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Problem

• Inverters are used in HEVs to 
absorb ripple current and 
prevent damage to battery

• Current DC bus capacitors 
prevent significant barriers for 
meeting DOE specifications for 
cost, weight, volume and 
reliability 
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• Contributes up to 23% of cost 
and weight of an inverter and 
30% of the inverter volume

• Thin film capacitors limited by 
a ceiling operational 
temperature of 105 °C



4

• Large Dielectric 
Breakdown Strength
– Thinner films can be used, 

decreasing amount of 
material required and overall 
capacitor size

• Low cost (major incentive 
for auto industry)

• Larger Energy Density
– Smaller capacitors

• High Operating Temperature
– Capacitors function without 

additional cooling device

• Low Dissipation Factor
– Capacitor can store charge 

longer

2015 DOE OVT Requirements
• 140°C Ceiling operating 

temperature

• 450 V Operation

• 0.6 L Target volume

Qualities of a Good 
Capacitor for HEV Applications



Current Options

• Biaxially oriented polypropylene (BOPP) is 
“dielectric of choice” for current automotive 
manufacturers

– Inexpensive at $10/lb

– Superior breakdown strength

• Problem with BOPP:

– Poor performance at temperatures >105 °C

– Low dielectric constant
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• High temperature allows 
inverters to handle larger 
ripple currents and reduces 
need of cooling system
– Reduction in cost and weight

• Polymer allows high 
temperature operation of 150 
°C while still delivering 
graceful failure

• Potential to develop 
inexpensive high temperature 
polymer capacitors with 
increased energy densities
– Price <$0.015/µF
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Why high temperature polymer?



Objectives

• Develop novel inexpensive high 
temperature polymer dielectric materials to 
be used in next generation DC bus 
capacitors for hybrid electric vehicles (HEVs)

• Engineer and improve energy density of 
polymer material using organic additives

• Produce polymer films with increased 
energy densities as well as improved 
mechanical properties
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Polymer Film Preparation

• Polymers dissolved in CHCl3 (S-POW and 
PhNDI copoly) or xylenes (TOPAS®)

• Solvent cast on drawdown

• Films metallized using sputtering

– 50 nm thick

Polymer solution
in 20 mL glass 

scintillation vial

Cut polymer film 
after drying

4.5 cm

7
cm



Polymer Film Preparation

• Polymers dissolved in CHCl3 (S-POW and 
PhNDI copoly) or xylenes (TOPAS®)

• Solvent cast on drawdown

• Films metallized using sputtering

– 50 nm
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Au Electrode

Au Backing 

Polymer Film 



Chronoamperometry
Measurements

• A Gamry Reference 600 
Potentiostat/Galvanostat/ZRA was utilized

• Glassy carbon electrode with a surface area of 
0.03 cm2 was polished and sonicated in EtOH
for 15 minutes prior to each measurement

• 5 µL of polymer solution dropped onto the 
electrode and allowed to air dry
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Chronoamperometry
Measurements

• Electrode placed in a 
0.1M KOH with 0.1M KCl
electrolyte solutions
– pH 9.5 and 11.5. 

• Potential was applied 
starting from -1.0 to1.0 
V (step of 0.1 V) vs. an 
Ag/AgCl reference 
electrode and a Pt wire 
counter electrode
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Characterization

• Thermal
– TA Instruments Q200 DSC and Q500 TGA

• DSC run from 20 °C to 250 °C under nitrogen and 
repeated for three cycles

• RCS 90 cooling unit 

• Mechanical
– TA Instruments Q800 DMA was used to measure 

the stress versus strain of the polymer films with a 
film/fiber tension clamp fixture

– Ramp force of 3 N/min to 18 N/min
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Electrical Evaluation

• Hewlett Packard 4284A 
Precision LCR meter was used 
to measure the dielectric 
permittivity at 10 kHz and 5 kV

• DC breakdown strength was 
found using a Trek 30/20A with 
an amplified voltage ramp at 
500 V/s

• Breakdown measurements 
taken with metallized films on a 
Cu plate submerged in 
Fluorinert® FC-40
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Development of S-POW

• An inexpensive high temperature 
dielectric was developed using 
ring opening metathesis 
polymerization (ROMP)

• Poly(PhONDI) homopolymer films 
brittle

• A copolymer of norbornene (NBE) 
and N-phenyl-7-oxanorbornene-
5,6-dicarboximide (PhONDI)
– Stoichiometry was varied and a 

75(n):25(m)
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% ONDI (n) % NBE (m)

0 100

25 75

50 50

75 25

Dirk, S.M., et al., High temperature polynorbornene copolymer dielectric materials. Abstracts of Papers of 
the American Chemical Society, 2009. 237.



Development of S-POW

• Polymer precipitating out when solution left 
over 48 hours
– Consistent with free-radical induced crosslinking

• Hydrogenating olefin in polymer used to 
increase lifetime/improve processability

• Hydrogenated 75:25 copoly = S-POW

17Denton, M.L.B., et al., High Temperature Polymer Dielectrics from the ROMP reaction. Journal of Applied 
Polymer Science, in prep.



