

LAWRENCE
LIVERMORE
NATIONAL
LABORATORY

LLNL-JRNL-811967

An interlaboratory collaboration to determine consensus $^{231}\text{Pa}/^{235}\text{U}$ model ages of a uranium certified reference material for nuclear forensics

T. M. Kayzar-Boggs, K. C. Treinen, A. Okubo, J. S. Denton, A. M. Gaffney, M. M. Miller, R. E. Steiner, R. W. Williams

June 24, 2020

Journal of Radioanalytical and Nuclear Chemistry

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

1 **An Interlaboratory Collaboration to Determine Consensus**
2 **$^{231}\text{Pa}/^{235}\text{U}$ Model Ages of a Uranium Certified Reference**
3 **Material for Nuclear Forensics**

4 Theresa M. Kayzar-Boggs¹, Kerri C. Treinen², Ayako Okubo³, Joanna S. Denton¹ Amy M.
5 Gaffney², Martha M. Miller^{2,4}, Robert E. Steiner¹, Allison M. Wende¹, Ross W. Williams²

6 *¹Nuclear and Radiochemistry Group, Chemistry Division, Los Alamos National Laboratory,
7 87545 Los Alamos, USA*

8 *²Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, 7000 East
9 Avenue, Livermore, CA 94551, USA*

10
11 *³Integrated Support Center for Nuclear Nonproliferation and Nuclear Security, Japan Atomic
12 Energy Agency, 2-4 Shirakata, Tokai, Ibaraki, 3191195 Japan*

13
14 *⁴ University of Rochester, 500 Joseph C. Wilson Blvd., 14627 Rochester, USA*

16 **Abstract**

17 Application of the $^{231}\text{Pa}/^{235}\text{U}$ radiochronometer for nuclear forensic investigations is challenged
18 by a lack of certified reference materials with $^{231}\text{Pa}/^{235}\text{U}$ model purification dates. The Japan
19 Atomic Energy Agency, Los Alamos National Laboratory, and Lawrence Livermore National
20 Laboratory completed an interlaboratory study measuring $^{231}\text{Pa}/^{235}\text{U}$ model ages of New
21 Brunswick Laboratory CRM U100. Results from independent laboratories were combined to
22 calculate a consensus $^{231}\text{Pa}/^{235}\text{U}$ model purification date for CRM U100 of March 26, 1959 \pm 237
23 days. This $^{231}\text{Pa}/^{235}\text{U}$ consensus date for CRM U100 may be used by the nuclear forensic
24 community for quality control of $^{231}\text{Pa}/^{235}\text{U}$ radiochronometry measurements of unknown
25 materials.

26 **Keywords**

27 radiochronometry, uranium, protactinium, radiochemistry, mass spectrometry

28 **Introduction**

29 Radiochronometry, or the science of age dating a nuclear material using the radioactive decay of
30 parent isotopes to daughter isotopes in a closed system, can provide predictive signatures that may
31 be used during a law enforcement investigation of nuclear or other radioactive material found out
32 of regulatory control [1]. During the application of radiochronometry, a model age for a radioactive
33 material is calculated which represents the time that has passed since the material was last purified
34 of any decay products. This age may also be used to calculate a “model purification date” or
35 “model production date” by assuming that the timing of purification corresponds to the time of
36 production of the material. In the case of uranium (U) materials, the most commonly used
37 radiochronometer for age dating is the $^{230}\text{Th}/^{234}\text{U}$ chronometer where the parent isotope, ^{234}U ,
38 decays to produce ^{230}Th over time [2-9]. However, in recent years, the nuclear forensics
39 community has demonstrated interest in using more than one chronometer during the
40 characterization of the age or the time of production of uranium materials [10-14]. The use of
41 multiple chronometers may provide more confidence in measured model ages of nuclear material
42 and/or may also provide more information about the production history of an unknown material.

