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il Motivation and background of fracture
resistance testing

e ASME recently published article KD-10 in Section VII Division 3
of the Boiler and Pressure Vessel Code (BPVC)
— Applies to high-pressure hydrogen storage vessels
— Also considered in ASME piping code for hydrogen: B31.12
— Includes fracture and fatigue testing in gaseous hydrogen

e Sandia test program developed to exercise and evaluate test
methods for hydrogen compatibility testing

— Primary interest is low-strength, low-alloy steels for pressure vessels
as well as carbon steels pipeline steels

— Assessment of methods for evaluating hydrogen-assisted fracture
illuminates important differences between constant-displacement and
rising-displacement testing methodologies
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wzerk  ASME low-alloy pressure vessel steels:
11 heats tested

e Commercially produced Cr-Mo and Ni-Cr-Mo steel
— 641-1050 MPa yield strength
e Lower strength C-Mn linepipe steels also tested (X70 and X80)
e Thickness: B <22 mm (7/8 inch)
e Width: W =57 mm (2.24 inch)

/4
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reacH: Procedures designed to minimize

testing unknowns

e Load applied to specimen in controlled atmosphere (i.e.,
glovebox)

- ~1ppm O,, ~5 ppm H,0
e Transferred to pressure vessel in glovebox
e Testing in 99.9999% hydrogen gas at pressure of 103 MPa
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ek Two thresholds identified from constant

displacement tests
* Two thresholds identified: T
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uzds  Difference between K, and K is not
related to testing anomalies

e Metallographic cross sections reveal no crack extension for
K,,<K (and when K, > K;;)

app

e FEM demonstrates K-dominance at crack arrest for all Oy
and all crack arrest positions (af)

* Elastic-plastic analysis suggest K, is representative of
initial crack driving force (even if K-dominance is not

maintained at K, )

e Varying specimen geometry (to alter crack arrest position)
indicates no correlation between K, remaining ligament
length (b))

* These observations suggest that there is an intrinsic source
for the difference between K, and K~
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reacH- Whyis K™ > K, ?

K (MPa m"?)

Important to recognize:
Fracture in low-strength steels tends to be

strain-controlled

even for gaseous hydrogen-assisted fracture
— K™ affected by sequence of H, exposure and accumulation of

crack tip strain
— Ky 0n the order of 80-100 MPa mY/2
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ek Hydrogen reduces critical continuum strain
for failure

Bl Sl
Test in air T A Test in H,
Strain incompatibility No inclusions
at inclusions initiates &} observed on

fracture

K, x6yEc,l'c

fracture surface

K, x6\Ec,l¢,

* Hydrogen alters deformation at crack tip (localized deformation)

e Microcrack formation results from strain incompatibilities associated with localized
deformation

* Crack extension preempts accumulation of strain to &

« &', <&, where &, is the critical continuum strain for hydrogen assisted cracking
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Without strain localization Influence of strain localization
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uwxei Hydrogen activated strain (&) develops
when exposed to hydrogen under load

Constant displacement

P strain field e Crack tip strain is
necessary during SCC
* Hydrogen induces strain

* &, must exceed a critical
sk
value (¢7,) for crack
extension to occur

K .
applied in Ar followed tll _——0 7 Crack tip

_ ES
Eg= ¢y

Large Kapp IS necessary to
achieve crack initiation

anp when load is applied in an
No crack propagation K,,=K,>K inert environment

Crack propagation
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wzzesk Considering strain-controlled fracture: does
K, represent the limiting fracture resistance?

200 I T T I T T
No crack 103 MPa H2
extension T—a o K* Constant displacement tests
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‘reacH:. What are the differences/similarities
between K, and K, ?

Differences:
— >
Ky > Ky
120 : : ! . .
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Similarities:
— Both thresholds increase with
decreasing strength

— Consistency of fracture surface
appearance suggests fracture
mechanism is the same
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‘reacH: Rising-displacement fracture
resistance measurements

e Measure J,- following ASTM E1820 and E1737
— Elastic-plastic fracture mechanics
e Tests were conducted in custom chamber at
103 MPa H, gas pressure
e Testing rates 0.3 to 3 MPa m¥/2/minute
e Accurate measurement of J and crack-length
— Load and displacement sensors internal to
pressure vessel
— Crack-length monitored with direct current
potential drop (DCPD)
— Crack-growth resistance (J-R) curves can be

generated L=
!
Ky =\/JICE : w & 4
K, is a threshold measurement from P s N
a rising displacement test O -
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reacH:

* R-curve behavior in gaseous
hydrogen

e Evidence of plasticity on fracture

surface
e Consensus in the literature

— e.g., Takeda and McMahon, Met Trans A 1981
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iy Critical strain criteria for K, and K,

* When fracture involves plasticity (e.g. " > ¢,,,,4) strain-controlled fracture
criterion may be invoked

— Ritchie and Thompson* described critical strain criterion for extension
of a stationary crack based on the HRR fields

|

£ o~
r

— resulting criterion for K ;,;, K, K etc

ey
K, =o~Nl |—
80

* K, occurs when a propagating crack arrests

— Critical strain criterion must consider the strain field of a propagation
crack

— Rice et al** showed the strain ahead of a propagating crack decays as:

g x In| —
7 * Ritchie Thompson Met Trans 1985
** Rice Drugan Sham ASTM STP700, 1980
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wxeil  Crack tip mechanics-based model supports
K., > K, for strain-controlled fracture

K (MPa m'?)

| Derived from Rice et al
K, = GO\/F strain ﬁel.d for
propagating crack

| Derived from HRR
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iy Three methods to measure fracture
resistance in gaseous hydrogen

Constant Displacement (E1681) Rising Displacement (E1820)
(1) K~ - measured at crack initiation (3) K, - measured at crack
(2) K,;, - measured at crack arrest initiation; using elastic-
m— plastic J-Integral
HE;EI;W load
H4 l
H,
HI;I7_H°_H:>_|:%
Kapp ________ }i*_. ?
M ’_\ KTH

Rising-displacement fracture
resistance is most conservative
due to limited strain history

Time in H,
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weslk Fracture resistance (K ) of pipeline steel is
typically >75 MPa m'/2 for P,,, < 20 MPa

Fracture toughness, K (MPa m'?)
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from: ASME PVP2010-25825
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rez Fracture resistance (K ;) in gaseous
hydrogen depends on hydrogen fugacity

on fugacity (K« f7?)

e APl 5L Grade B: data from literature

e Curves represent empirical fit assuming square root dependence
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(z9zky Fracture resistance (K,,) can be measured

after fatigue crack growth testing
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ree Summary

* Two fracture thresholds can be identified from constant-
displacement fracture tests
— K : stress intensity factor necessary to initiate fracture
- K,y @ stress intensity factor at which a propagating crack arrests
- Ky < K
- Both K5, and K" are non-conservative with respect to a stationary
crack subjected to a dynamic load

 Standard elastic-plastic fracture measurements in gaseous
hydrogen (K ;) provide a conservative measure of fracture
resistance

— Differences in fracture measures can be related to the mechanics at
the crack tip of stationary and propagating cracks respectively

* Fracture resistance of steels is greatly reduced by in situ
exposure to gaseous hydrogen
— Effects are significant, even for low-pressure exposure
- However, pipeline steels commonly remain ductile: K ;;; >75 MPa m'/2
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