Stacked Capacitor Prototype

• Several stacked capacitors fabricated

• Pressed & potted “in-house” from solvent cast films 
(~20 µm)
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Rolled Capacitor Prototype
• Layers of solvent cast 

films and discrete (6 μm)
Al foil
– Leads placed off each 

layer of Al

– Layers rolled and pressed 

• Packaged in parallel to 
form capacitor banks
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layered
rolled

C = 41 nF
pressed
C = 85 nF



Stacked vs. Rolled
• Significant reduction 

in volume when using 
rolled technique

• Thinner/more 
uniform films will 
improve energy 
density

– Extruded films reduce 
size defects
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~1 µF rolled pressed 
capacitor

~1 µF stacked pressed 
capacitor



Commercial Alternative

• An inexpensive polymer 
identified with similar 
characteristics to S-POW 

• Used in a variety of 
applications

– high temperature 
packaging, optical, 
electronics, and healthcare

• Similar price point to BOPP
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TOPAS® COC

TOPAS® BOPP

$8/lb $10/lb



Additive Studies

• Dielectric permittivity and breakdown testing 
performed on four organic additives in TOPAS®
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– 2-nitrodiphenylamine (NDPA)
– 4-NDPA
– 4-nitrophenol
– 2-nitroaniline

• Higher energy density 
allows less material

• Breakdown strength (V) 
important due to large 
effect on energy density



• Films cast on drawdown machine and 
metallized using 0.1%, 0.2%, 0.5%, 1%, 
5% (w/w) of additives

• Electrical characterization performed to 
determine which additive will have the 
greatest increase on breakdown 
strength 

• Weibull distribution used to analyze 
breakdown results
– Probability of failure:

• E0 is a scale parameter which 
represents the probability of failure at 
62.3%.

Additive Studies
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Breakdown Evaluation: 
Additives in TOPAS®
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Breakdown Evaluation: 
Additives in TOPAS®



2-NDPA in S-POW

• Increase in breakdown strength > 50 V/µm at 0.2% and 1.0% 
(w/w)

• Increase of 25 V/µm at 0.5% from the control S-POW film 
26

100 150 200 250 300 350 400 450 500 550 600 650

0.0

0.2

0.4

0.6

0.8

1.0

Electric Field (V/m)

P
ro

b
a

b
ili

ty
 o

f 
F

a
ilu

re

Control
0.1%
0.2%
0.5%
1%
5%



• Slight increase in k 
observed at 0.1% 
and 0.2%

• No negative effect 
on dissipation 
factor 
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2-NDPA Effect on 
Energy Density
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2-NDPA Concentration (w/w) Breakdown (V/µm) Energy Density (J/cm
3
)

0 345 1.62

0.1 365 1.36

0.2 405 2.53

0.5 370 1.76

1.0 415 2.37

5.0 290 1.18
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• Significant increase in 
energy density due to 
increase in breakdown 
strength of 1% and 0.2%



Effect of 2-NDPA: Tg

• Differential scanning 
calorimetry (DSC) 
used to determine 
effect of additive on 
glass transition 
temperature (Tg)

• No negative impact 
observed
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• Thermogravimetric
analysis (TGA) performed 
to determine 
decomposition 
temperature (Td) of 
polymer and 
polymer/additive films

• Confirmed additive had no 
effect
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Effect of 2-NDPA:
Mechanical Properties
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• Stress-strain curve was 
developed using 
dynamic mechanical 
analysis (DMA) for the 
S-POW additive films 

• Slight improvements in 
modulus observed with 
additive and no 
negative consequences 
were observed
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Electrochemical Study
• Chronoamperometry used to determine redox 

potential
– S-POW 
– Influence of the additive amount 
– Solutions of the same concentrations of 2-NDPA in 

9.7% (w/w) S-POW in chloroform analyzed
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2-NDPA Mass Fraction Polymer Mass Fraction

0% 9.7% S-POW

0.10% 9.7% S-POW

0.20% 9.7% S-POW

0.50% 9.7% S-POW

1.00% 9.7% S-POW

2.50% 9.7% S-POW

5.00% 9.7% S-POW

1.00% no S-POW

Goal: find a correlation 
between the shifts in the 
polymer redox potential 
with the changes in the 
breakdown strength



Redox Potentials
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2-NDPA Mass Fraction Redox potential (V) at pH 9.5 Redox potential (V) at pH 11.5

0% -0.025 -0.025

0.10% 0.1 0

0.20% 0.15 0

0.50% 0.175 0.05

1.00% 0.25 0.1

2.50% 0.4 0.25

5.00% 0.4 0.25

100% -0.1 and -0.35 -0.1 and -0.35

• Significant difference in the redox potentials 
of the additive and the polymer

• Oxidation/reduction of the additive and 
polymer obtained separately



Tafel Plot
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• Tafel plot used to determine 
redox potential