43 A second chronometer that has been used for uranium radiochronometry is the $^{231}\text{Pa}/^{235}\text{U}$
44 (daughter/parent) chronometer [10-15]. Several primary challenges associated with $^{231}\text{Pa}/^{235}\text{U}$
45 radiochronometry arise from a lack of certified reference materials available for commercial
46 purchase to use for method validation and quality control as well as to support isotope dilution
47 mass spectrometry measurements of ^{231}Pa . For example, there is no commercially available ^{233}Pa
48 single isotope spike for isotope dilution measurements of ^{231}Pa due to the short half-life of ^{233}Pa
49 (~ 26.97 days [16-17]). There are also no protactinium (Pa) reference materials certified for isotope
50 composition that can be used during mass spectrometry analysis to correct for analytical artefacts
51 such as instrumental mass bias. Finally, there are no certified reference materials that are certified
52 for $^{231}\text{Pa}/^{235}\text{U}$ model ages or model purification dates that can be used as quality control standards
53 during $^{231}\text{Pa}/^{235}\text{U}$ radiochronometry measurements of unknown materials. In the absence of

54 certified Pa standards, U certified reference materials have been used to ensure quality control and
55 correct for instrumental bias. Until metrology laboratories can produce and certify reference
56 materials for $^{231}\text{Pa}/^{235}\text{U}$ radiochronometry, one approach that may be used to address the gap in
57 certified reference materials is for laboratories with $^{231}\text{Pa}/^{235}\text{U}$ chronometry capabilities to produce
58 consensus ages of commercially available U certified reference materials [11-13, 15, 18].

59 To date, most studies that have measured $^{231}\text{Pa}/^{235}\text{U}$ model ages for commercially available U
60 certified reference materials have presented data that were generated from single laboratories [11-
61 13, 15, 18]. When single laboratories measure different certified reference materials, it is
62 impossible to assess if laboratory separation methods, spike calibration methods, and analytical
63 methods result in $^{231}\text{Pa}/^{235}\text{U}$ model age biases. However, if single laboratories are independently
64 measuring the same certified reference material with a known production history, measured model
65 ages can be compiled to calculate consensus ages for the forensic community. In this study, we
66 present results from a unique interlaboratory study in which the Japan Atomic Energy Agency
67 (JAEA) partnered with the United States Department of Energy (US-DOE) laboratories, Los
68 Alamos National Laboratory (LANL) and Lawrence Livermore National Laboratory (LLNL), to
69 independently measure model ages of a low-enriched uranium certified reference material – New
70 Brunswick Laboratory CRM U100. This interlaboratory study compares data from laboratories
71 using different radiochemistry and analytical methods to examine the magnitude of model age
72 reproducibility between laboratories with $^{231}\text{Pa}/^{235}\text{U}$ age dating capabilities. Results from
73 independent measurements made by each laboratory are combined to provide the community with
74 an interlaboratory $^{231}\text{Pa}/^{235}\text{U}$ consensus model purification date for CRM U100 that may be used
75 by the radiochronometry community for quality control of future $^{231}\text{Pa}/^{235}\text{U}$ measurements.

76

77

78 **Theory**

79 Model ages reported in this study are calculated using a standard age dating equation provided as
80 Eq. (1) below,

81
$$t = \frac{1}{\lambda_{235U} - \lambda_{231Pa}} \ln(1 - \frac{N_{231Pa}}{N_{235U}} \times \frac{\lambda_{231Pa} - \lambda_{235U}}{\lambda_{235U}}) \quad (1)$$

82 Where t = calculated model age, λ_{235U} and λ_{231Pa} are the decay constants for the parent isotope
83 ^{235}U and the daughter decay product ^{231}Pa respectively, and $N^{231}\text{Pa}/N^{235}\text{U}$ is the measured
84 $^{231}\text{Pa}/^{235}\text{U}$ atom ratio. The half-lives used for calculations were the following: ^{235}U $t_{1/2} = 7.0381$
85 $\times 10^8 \pm 4.8 \times 10^5$ years [19]; ^{231}Pa $t_{1/2} = 32,713 \pm 110$ years [20]; ^{233}Pa $t_{1/2} = 26.967 \pm 0.002$ days
86 ([16], used by JAEA and LANL) and 26.98 ± 0.02 days (Bureau International des Poids et
87 Mesures [21], used by LLNL).

