
Opportunities for Leveraging OS
Virtualization in High-End Supercomputing

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National

Nuclear Security Administration under contract DE-AC04-94AL85000.!

Kevin Pedretti
Sandia National Labs

Albuquerque, NM
ktpedre@sandia.gov

Patrick Bridges
Univ. of New Mexico

Albuquerque, NM
bridges@cs.unm.edu

SAND2010-8525P

Outline

• Introduction
• Previous Work
• High-End HPC Virtualization Use Cases
• Results
• Conclusion

Apples and Oranges, But…
No Doubt Mainstream Virtualization

Seeing Explosive Growth

Sources: SC web sites, news articles, blog posts

Virtualization in HPC?

• “Every problem in computer science can be
solved with another level of abstraction” ;-)

• “No virtualization in HPC”
– Well, we (usually) have virtual memory
– Virtualization is potentially disruptive

• Clayton M. Christensen's keynote at SC’10
• Won’t/Can’t attack established HPC initially,

may sneak up over time

Vendors have been steadily decreasing
virtualization overhead and adding capabilities

Virtualization in High-End HPC?

• Compelling use cases not necessarily dependent
on achieving absolute highest performance
–  Increase flexibility, app-specific OS/runtime
– Enable new capabilities not present today
– Modest overheads tolerable

• Well known techniques such as VMM-bypass and
large paging mitigate overheads

Our results show virtualization overhead is low,
typically less than 5%

Outline

• Introduction
• Previous Work
• High-End HPC Virtualization Use Cases
• Results
• Conclusion

Previous Work:
Motivation and I/O Optimization

• Motivation for migrating HPC workloads to VMs
(ICS’06: Huang, Liu, Abali, Panda)
–  Ease of management (live migration, checkpoint)
– Ability to run custom tailored OS (LWK)
–  Exposing privileged ops to user (kernel modules)

• High-performance I/O
–  VMM-bypass (USENIX’06: Liu, Huang, Abali, Panda)
– Migrating VMM-bypass VMs (VEE’07: Huang, Liu, Koop, Abali, Panda)
–  PGAS applications in Xen VMs

(Cluster’07: Scarpazza, Mullaney, Villa, Petrini, Tipparaju, Brown, Nieplocha)

Previous Work:
Resiliency and Overhead Reduction

• Proactive VM migration to improve resiliency
(ICS’07: Nagarajan, Mueller, Engelmann, Scott)
(FGCS-Mar10: Scott, Vallee, Naughton, Tikotekar, Engelmann, Ong)
– Migrate away from nodes with observed deteriorating health
– Reactive checkpoint frequency can be reduced if MTTI

improved

• Nested paging to reduce VM exits
– AMD nested paging, Intel EPT
–  2-D nested page table caching scheme

(ASPLOS’08: Bhargava, Serebrin, Spadini, Manne)

– NPT structure does not have to match native
(CAL-Jan10: Hoang, Bae, Lange, Zhang, Dinda, Joseph)

Previous Work:
Cloud and VM Scalability

• Using public clouds for HPC
– Migrating workloads and performance measurements

(SC’08: Deelman, Singh, Livny, Berriman, Good)
(GC’09: Hill, Humphrey)

– Amazon’s EC2 HPC instances with 10GigE + GPUs

• Scalability of MPI apps in VM on Cray XT
(IPDPS’10: Lange, Pedretti, Hudson, Dinda, Cui, Xia, Bridges, Gocke, Jaconette,
Levenhagen, Brightwell)
– Micro-benchmarks and real applications
– Up to ~6K nodes, more on way

Outline

• Introduction
• Previous Work
• High-End HPC Virtualization Use Cases
• Results
• Conclusion

Enhancing Lightweight OS Flexibility

• Original motivation
•  LWK provides high perf.

native environment
• VMM allows full-featured

guest OS (e.g., Red Hat
Linux) to be loaded
on-demand
–  Perl, python, matlab, …
–  COTS databases, simulators, …
–  You name it

• Approach also applies to
lightweight Linux distributions like CLE (Cray Linux Env.)

Kitten LWK supports running native
applications alongside guest OSes.

