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Iterative methods for solving Ax=b: This was the most
fashionable research topic from 1950-1965. Has the point of

diminished returns been researched? Here 1s a quotation from a
sophisticated user:

“Progress in Numerical Analysis”, Beresford Parlett, SIAM Review, 1978 'I" Sandia
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"Iterative techniques for processing large sparse linear systems were
popular in the late 1950's and early 1960's (and their decaying
remains still pollute some computational circles). When iterative
methods finally departed from the finite element scene in the mid
1960's - having been replaced by direct sparse-matrix methods - the
result was a quantum leap in the reliability of linear analysis
packages, which contributed significantly to the rapid acceptance of
FE analysis at the engineering group level. (This effect, it should be
noted, had nothing to do with the relative computational efficiency; in
fact iterative methods can run faster on many problems if the user
happens to know the optimal acceleration parameters.) Presently, FE
analyzers are routinely exercised as black box devices;...”

“Progress in Numerical Analysis”, Beresford Parlett, SIAM Review, 1978
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Our own view of the situation is different. By their training, the
experts in iterative methods must  collaborate with users.
Indeed, the combination of user, numerical analyst, and iterative
method can be incredibly effective. Of course, by the same
token, inept use can make any iterative method not only slow
but prone to failure. Gaussian elimination, in contrast, 1s a
classical black box algorithm demanding no cooperation from
the user.

Surely the moral of the story is not that iterative methods are
dead, but that too little attention has been paid to the user's
current needs?
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' Solving Ax = b
} Conjugate Gradient Method

r=>b - A¥x;

for iter = 1:max_it % begin iteration

=) p=0*r);  dot=r"r+..+",r, MPI Allreduce ( .. )

if (iter>1), Yo dlrectlon vector
P=p/p_1;
m) p=r+P*p; axpy=r,+p *p+...41,+p *p,
else
p=r;
end
q =A*p;
=) a=p/(p'*q);
) X=X+0a *p; % update approximation vector
mm) I'=T-0 *q; % compute residual
error = norm( r ) / bnrm2; % check convergence
if ( error <= tol ), break, end
p_l=p;
end
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if ( error > tol ) flag = 1; end lI'l National

Laboratories




| y—- 4 ]
* Preconditioned Solving I'Ax = M'b

r‘ Conjugate Gradient Method

for iter = 1:max_it % begin iteration
mm) 2=M/r; (If M-'A not symmetric.)
p=(r'*z); ==
if (iter>1), % direction vector
P=p/p_1;
p=z+f*p; ¢==
else
pP=1 &=
end
-
a=p/(p'*q);
X=X+a *p; % update approximation vector
r=r-a *q; % compute residual
error=f (A,x,b,N,¢); % check convergence
if ( error <= tol ), break, end
p_1=p;
end
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q=A"p

nteraction with “the problem”
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“The Matrix Market”

http://math.nist. gov/MatrzxMarket/
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Where’s “the matrix”?

Ocean Circulation Model
http://climate.lanl.gov/Models/POP/

2 phases:
1. Stratification: Baroclinic (3d)
2. Surface pressure: Barotropic (2d)

A*p: difference stencil
“‘sweep” across mesh:

phys_b, ]
do i=iphys_b,1iphys_e
XOUT(1i,3) = CNECL,jD*X(i+1,3+1) + CNW(L,jD)*X(1i-1,3j+1) +

& CSE(CL, 3)*X(1+1,3-1) + CSW(i,3D)*X(1-1,3-D) +
& CN CI,J)*X(‘- ,j+1) + (5 (1,J>*X(1 ,j_l) +
& CE (1,710*X(i+1,7 ) + ON (1,3D)*X(i-1,7 ) +
& CC(L,30*X(1,3)

end do
end do
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. ' Preconditioning
% M-1Ax = M-b
Want M-’ “close to” A"
I.e. want more favorable system (spectrum)

* Time vs. number of iterations

« If strictly diagonally dominant, M = diag(A)
A=LU,soM=ILU(d)

» Approximate, Polynomial, Subdomain, ...