88 **Experimental**

89 **Sample Description**

90 New Brunswick Laboratory (NBL) certified reference material CRM U100 was chosen for this
91 study for interlaboratory comparative age dating. The certificate for CRM U100 was originally
92 issued by the United States National Bureau of Standards (NBS) in 1970 as standard reference
93 material (SRM) U-100. Descriptions of the production of CRM U100 are available in NBS Special
94 Publication 260-27 [22] and Petit [23]. Based on production documents, CRM U100 was purified
95 between December 3, 1958 and January 8, 1959. The well-defined production history of this
96 material provides an opportunity for testing if CRM U100 was effectively purified of ^{231}Pa at the
97 time of production and for testing the accuracy of the $^{231}\text{Pa}/^{235}\text{U}$ chronometer. Units of CRM U100
98 distributed by NBL consist of 10 mg of triuranium octoxide (U_3O_8) powder. The isotope
99 abundance of CRM U100 is 10.190 ± 0.010 atom percent ^{235}U ; therefore, the material is a low-
100 enriched uranium oxide powder. This material was chosen for this study not only for its production
101 history, but also because it is representative of material that many countries have access to for
102 nuclear power purposes and typifies material with the potential to be discovered out of regulatory
103 control.

104 **Methods**

105 The methods used for spike production, spike calibration, sample digestion, sample purification,
106 and analyses differed between participating laboratories. Individual laboratory methods are
107 summarized in **Table 1** and are described briefly here.

108 **Table 1** Summary of $^{231}\text{Pa}/^{235}\text{U}$ Radiochronometry Methods Used by Participating Laboratories

Procedure	Laboratory	Method Summary
Sample Digestion	JAEA	CRM U100 powder, hotplate digestion in 8 M HNO_3 , final solution 4 M $\text{HNO}_3 + 0.05$ M HF
	LANL	CRM U100 powder, hotplate digestion in 8 M HNO_3 , final solution 3 M $\text{HNO}_3 + 0.05$ M HF
	LLNL	CRM U100 powder, hotplate digestion in HNO_3 , final solution 2 M HNO_3
^{233}Pa Source	JAEA	0.71 mg of ^{237}Np from Eckert & Ziegler
	LANL	5 mg of ^{237}Np from LANL legacy material
	LLNL	25 mg of ^{237}Np from LLNL legacy material
^{231}Pa Concentration Determination	JAEA	^{233}Pa spike purified with anion resin and silica gel, calibrated with ^{231}Pa NFRM [24]
	LANL	^{233}Pa spike purified with silica gel, calibrated with ^{231}Pa NFRM [24]
	LLNL	^{233}Pa spike purified with anion resin and silica gel, calibrated with ^{231}Pa NFRM [24]
Pa Purification	JAEA	Anion resin (MCI GEL, CA08P, Mitsubishi Chemical Corporation)
	LANL	Anion resin (BioRad AG1-X8) and silica gel
	LLNL	Anion resin (BioRad AG1-X8) and silica gel
Pa Mass Spectrometry	JAEA	Thermal Ionization Mass Spectrometry, ThermoScientific TRITON Plus
	LANL	Multi-Collector Inductively-Coupled Plasma Mass Spectrometry, ThermoScientific Neptune Plus
	LLNL	Multi-Collector Inductively-Coupled Plasma Mass Spectrometry, Nu Plasma HR
^{235}U Isotope Dilution	JAEA	^{233}U spike, calibrated with JAERI-U4
	LANL	^{233}U spike, calibrated with NBS SRM 960
	LLNL	^{233}U spike, calibrated with NBS SRM 960
U Purification	JAEA	Eichrom UTEVA resin
	LANL	Eichrom UTEVA resin
	LLNL	Eichrom UTEVA resin
U Mass Spectrometry	JAEA	Thermal Ionization Mass Spectrometry, ThermoScientific TRITON Plus
	LANL	Multi-Collector Inductively-Coupled Plasma Mass Spectrometry, ThermoScientific Neptune Plus
	LLNL	Multi-Collector Inductively-Coupled Plasma Mass Spectrometry, Nu Plasma HR

