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Outline:	
  	
  
review	
  of	
  basic	
  principles	
  of	
  hydrogen	
  transport	
  

•  Thermodynamics of high-pressure hydrogen 
–  Equation of state for hydrogen 
–  Fugacity in gas mixtures containing hydrogen 

•  Equilibrium hydrogen content in metals (thermodynamics) 
–  Sievert’s Law 
–  Stress 
–  Hydrogen trapping 

•  Hydrogen transport in metals, diffusivity (kinetics) 
–  Stress 
–  Hydrogen trapping 

•  Hydrogen transport as a tool to understanding hydrogen-
assisted fracture and fatigue 
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Hydrogen	
  in	
  metals	
  

(1)  Hydrogen	
  gas	
  
(2)  Physisorp4on	
  
(3)  Dissocia4on	
  
(4)  Dissolu4on	
  
(5)  Diffusion	
  

Chemical Equilibrium: 
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Solubility 
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Hydrogen-­‐assisted	
  fracture	
  mechanisms	
  
in	
  metals	
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Hydrogen attack:  
chemical reaction of atomic hydrogen with microstructural features 

Hydrogen solute effects:  
solute hydrogen enhanced failure of interfaces and deformation mechanisms 

Hydrogen 
accumulation at 
interfaces affects 
strength of interface 
(grain boundaries, 
second phases, 
inclusions) 
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etc. 

crack 
nucleation 
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Non-­‐ideal	
  behavior	
  of	
  high-­‐pressure	
  hydrogen	
  
described	
  by	
  Abel-­‐Noble	
  EOS:	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

•  Compressibility	
  factor	
  	
  Z	
  =	
  PVm/RT	
  
–  for	
  ideal	
  gas 	
  	
   	
  Z	
  =	
  1	
   	
  Ideal	
  gas	
  EOS	
  
–  at	
  high	
  pressure 	
  Z	
  >	
  1	
   	
  Abel-­‐Noble	
  EOS	
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Fitting data of  
Michels et al (1955) 
for  
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Fugacity	
  of	
  gaseous	
  hydrogen	
  
Thermodynamic	
  quanBty	
  describing	
  real	
  gas	
  behavior	
  

•  Chemical	
  poten4al	
  of	
  gas:	
  

•  Defini4on	
  of	
  fugacity:	
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Fugacity	
  of	
  hydrogen	
  
in	
  ideal	
  mixtures	
  of	
  gas	
  

Helium-Hydrogen gas mixtures: 
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P =100MPa = pHH + pHe
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RT

b
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Lewis-Randall 
rule for ideal 
mixtures 
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Fugacity	
  of	
  hydrogen	
  
in	
  ideal	
  mixtures	
  of	
  gas	
  

Helium-Hydrogen gas mixtures: 

€ 

P =15MPa = pHH + pHe

pure gas 

gas mixture 
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ConcentraBon	
  of	
  hydrogen	
  in	
  metals	
  

€ 

co = Ko exp −ΔH RT( )[ ] f HH1/ 2

€ 

1
2H2↔H

€ 

1
2µHH = µH

γ-SS 

Ko = 0.00192 H/M 

∆H = 5.9 kJ/mol!
!

Iron!
Ko = 0.00171 H/M 

∆H = 27.2 kJ/mol 

Sievert’s Law 
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Stress	
  affects	
  hydrogen	
  content	
  in	
  metals	
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VH = 2 cm3/mol 

• Tensile stress increases hydrogen content 
• Compressive stress decreases hydrogen content 
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Trapping	
  is	
  characterized	
  by	
  trap	
  energy	
  and	
  
laGce	
  hydrogen	
  concentraBon	
  

€ 

θT
1−θT( )

= θL exp
WB

RT
$ 

% 
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( 
) Equilibrium between lattice hydrogen and traps 

€ 

θT =
cT
nT

€ 

θL =
cL
nL

nT = number of 
trap sites 
nL = 1 = number 
of lattice sites 
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Trapped	
  hydrogen	
  can	
  be	
  much	
  larger	
  
than	
  laGce	
  hydrogen	
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Hydrogen	
  trapping	
  is	
  most	
  significant	
  at	
  
high	
  energy	
  and	
  low	
  laGce	
  concentraBon	
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Stress	
  has	
  minimal	
  effect	
  on	
  	
  
hydrogen	
  diffusivity	
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E = 200 GPa 
v = 0.33 
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Diffusivity	
  is	
  decreased	
  by	
  trapping	
  