« for M=M;M, M "AM, " (M,x) = M TbM,7, M; = M,?

. -1 . -1
— Before: r, < M, r,, after: x, « M, x,
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%i Stopping Criteria

Want: distance of current approximation to exact solution

Have: x, =x,,+o*p, andr, =r,, —a* q

1

Should:

1. identify when the error is small enough to stop,

2. stop if the error is no longer decreasing or is
decreasing too slowly,

3. and limit the maximum amount of time spent iterating.
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}. Stopping Criteria

‘Nro b / Nl
'"ri "2 / | o "2

il B PRV VX

* Nzl dafex 1=+ el

* ri"WRMS, where "."WRMS = \/(1/”) ?:1(7'17/“"2)2
*|a % - bl /
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A Brief History of Solving
Linear Systems of Equations

;2

1959: Conjugate Gradient Method A =AT & xTAx > 0 for xx0

— Hestenes & Stiefel (& Lanczos)
1976: BiCG, Fletcher A= > 0 for xx0
1986: GMRes, Saad & Schultz
1989: CGS, Sonneveld.

1991: QMR, Freund & Nachtigal
1992: BiCGStab, van der Vorst

(most cited paper of 1990s (SIAM))
1993: TFQMR, Freund
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% Luck = Preparation + Opportunity

« 1989: PVM 1.0, Sunderum@Emory, Geist@ORNL
*1991: PVM 2.0, ORNL + UTK

«1992: PVM 3.0, ORNL + UTK

«1994: MPI 1.0

* 1995: T3SD@LANL

« 1995: ASCI program@LANL, LLNL, Sandia
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} Algorithmic Bombardment...

CGS BiCGSTAB QMR
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It’s the power...

Cray XTS5 HPL Run, October 9-10, 2009
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Platform: Jaguar
Architecture: XT4
CPU: AMD Quad
P-states (Frequency States)
P0: 2.1 GHz , 1.25V
P1: 2.1 GHz , 1.25V
P2: 1.7 GHz, 1.1625V
P3: 1.4 GHz, 1.125V
P4: 1.1 GHz, 1.1V
Nodes: 6144
Runtime Increase: 3.2%
Energy Decrease (Savings): 30.6%

Order of magnitude energy savings
vs. performance impact!

Two application runs, same
physical nodes, statically altering
CPU frequency (P-state) allows
lowering input voltage to chip
resulting in larger energy savings.

AMG2006*
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Platform: Jaguar
Architecture: XT4
CPU: AMD Quad
P-states (Frequency States)
P0: 2.1 GHz , 1.25V
P1: 2.1 GHz , 1.25V
P2: 1.7 GHz, 1.1625V
P3: 1.4 GHz, 1.125V
P4: 1.1 GHz, 1.1V

Nodes: 4096
Runtime Increase: 16.1%
Energy Decrease (Savings): 21.8%

Compute intensive application, still

observe significant energy savings.

lllustrates which applications can
expect most benefit.

Two application runs, same
physical nodes, statically altering
CPU frequency (P-state) allows
lowering input voltage to chip
resulting in larger energy savings.

LAMMPS
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Istent full-wave and Fokker-Planck calculations
r ion cyclotron heating in non-Maxwellian plasmas

Here Maxwell’s eqgns reduces to Helmholtz wave eqn

2

w
~-VxVxE+—

c WE,

i .
E + —Jp) = +oud .

where

J (r,1) = fdt zfdr o(f ).’ tt) E(r' ')

is a non-local integral operator on the wave electric field.