109 *Sample Digestion*

110 All participating laboratories used a CRM U100 U_3O_8 powder as their starting sample material
111 and digested the powder using hotplate digestions with HNO_3 acid. At JAEA, 13 mg of CRM
112 U100 powder was digested with 1 mL of 8 M HNO_3 in a Teflon vial on a hotplate at 90°C. Once
113 dissolved, the sample solution was diluted to produce a 4 mL approximately 3,250 ppm U primary
114 solution in 4 M $\text{HNO}_3 + 0.05$ M HF in a Teflon vial. At LANL, 100 mg of CRM U100 powder
115 (from SRM U-100 unit) was digested with 20 mL of 8 M HNO_3 in a pre-cleaned and weighed

116 quartz crucible on a hotplate at 80°C with a heat lamp. The dissolved sample was transferred to a
117 PTFE bottle and was diluted to produce a 200 mL approximately 380 ppm U primary solution in
118 3 M HNO₃ + 0.05 M HF. Sample preparation methods at LLNL involved the digestion of CRM
119 U100 powder in a pre-cleaned and weighed quartz crucible on a hotplate at 120°C. The dissolved
120 sample was transferred to a clean FEP bottle and was diluted to produce a 130 ppm U primary
121 solution in 2 M HNO₃ + 0.01 M HF.

122 *Protactinium Isotope Dilution Methods*

123 For this study, participating laboratories determined the concentration of ²³¹Pa in CRM U100 via
124 isotope dilution with a ²³³Pa spike. There are no commercially available ²³³Pa spikes due to the
125 short half-life of ²³³Pa (~ 27 days). All laboratories separated their ²³³Pa spike from a ²³⁷Np source
126 wherein ²³⁷Np decays by alpha-decay to produce ²³³Pa. Neptunium-237 materials that have not
127 been purified within the timeframe of a year contain ²³³Pa in secular equilibrium with the ²³⁷Np.

128 The spike produced by JAEA was purified from 0.71 mg of an Eckert and Ziegler ²³⁷Np source
129 with greater than 99% purity (Source Number 1649-19). The ²³³Pa was purified using four ion-
130 exchange columns. The first column consisted of a 1 mL anion exchange resin bed conditioned
131 with 9.46 M HCl. Protactinium and U adsorb to the resin providing efficient separation from
132 neptunium (Np). The Pa fraction was then eluted from the column using 9.46 M HCl + 0.05 M
133 HF. The second column used the same resin and acids but consisted of a smaller 0.3 mL resin
134 volume. The third purification was completed using silica gel conditioned in 3% HNO₃. Silica gel
135 allows for the purification of ²³³U (decay product of ²³³Pa) from Pa [10]. Protactinium was eluted
136 from the silica gel using 3% HNO₃ + 0.05 M HF. The final purification by JAEA was the same as
137 the second anion column. During production of the ²³³Pa spike at JAEA, it was noted that the
138 Eckert and Ziegler ²³⁷Np source contained ²³¹Pa which is a complication for ²³¹Pa assay
139 measurements. The original ²³⁷Np was recovered during the separation of ²³³Pa and was allowed
140 to decay again to ingrow new ²³³Pa, which resulted in a higher purity ²³³Pa without ²³¹Pa
141 contamination that was used for this work.

142 The spike produced at LANL was purified from 5 mg of legacy ²³⁷Np material available at LANL.
143 Protactinium-233 was purified from ²³⁷Np using two 2 mL silica gel columns. The silica gel was
144 pre-cleaned with 6 M HCl + 0.05 M HF, Milli-Q H₂O, and 6 M HCl batch rinses to remove ²³²Th

145 which forms a hydride and isobaric interference during mass spectrometry. The first 2 mL column
146 was conditioned with 2% HNO₃ and the ²³⁷Np was loaded in 2% HNO₃ during which Pa sorbed
147 to the column and an efficient purification from Np and U was possible. The Pa was eluted using
148 2% HNO₃ + 0.1 M HF, dried, redissolved in 2% HNO₃, and the column was repeated a second
149 time. The purity of the ²³³Pa was evaluated using a ThermoScientificTM Element 2 ICP-MS
150 instrument prior to use.