• Tafel plots applicable at high 
overpotentials:
– (> 0.05V) 

• Redox potentials of the 
polymer/additive mixtures 
determined for all 
concentrations at
– pH 9.5
– pH 11.5

*Tafel plot for 1.0% (w/w) 2-NDPA in S-POW at pH 9.5



Tafel Plot
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The shape of the Tafel plots of the 
polymer/additive composites suggests: 



Tafel Plot
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ii.    a small difference in the 
redox potentials of the 
polymer and the additive 
separately

i. only one redox potential 
can be seen on the plots

The shape of the Tafel plots of the 
polymer/additive composites suggests: 



Tafel Plot
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Hypothesis: iii. polymer chemically interacts 
with the additive, forming one “new” polymer

The shape of the Tafel plots of the 
polymer/additive composites suggests: 



Proposed Mechanism

• Phenyl ring in polymer replaced by the additive, 
creating a covalent bond at the meta-position in 
the additive benzene ring
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Redox pH Dependence

• Redox potentials plotted against amount of additive 
introduced

• Difference in the recorded redox potential at the two pHs
indicates protons involved in the electrochemical reaction
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ΔE = EpH 9.5 – EpH 11.5

• ΔE approximately 120 
mV for most 
polymer/additive 
composites 

• 2 protons/2 electrons



Redox pH Dependence

• Redox potentials plotted against amount of additive 
introduced

• Difference in the recorded redox potential at the two pHs
indicates protons involved in the electrochemical reaction
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• Linear increase of redox 
potential with increase in 
additive amount
– Saturation point 

observed

• Increased potential led to 
enhanced oxidative 
stability
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Extruded S-POW
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• Solvent casting of films cost-
prohibitive on large scale

• More defects compared to 
extruded films

• Extrusion 
demonstrated in-
house at Sandia 
extruder purchased 
from Dr. Collin® Co.

• Initial films brittle 
and striations 
observed



Solvent vs. Extruded: TGA

• Physical defects/color 
change initially 
observed when 
compared to solvent 
cast S-POW

• Td not affected by 
extrusion
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• Several plasticizers 
screened for use in 
extrusion

(performed by Kirsten Cicotte)

• Ultimately 650 
terathanes and trioctyl
trimellitate chosen for 
studies
– 12% (w/w) of both 

plasticizers 
demonstrated severely 
diminished breakdown

– 10% TT did not show 
negative impact

Plasticizer Breakdown Evaluation



• 3 ft capacitor of extruded 
10% (w/w) trioctyl
trimellitate in S-POW

• Capacitance of 9.5nF/DF 
of 0.004 

• Thermal sprayed 
(Babbitt)

• SnCu leads and potted in 
high Tg epoxy

46

Extruded Film Capacitor Fabrication



Synthesis of PhNDI

• Yoon et al. demonstrated a 
greater thermal stability and 
Tg of carbon analog (PhNDI) to 
poly(PhONDI) 
– oxygen bridge causing 

degredation

• Synthesis of poly(PhNDI) and 
PhNDI:NBE copolymers 
explored for high temperature 
dielectric
– 75:25 poly(PhNDI) poly(NBE) 

copolymer
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Synthesis of PhNDI

• Homopolymer of poly(PhNDI) was prepared in 
addition to three PhNDI:NBE copolymers

• Thermal/mechanical characterization performed
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poly(PhNDI) poly(NBE)



Thermal Characterization

• DSC performed on PhNDI 
homopolymer and 
PhNDI:NBE copolymers

• Homopolymer provided the 
highest Tg (as expected)
– Films brittle

• 30 and 50 NDI 
demonstrated an 
unfavorable Tg

– ~90 °C and ~125 °C 

• 90 NDI matches S-POW Tg
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Mechanical Characterization

• DMA used to create 
stress-strain curve of 
PhNDI:NBE copolymers 
vs. S-POW

• 90 NDI displayed 
impressive tenfold 
increase in elongation

• Improve processability of 
dielectric polymer and 
permit melt extrusion
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Conclusions

• Additive (2-NDPA) produced a significant increase in 
breakdown voltage and ED in S-POW at concentrations 
of 0.2%, 0.5% and1.0% (w/w)

• Electrochemical evaluation determined correlation 
between increase in breakdown strength and redox 
potential (oxidative stability) up to ~1.0% (w/w) 
additive

• Overwhelming mechanical characteristics of the 90 NDI 
copolymer should eliminate use of plasticizers and 
facilitate transition to industry
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Future Work

• Working with Electronic Concepts, Inc. (ECI) to develop 
a solvent casting technique 

• Extrusion technique developed at the Natick Soldier 
Center will allow more than 100 m of thin polymer 
films to be produced 
– used to fabricate next generation prototype capacitors

• Inexpensive nanoparticle fillers used to further 
increase dielectric breakdown strength and improve 
the relative permittivity of the high temperature 
polymer dielectrics 
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