos. def. when                        

 

Note that          1/max-degree suffices 
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COMMUTE TIME 

Consider a uniform random walk on a 
graph                      
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Also called the hitting 

time from node i to j, or 

the first transition time 
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SKIPPING DETAILS 

 

                 : graph Laplacian 

 

                                                               

 

             is the only null-vector 
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WHAT DO OTHER PEOPLE DO? 

1) Just work with the linear algebra formulations 

 

2) For Katz, Truncate the Neumann series as a few (3-5) 
terms (I’m searching for this ref.) 

 

3) Use low-rank approximations from EVD(A) or EVD(L) 

 

4) For commute, use Johnson-Lindenstrauss inspired 
random sampling  

 

5) Approximately decompose into smaller problems 
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Liben-Nowll and Kleinberg CIKM2003, Acar et al.  ICDM2009, Spielman and Srivastava STOC2008, Sarkar and Moore UAI2007 
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THE PROBLEM 

 

All of these techniques are 

preprocessing based because 

most people’s goal is to compute 

all the scores. 

 

We want to avoid 

preprocessing the graph. 
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There are a few caveats here!  i.e. one could solve the system instead of looking for the matrix inverse 
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WHY NO PREPROCESSING? 

The graph is constantly changing  

as I rate new movies. 
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WHY NO PREPROCESSING? 

David F. Gleich (Sandia) ICME la/opt seminar 

Top-k predicted “links” 

are movies to watch! 

Pairwise scores give  

user similarity 
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PAIRWISE ALGORITHMS 

 Katz                      
 

Commute                                          
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Golub and Meurant 

to the rescue! 
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MMQ  - THE BIG IDEA 

Quadratic form                  
         

Weighted sum                    
         

Stieltjes integral                    
         

Quadrature approximation                    
          

Matrix equation                
David F. Gleich (Sandia) ICME la/opt seminar 

Think                      

A is s.p.d. use EVD 

“A tautology” 

Lanczos 
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LANCZOS 

          , $k$-steps of the Lanczos method 
produce 

 

                                     and                        

David F. Gleich (Sandia) ICME la/opt seminar 

                         = 

               

23 of 50 



Tweet along @dgleich 

PRACTICAL LANCZOS 

 

Only need to store the last 2 vectors in        

 

Updating requires O(matvec) work 

 

       is not orthogonal 
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MMQ PROCEDURE  

Goal                          

Given                          

 

1. Run k-steps of Lanczos on      starting with      

2. Compute       ,      with an additional eigenvalue at     , 

set                      
3. Compute     ,      with an additional eigenvalue at   , set 

                   
4. Output                as lower and upper bounds on b 
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Correspond to a Gauss-Radau rule, with 

u as a prescribed node 

Correspond to a Gauss-Radau rule, with 

l as a prescribed node 
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PRACTICAL MMQ 

Increase k to become more accurate 

 

Bad eigenvalue bounds yield worse results 

 

       and      are easy to compute 

 

       not required, we can iteratively 

update it’s LU factorization 
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PRACTICAL MMQ 
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ONE LAST STEP FOR KATZ 

 Katz                      
 

              

 

                                                                     

                                         

 

 

David F. Gleich (Sandia) ICME la/opt seminar 28 of 50 



Tweet along @dgleich 

TOP-K ALGORITHM FOR KATZ 

 

Approximate      

                             

where      is sparse 

  

Keep      sparse too 

Ideally, don’t “touch” all of      
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INSPIRATION - PAGERANK 

 

Approximate      

                             

where      is sparse 

  

Keep      sparse too? YES! 

Ideally, don’t “touch” all of     ? YES! 

 

David F. Gleich (Sandia) ICME la/opt seminar 

McSherry WWW2005, Berkhin 2007, Anderson et al. FOCS2008 – Thanks to Reid Anderson for telling me McSherry did this too. 
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THE ALGORITHM - MCSHERRY 

For                

Start with the Richardson iteration 

                                                       

Rewrite 

                                       

 

Richardson converges if                          
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THE ALGORITHM  

Note      is sparse. 

 

If                 , then          is sparse. 

 

Idea 

  only add one component of          to          
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THE ALGORITHM 

For                

 

Init:                                    

                                 

                                 
 

How to pick   ? 
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THE ALGORITHM FOR KATZ 

For                            

 

Init:                                    

                               

                                             
 

Pick    as max        
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Storing the non-zeros of the residual in a heap makes picking the max log(n) time.   See Anderson et al. FOCS2008 for more 
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CONVERGENCE? 

If you pick    as the maximum element, we 
can show this is convergent if Richardson 
converges.  This proof requires      to be 
symmetric positive definite. 
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RESULTS - DATA 

 

 

 

 

 

All unweighted, connected graphs 
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RESULTS – KATZ ALPHAS 

Easy      

                                 

 

Hard      

                         

 

David F. Gleich (Sandia) ICME la/opt seminar 37 of 50 



Tweet along @dgleich 

PAIRWISE RESULTS 

 

Katz upper and lower bounds 

Katz error convergence 

 

Commute-time upper and lower bounds 

Commute-time error convergence 

 

For the arXiv graph here 
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KATZ BOUND CONVERGENCE 
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KATZ ERROR CONVERGENCE 
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COMMUTE BOUND CONVERG. 
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COMMUTE ERROR CONVERG. 
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TOP-K RESULTS 

 

 

Katz set convergence 

Katz order convergence 

 

For arXiv graph 
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KATZ SET CONVERGENCE 
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KATZ ORDER CONVERGENCE 
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CONCLUSIONS 

These algorithms are faster than many 
alternatives.   

 

For pairwise commute, stopping criteria 
are simpler 

 

For top-k, we often need less than 1 
matvec for good enough results 
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WARTS 

Stopping criteria on our top-k algorithm 
can be a bit hairy 

 

The top-k approach doesn’t work right for 
commute time 
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TODO 

Try on netflix data!  

 

Explore our “almost commute measure 
more”   
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F-MEASURE 
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By AngryDogDesign on DeviantArt 

Preprint available by request 

 

Slides should be online soon 

 

Code is online already 

stanford.edu/~dgleich/ 

publications/2010/codes/fast-katz 
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