151
152 The spike produced at LLNL was purified from 25 mg of legacy ²³⁷Np material available at LLNL.
153 Purification of the ²³³Pa was achieved using a combination of BioRad AG1-X8 anion resin and
154 silica gel exchange columns. The first column used was a 2 mL resin volume of AG1-X8
155 conditioned with 10 M HCl where ²³³Pa was eluted using 10 M HCl + 0.05 M HF. The second
156 column was the same as the first but used a smaller 1 mL resin volume. The ²³⁷Np material was
157 recovered from these two initial columns for future use. The final purification was done using a
158 1.8 mL silica gel column conditioned with 5% HNO₃. Protactinium was eluted using 5% HNO₃ +
159 0.1 M HF. Once purified, the ²³³Pa spike was diluted and screened using a Nu Instruments Nu
160 Plasma HR MC-ICP-MS to evaluate the Np:Pa separation factor and to ensure that the ²³³Pa spike
161 was pure enough for use.

162
163 Calibrations of the ²³³Pa spikes produced at JAEA, LANL, and LLNL were done independently
164 by all laboratories using a United States-produced ²³¹Pa nuclear forensics reference material (²³¹Pa
165 NFRM [24]). The ²³¹Pa NFRM is certified by mass and allows for accurate and precise
166 determinations of ²³³Pa concentration by reverse isotope dilution [25]. Because all laboratories
167 used the ²³¹Pa NFRM, the results of this study will be dependent on the certification values of this
168 reference material. Mixtures containing pg-levels of ²³³Pa and the ²³¹Pa NFRM were produced by
169 each laboratory for calibration. At JAEA, the mixtures were equilibrated and purified using anion
170 resin prior to analysis. At LANL and LLNL, the mixtures were equilibrated and purified using
171 silica gel prior to analysis.

172
173 After ²³³Pa production and spike calibration, each laboratory spiked aliquots of CRM U100 for
174 ²³¹Pa concentration determination. At JAEA, three separate aliquots of CRM U100 providing
175 approximately 7.6 pg of Pa were taken and spiked with 0.3 pg of ²³³Pa. The spiked CRM U100

176 solutions were purified twice using 0.3 mL anion exchange columns (MCl GEL, CA08P,
177 Mitsubishi Chemical Corporation). The sample solutions were dried, dissolved in 10 μ L of
178 concentrated HNO₃, and prepared in 0.5 mL 9.46 M HCl + 25 μ L H₃BO₃. The anion column was
179 conditioned with 9.46 M HCl, the sample was loaded and washed, and Pa was eluted with 9.46 M
180 HCl + 0.05 M HF. At LANL, six separate aliquots of CRM U100 providing 2 to 5 pg of Pa were
181 taken and spiked with 2 pg of ²³³Pa. The spiked CRM U100 solutions were purified using a three
182 column procedure. The first column was a 2 mL BioRad AG1-X8 column conditioned with 9 M
183 HCl. Samples were loaded in 9 M HCl + trace H₃BO₃ + trace HNO₃. The resin was washed with
184 9 M HCl and Pa was eluted with 9 M HCl + 0.05 M HF. The samples were dried and reconstituted
185 in 2% HNO₃ + trace H₃BO₃ and were loaded onto a 2 mL silica gel column conditioned with 2%
186 HNO₃. The resin was washed with 2% HNO₃ and Pa was eluted with 2% HNO₃ + 0.05 M HF.
187 The samples were dried and reconstituted again in 2% HNO₃ + trace H₃BO₃ for the final third
188 column. The final column was the same as the second column; however, this column purification
189 was conducted immediately prior to analysis to remove ingrown ²³³U isobaric interferences.
190 Following purification, the eluted Pa in 2% HNO₃ + 0.05M HF was analyzed immediately by MC-
191 ICP-MS. At LLNL, three separate aliquots of CRM U100 providing approximately 4 pg of Pa
192 were taken and spiked with 2 pg of ²³³Pa. Protactinium was purified from the bulk U matrix using
193 a three column procedure. The first column consisted of a 1 mL BioRad AG1-X8 resin bed.
194 Samples were dried and dissolved in 9 M HCl + trace H₃BO₃ + trace HNO₃ and loaded onto the
195 column. Protactinium was eluted with 9 M HCl + 0.05 M HF. Samples were dried and prepared
196 for the second column which was a repeat of the first column. The final column used for
197 purification was a 1 mL silica gel column conditioned with 5% HNO₃. The sample was loaded
198 onto the silica gel with 5% HNO₃ and Pa was eluted using 2% HNO₃ + 0.05 M HF. Similar to
199 procedures used by LANL, the Pa fractions were immediately analyzed by MC-ICP-MS prior to
200 ingrowth of ²³³U from ²³³Pa decay.

