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reacH: Outline:
review of basic principles of hydrogen transport

 Thermodynamics of high-pressure hydrogen
- Equation of state for hydrogen
- Fugacity in gas mixtures containing hydrogen

e Equilibrium hydrogen content in metals (thermodynamics)
- Sievert’s Law
- Stress
- Hydrogen trapping

e Hydrogen transport in metals, diffusivity (kinetics)
- Stress
- Hydrogen trapping

* Hydrogen transport as a tool to understanding hydrogen-
assisted fracture and fatigue
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Hydrogen in metals

(1) Hydrogen gas Solubility K=\7"?

(2) Physisorption p
i C

(3) Dissociation Diffusivity J==-D—

(4) Dissolution dx

5) Diffusi

\2) DI ”“"”s Permeability ¢ = DK

Chemical Equilibrium: %H, <= H
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Hyvdrogen attack:

in metals

Hydrogen-assisted fracture mechanisms

chemical reaction of atomic hydrogen with microstructural features
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ez Non-ideal behavior of high-pressure hydrogen
described by Abel-Noble EOS: V =RT/P+b
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e Compressibility factor Z= PV, /RT
| o V °=RT/P

— for ideal gas Z=1 Ideal gas EOS m
— at high pressure Z>1 Abel-Noble EOS Vm = Vmo +b
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‘reacH: Fugacity of gaseous hydrogen

Thermodynamic quantity describing real gas behavior

e Chemical potential of gas: w=u, +RTIn %)
o , Y (V. 1

e Definition of fugacity: 1H(P)—{(RT P)dP
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‘reacH:’ Fugacity of hydrogen
in ideal mixtures of gas

Helium-Hydrogen gas mixtures: P =100MPa=p_ . + p,,.
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‘reacH: Fugacity of hydrogen
in ideal mixtures of gas

Helium-Hydrogen gas mixtures: P =15MPa=p,. + p,,
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iz Concentration of hydrogen in metals

L

Hydrogen concentration, ¢ (H/M)
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el Stress affects hydrogen content in metals

 Tensile stress increases hydrogen content
o Compressive stress decreases hydrogen content

3 [ 1 1 ] 1 I ] 1 1 ] I 1 ] 1 1 I 1 1 ] 1
o7 F
N C GV
M L = exp( 2 )
c 2L -
-9 - CO —
® )
‘E | i
m — —
O - -
- - a
O L .
(&) R i
o 1+ -
= | —0—T=223K |
E - —— 293K N
2 —%— 323K | 1
O : 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 :
1000 500 0 500 1000

Equivalent hydrostatic stress, o (MPa) V. =2 cmd/mol
=

r'l'l 10 Research, Engineering, and Applications Center for Hydrogen




ezl Trapping is characterized by trap energy and
lattice hydrogen concentration
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‘reacH:’ Trapped hydrogen can be much larger
than lattice hydrogen
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uzesk  Hydrogen trapping is most significant at
high energy and low lattice concentration
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‘reacH: Stress has minimal effect on
hydrogen diffusivity
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wees  Diffusivity is decreased by trapping

The effective diffusivity (D) is a function of lattice

hydrogen as well as trapped hydrogen: D, ¢,

D ¢, +c,(1-6,)
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Diffusivity measured near ambient
temperature is difficult to interpret

Consider concentration e B
gradient across membrane or ’
wall at room temperature
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‘reacH: At low hydrogen concentrations, traps
are hydrogen sinks ¢, >> ¢,
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‘reacH: Hydrogen transport laws can be coupled
with stress analysis to inform physics
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plastic strain
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(ezezl  Multiscale/multiphysics models provide insight
to mechanisms at the microstructural scale

Transport is a key component of interpreting fracture and fatigue
measurements iIn hydrogen
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reacH: Summary
e Hydrogen fugacity
— Abel-Noble EOS works well for gaseous hydrogen
— Gas mixtures increase fugacity

e Stress

— Tensile stress increases hydrogen dissolved in metals
(compressive stress decreases hydrogen content)

— Stress has minimal effect on hydrogen diffusivity
e Hydrogen trapping

— Low trap energy (y-SS): essentially no effect on hydrogen and
hydrogen transport

— High trap energy (iron and steels):
e Substantial increases in dissolved hydrogen content
* Large decreases in apparent hydrogen diffusivity
e Coupled hydrogen transport and mechanics models are

necessary to enhance physical understanding of hydrogen-
assisted fracture and fatigue
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