€ 

Deff

D
=

cL
cL + cT 1−θT( )

The effective diffusivity (Deff) is a function of lattice 
hydrogen as well as trapped hydrogen: 
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Diffusivity	
  measured	
  near	
  ambient	
  
temperature	
  is	
  difficult	
  to	
  interpret	
  

From: Diffusion in Solids, Nowick and Burton, eds., 1975 

Hydrogen concentration Thickness

trapping 

nT >> cL 

co 

if WB is large 
cT >>cL 
Deff << D 

Consider concentration 
gradient across membrane or 
wall at room temperature 
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At	
  low	
  hydrogen	
  concentraBons,	
  traps	
  
are	
  hydrogen	
  sinks	
  cT	
  >>	
  cL	
  

Hydrogen concentration Thickness

When cL is very small 

€ 

Deff

D
~ 1
cT cL
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Transport	
  rules	
  
coupled	
  with	
  
mechanics	
  

Hydrogen	
  transport	
  laws	
  can	
  be	
  coupled	
  
with	
  stress	
  analysis	
  to	
  inform	
  physics	
  	
  

Hydrogen concentration Thickness

Coupling methodology (2) 

!  Assumed trap sites are isolated from each and transport between trap sites is by lattice diffusion 

!  Assumed only one type of trap: �strong� traps, such as a dislocation core 

!  Assumed local equilibrium between lattice sites and in trap sites 

Sofronis/McMeeking (1989)* and Krom (1998) 

*P. Sofronis and R.M. McMeeking, J. Mech. 
Phys. Solids 37 (1989) 317. 

where 

If we assume equilibrium between sites  

where 

2 

3 

εp	

 εp	



(CT+CL)/C0 1.3 s 0.92 s 0.52 s 

1.3 s 0.92 s 0.52 s 
mechanical 

diffusion 

The	
  number	
  of	
  disloca4on	
  trap	
  sites	
  scales	
  
with	
  the	
  equivalent	
  plas4c	
  strain	
   Equivalent 

plastic strain 

Total hydrogen 
content 

Hydrogen	
  trapping	
  evolves	
  with	
  plas4c	
  zone	
  	
  

PI: J. Foulk 
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MulBscale/mulBphysics	
  models	
  provide	
  insight	
  
to	
  mechanisms	
  at	
  the	
  microstructural	
  scale	
  

Transport is a key component of interpreting fracture and fatigue 
measurements in hydrogen 
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Summary	
  
• 	
  Hydrogen	
  fugacity	
  

–  Abel-­‐Noble	
  EOS	
  works	
  well	
  for	
  gaseous	
  hydrogen	
  
–  Gas	
  mixtures	
  increase	
  fugacity	
  

• 	
  Stress	
  
–  Tensile	
  stress	
  increases	
  hydrogen	
  dissolved	
  in	
  metals	
  

(compressive	
  stress	
  decreases	
  hydrogen	
  content)	
  
–  Stress	
  has	
  minimal	
  effect	
  on	
  hydrogen	
  diffusivity	
  

• 	
  Hydrogen	
  trapping	
  
–  Low	
  trap	
  energy	
  (γ-­‐SS):	
  essen4ally	
  no	
  effect	
  on	
  hydrogen	
  and	
  

hydrogen	
  transport	
  
–  High	
  trap	
  energy	
  (iron	
  and	
  steels):	
  	
  

•  Substan4al	
  increases	
  in	
  dissolved	
  hydrogen	
  content	
  	
  
•  Large	
  decreases	
  in	
  apparent	
  hydrogen	
  diffusivity	
  

•  Coupled	
  hydrogen	
  transport	
  and	
  mechanics	
  models	
  are	
  
necessary	
  to	
  enhance	
  physical	
  understanding	
  of	
  hydrogen-­‐
assisted	
  fracture	
  and	
  fa4gue	
  