Which to me comes down to

Ax =b,
fOl" Anxn, anl, bnxl in C.
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AORSA simulation; movie by Sean Ahern@QORNL
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“Simulation of High Power Electromagnetic Wave Heating in the ITER Burning
Plasma”, E. F. Jaeger, L. A. Berry, E. F. D'Azevedo, R. F. Barrett, S. D. Ahern,
D. W. Swain, D. B. Batchelor, R. W. Harvey, J. R. Myra, D. A. D'lppolito, C. K.
Phillips, E. Valeo, D. N. Smithe, P. T. Bonoli, J. C. Wright, and M. Choi, Physics
of Plasmas, (15)7, 2008

“Global-wave Solutions with Self-Consistent Velocity Distributions in lon
Cyclotron Heated Plasmas”, E.F. Jaeger, R.W. Harvey, L.A. Berry, J.R. Myra,
R.J. Dumont, C.K. Phillips, D.N. Smithe, R.F. Barrett, D.B. Batchelor, P.T.
Bonoli, M.D. Carter, E.F. D'Azevedo, D.A. D'ippolito, R.D. Moore and J.C.
Wright, Journal of Nuclear Fusion, Volume 46, Number 7, July, 2006.

Self-Consistent Full-Wave and Fokker-Planck Calculations for lon Cyclotron
Heating in Non-Maxwellian Plasmas, E.F. Jaeger, L.A. Berry, S.D. Ahern, R.F.
Barrett, D.B. Batchelor, M.D. Carter, E.F. D'Azevedo, R.D. Moore, R.W. Harvey,
J.R. Myra, D.A. D'lppolito, R.J. Dumont, C.K. Phillips, H. Okuda, D.N. Smithe,
P.T. Bonoli, J.C. Wright, and M.Choi, Physics of Plasmas, 13, May 2006.
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Complex version of High Performance Computing LINPACK Benchmark (HPL), R. Barrett,
T. Chan, E.F. D'Azevedo, E.F. Jaeger, K. Wong, and R. Wong. Concurrency and
Computation: Practice and Experience, (22)5, April, 2010 .

Performance Analysis and Projections for Petascale Applications on Cray XT Series
Systems, S. R. Alam, R.F. Barrett, J. A. Kuehn, and S. W. Poole, Workshop on Large-Scale
Parallel Processing,|IEEE International Parallel & Distributed Processing Symposium
(IPDPS), Rome, ltaly, 2009.

Exploring HPCS Languages in Scientific Computing, R.F. Barrett, S.R. Alam, V. de Almeida,
D.E. Bernholdt, W.R. Elwasif, J.A. Kuehn, S.W. Poole, and A.G. Shet, Scientific Discovery
Through Advanced Computing (SciDAC 2008), Journal of Physics: Conference Series 125
012034, 2008.

An Evaluation of the ORNL Cray XT3, S.R. Alam, R.F. Barrett, M. R. Fahey, J. A. Kuehn,
E.O.B. Messer, R. T. Mills, P.C. Roth, J. S. Vetter, and P. H. Worley; International Journal of
High Performance Computing Applications. (22)1, February 2008.

Performance Characterization of a Hierarchical MPI Implementation on Large-scale
Distributed-memory Platforms, S.R. Alam, R.F. Barrett, J.A. Kuehn, and S.W. Poole, The
38th International Conference on Parallel Processing (ICPP-2009), Vienna, 2009.

Early Evaluation of IBM Blue Gene/P, S. Alam, R. Barrett, M. Bast, M. Fahey, J. Kuehn, C.
McCurdy, J. Rogers, P. Roth, R. Sankaran, J.S. Vetter, P. Worley, W. Yu, Proceedings of
the ACM/IEEE Conference on High Performance Networking and Computing (SC08),
Austin, TX, 2008.
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Co-Design

Application

Methods
Algorithms
Basic Computations

Programming Model

Programming Mechanisms
Libraries
Compiler

Runtime System

Operating System

System Architecture
Node: Processors, Memory
Inter-node: Interconnect

Enabling Technologies

Fundamental Technology
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Co-Design

s

Combustion Science Applications
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# DOE Exascale Co-design Centers

Exascale Co-Design Consortium (ECDC):

« Exascale Co-Design Center for Materials in
Extreme Environments

« Co-design for Exascale Research in Fusion
(CERF).

* Chemistry Exascale Co-design Center (CECC)
* High Energy Density Physics

* Center for Exascale Simulation of Advanced
Reactors
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p Co-Design

Performance:

« HPC: Best case

 Embedded systems: Worst case
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