Kitten available from: http://code.google.com/p/kitten/
Palacios available from: http://v3vee.org/

Tool for Exascale OS Research

• Obtaining dedicated time on supercomputer to
test prototype OS is HARD

• VM capability would partially mitigate
– Test prototype “X-stack” at scale, expose effects

that only occur at scale
– Rapid turnaround for debug iterations
– VM is convenient instrumentation layer

• Support HW/SW co-design efforts
– Prototype new HW/SW interfaces and capabilities
– Tie to architectural simulator

Enable New Capabilities

• Internet-scale simulation
– Run commodity OSes and software
– Multiple virtual nodes per physical node

• Migration based on VMM-level runtime monitoring
– Better map application onto network topology
– Migrate memory pages among NUMA nodes
– Make up for all VMM overhead and more (?)

• Provide backwards compatibility
–  Support legacy software on future exascale systems
–  Provide incremental path to native environment

Outline

• Introduction
• Previous Work
• High-End HPC Virtualization Use Cases
• Results
• Conclusion

Test Platform

Processor Intel X5570 2.93 GHz quad-core
2 sockets, 8 cores total
2 NUMA nodes
Theoretical Peak: 94 GFLOPS

Memory 24 GB DDR3-1333
Three 4 GB DIMMs per socket
Theoretical Peak: 64 GB/s

BIOS Configuration Hyper-Threading Disabled
Turbo-Boost Disabled
Maximum Performance

Software Linux 2.6.36.7 with KVM
Guest image identical to host
kvm-clock para-virtualized clock, plus ntp daemon
NUMA topology exposed to guest
libhugetlbfs for large paging

Benchmarks

• Compute overhead
– Linpack (HPCC HPL)

• Memory overhead
– OpenMP STREAM
– GUPs (HPCC MPIRandomAccess)

• MPI
– PingPong (IMB PingPong)

Intra-node only, via shared mem (MPICH2 Nemesis)

HPL Linpack
No Compute Virtualization Overhead

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

1 2 4 8

G
flo

p
s

Cores

Native 2M
Native 4K

Guest 2M/2M
Guest 4K/2M
Guest 2M/4K
Guest 4K/4K

OpenMP STREAM
Little Memory BW Virtualization Overhead

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

1 2 4 8

G
B

/s

Cores

Native 2M
Native 4K

Guest 2M/2M
Guest 4K/4K

MPI Random Access
2.5% to 40% Overhead Depending on Config

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

1 2 4 8

G
U

P
s

Cores

Native 2M
Native 4K

Guest 2M/2M
Guest 4K/2M
Guest 2M/4K
Guest 4K/4K

MPI PingPong
Latency in Guest More Variable
Bandwidth Essentially Identical

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1 4 16 64 256 1024

L
a

te
n

cy
 (

m
ic

ro
se

co
n

d
s)

Message Size (bytes)

Native 2M
Native 4K

Guest 2M/2M
Guest 4K/4K

 0

 1000

 2000

 3000

 4000

 5000

 6000

32 1024 32768 1048576

B
a

n
d

w
id

th
 (

M
b

yt
e

s/
s)

Message Size (bytes)

Native 2M
Native 4K

Guest 2M/2M
Guest 4K/4K

Latency Bandwidth

Variability possibly due to
timekeeping error in guest

VMM-Bypass MPI Latency on Cray XT4
Avoiding Interrupt Virtualization Important

 0

 5

 10

 15

 20

 25

 30

 1 4 16 64 256 1024

L
a
te

n
cy

 (
m

ic
ro

se
co

n
d
s)

Message Size (bytes)

Native
Guest

Native, Accel Portals
Guest, Accel Portals

Interrupt Virtualization
Overhead

Application Results from
Red Storm Virtualization Experiments

CTH Hydrocode (SNL App) Sage Hydrocode (LANL App)

Measured < 5% virtualization
overhead for both applications

Conclusions

• Virtualization support continuously improving
• Significant previous HPC virtualization work
• Compelling use cases for high-end HPC

–  Increase flexibility
– Enable new capabilities

• Results on modern Intel platform show low
virtualization overhead
– NUMA and VCPU pinning important in all cases
– Large paging important for random access

Acknowledgements

• Funding
– Sandia LDRD (past)
– DOE ASCR X-stack (current)
– DOE ASC (current)

• Collaborators
– Peter Dinda, Northwestern Univ.
– Jack Lange, Univ. of Pittsburgh
– Geoffroy Vallee, ORNL

