

3rd EPRI Long Term Storage Meeting

**Discussion of Technology Gaps Associated with Long Term
Storage:**

A Roll-up of Issues from the London Meeting

**Ken Sorenson
Sandia National Laboratories**

Charlotte, North Carolina USA

December 7 -8, 2010

Table 1. Provisional Technical Gaps Based on Storage System Component

	Fuel	Internals/ Canister	Overpack/ISFSI	Transportation
Germany	<ul style="list-style-type: none"> • See "Transportation" cell 	<ul style="list-style-type: none"> • Corrosion of containment boundary components • Polymer neutron poison degradation 	<ul style="list-style-type: none"> • Degradation of metal and elastomer seals 	<ul style="list-style-type: none"> • Retrievability and subsequent transport of fuel after VLTS
Hungary	<ul style="list-style-type: none"> • Corrosion • Creep 		<ul style="list-style-type: none"> • Concrete structure degradation 	<ul style="list-style-type: none"> • Retrievability to transfer into transport cask
Japan	<ul style="list-style-type: none"> • Degradation effects from creep, hydride reorientation, & recovery of hardening for fuels up to 55 GWD/MTU have been studied. • Degradation performance of MOX fuel - gap 	<ul style="list-style-type: none"> • SSC studies complete under extreme environments. • Degradation data for normal SS under a realistic salty air environment with/without reduced residual stress - gap 	<ul style="list-style-type: none"> • Time to corrode for rebar in concrete – gap • Degradation on loss of water content in shielding overpack - gap 	<ul style="list-style-type: none"> • Evaluation method on containment performance of aged metal gasket. • High burnup fuel response to impact accidents.
U.S.	<ul style="list-style-type: none"> • Hydride re-orientation • Hydride embrittlement • Low-temp embrittlement • Corrosion • Creep 	<ul style="list-style-type: none"> • SCC on canister welds • de-watering effectiveness • neutron poison degradation 	<ul style="list-style-type: none"> • Concrete degradation (marine environments) • Closure lids, seals, bolts 	<ul style="list-style-type: none"> • Fuel retrievability • Clad integrity of high burnup fuel after storage • Kinetic energy transfer to fuel from normal condition loadings

Fuel Data Gaps

	Fuel
Germany	<ul style="list-style-type: none">• See "Transportation" cell
Hungary	<ul style="list-style-type: none">• Corrosion• Creep
Japan	<ul style="list-style-type: none">• Degradation effects from creep, hydride reorientation, & recovery of hardening for fuels up to 55 GWD/MTU have been studied.• Degradation performance of MOX fuel - gap
U.S.	<ul style="list-style-type: none">• Hydride re-orientation• Hydride embrittlement• Low-temp embrittlement• Corrosion• Creep

Identified data gaps:

- Hydride re-orientation
- Hydride embrittlement
- Low-temperature embrittlement
- Corrosion
- Creep – handled through modeling and analysis?

Internals/Canister Data Gaps

	Internals/ Canister
Germany	<ul style="list-style-type: none">• Corrosion of containment boundary components• Polymer neutron poison degradation
Hungary	
Japan	<ul style="list-style-type: none">• SSC studies complete under extreme environments.• Degradation data for normal SS under a realistic salty air environment with/without reduced residual stress - gap
U.S.	<ul style="list-style-type: none">• SCC on canister welds• de-watering effectiveness• neutron poison degradation

Identified data gaps:

- SSC under realistic conditions
- De-watering effectiveness
- Neutron poison degradation: polymer and metal
- Corrosion of containment boundary components

Overpack/ISFSI

	Overpack/ISFSI
Germany	<ul style="list-style-type: none">• Degradation of metal and elastomer seals
Hungary	<ul style="list-style-type: none">• Concrete structure degradation
Japan	<ul style="list-style-type: none">• Time to corrode for rebar in concrete – gap• Degradation on loss of water content in shielding overpack - gap
U.S.	<ul style="list-style-type: none">• Concrete degradation (marine environments)• Closure lids, seals, bolts

Identified data gaps:

- Degradation of metal and elastomer seals and bolts
- Concrete degradation
- Rebar degradation
- Degradation of loss of shielding from loss of water in concrete overpack

Transportation

	Transportation
Germany	<ul style="list-style-type: none">• Retrievability and subsequent transport of fuel after VLTS
Hungary	<ul style="list-style-type: none">• Retrievability to transfer into transport cask
Japan	<ul style="list-style-type: none">• Evaluation method on containment performance of aged metal gasket.• High burnup fuel response to impact accidents.
U.S.	<ul style="list-style-type: none">• Fuel retrievability• Clad integrity of high burnup fuel after storage• Kinetic energy transfer to fuel from normal condition loadings

Identified data gaps:

- Retrievability of fuel after VLTS
- High burnup fuel clad integrity after VLTS
- Transportability of fuel after VLTS
 - Fuel integrity after VLTS
 - Fuel performance subjected to normal and accident conditions of transport
- Holistic approach to examine fuel integrity and safety in post-storage transportation mode

Table 2. Potential Methodology Options for Obtaining Data

	Destructive Examination	Non-destructive Examination/ Analysis	Accelerated Aging Applications	Aging Management Plan
Fuel	<u>PIE</u> <ul style="list-style-type: none"> • Metallography • Hydride and thermal embrittlement • Corrosion 	<u>Physical Measurements</u> <ul style="list-style-type: none"> • Creep 	<u>High burnup fuel</u> <ul style="list-style-type: none"> • Hydride reorientation • Hydride embrittlement • Thermal embrittlement • Corrosion • Creep • Fuel modeling & analysis 	<ul style="list-style-type: none"> • Limit excursion temperatures/time during dry loading
Internals/ Canister	<ul style="list-style-type: none"> • Marine environment SSC on canister • Neutron poison mat'l examination 	<ul style="list-style-type: none"> • Eddy current inspection on canister welds • Salt concentration measurement on canister surface 	<ul style="list-style-type: none"> • Stress corrosion cracking 	<ul style="list-style-type: none"> • Mitigative measures for SCC in marine environments
Overpack/ ISFSI		<ul style="list-style-type: none"> • Visual inspections 	<ul style="list-style-type: none"> • SCC/Corrosion of seals and bolts 	<ul style="list-style-type: none"> • Concrete inspection and repair • Closure lid/bolts/seals inspection and repair
Transportation	<ul style="list-style-type: none"> • Measure internal KE from a 1-meter drop test 	<ul style="list-style-type: none"> • Model and analyze fuel response to a 1-meter drop test (incorporate findings from corrosion, hydride degradation and KE inputs to analysis) 		

EPRI ESCP Committee Technical Gap Analyses

Final Report Outline

Executive Summary

- I. Introduction**
- II. Country storage/transportation regulations**
- III. Country storage/transportation technical gap analyses**
- IV. Commonalities in gap analyses**
- V. Differences in gap analyses**
- VI. Prioritization of technical needs**
- VII. Conclusions**
- VIII. Path Forward**

Tentative due date: June 8, 2011