201

202 *Uranium Isotope Dilution and Isotope Composition Methods*

203 All participating laboratories determined ²³⁵U concentrations in CRM U100 through isotope
204 dilution mass spectrometry (IDMS) with a ²³³U spike. Each laboratory used a commercially
205 available certified reference material to calibrate the concentration of their individual ²³³U spike.

206 At JAEA, an in-house ^{233}U spike was calibrated with a high-purity uranium metal standard
207 certified by the Japan Atomic Energy Research Institute, JAERI-U4. At both US-DOE
208 laboratories (LANL and LLNL), in-house ^{233}U spikes were also calibrated using a high-purity
209 uranium metal - National Bureau of Standards Standard Reference Material 960 (SRM 960). In
210 order to take sample aliquots for U assay determination, all laboratories made gravimetrically
211 prepared serial dilutions of their primary CRM U100 solutions. At JAEA, two serial dilutions of
212 the primary solution were made and three aliquots containing 200 ng of total U were removed for
213 assay measurements. At LANL, two serial dilutions of the primary solution were also made and
214 three aliquots containing 2 ng of total U were removed for assay measurements. At LLNL, one
215 dilution of the primary solution was made and three aliquots containing 75 ng of total U were
216 removed for assay measurements. All laboratories also took aliquots of CRM U100 for U isotope
217 composition determination. Aliquot sizes for U isotope composition were approximately 200 ng,
218 50 ng, and 50 ng of total U at JAEA, LANL, and LLNL respectively.

219

220 The uranium fractions taken by each laboratory were purified prior to analysis by mass
221 spectrometry using Eichrom UTEVA resin. At JAEA, a 0.3 mL UTEVA resin bed was used,
222 samples were loaded in 3 M HNO_3 , and U was eluted with 0.5 M HCl. At LANL, a 1 mL UTEVA
223 resin bed was used, samples were loaded in 3 M HNO_3 , and U was eluted with 0.1 M HCl. Finally,
224 LLNL utilized a 1 mL UTEVA column, samples were loaded in 4 M HNO_3 , and U was eluted
225 with 0.1 M HCl. At LLNL, only traced IDMS U aliquots were purified prior to analysis, and U
226 isotope concentration aliquots were analyzed without prior purification due to the high-purity of
227 CRM U100.

228

229 *Mass Spectrometry Methods*

230 The mass spectrometry methods used to analyze U and Pa differed between all laboratories. At
231 JAEA, U and Pa measurements were made using a Thermo Scientific™ Triton Plus Multicollector
232 Thermal Ionization Mass Spectrometer (TIMS). Uranium was measured by JAEA using a total
233 evaporation method with each isotope measured on Faraday collectors. Protactinium was
234 measured in a peak-jumping mode on the secondary electron multiplier (SEM) equipped with a
235 Retarding Potential Quadrupole lens (RPQ) using four second integrations. Mass bias corrections

236 for JAEA measurements were made using NBL CRM U050. Gain calibrations were performed
237 prior to analysis and blank subtractions were made to Pa measurements using the process blank
238 generated from chemical separation of Pa. The process blank represented 0.03% of the CRM U100
239 sample.

240

241 At LANL, U and Pa measurements were made using a Thermo Scientific™ Neptune Plus
242 Multicollector Inductively-Coupled Plasma Mass Spectrometer (MC-ICP-MS). Uranium IDMS
243 measurements were made using a static routine with ^{233}U , ^{235}U , and ^{238}U measured on Faraday
244 collectors using eight second integrations. Uranium isotope composition measurements were made
245 using a static routine with ^{235}U and ^{238}U on Faraday detectors and ^{234}U and ^{236}U on SEMs with
246 RPQs using four second integrations. Certified reference materials IRMM 074/1 and NBL CRM
247 U200 were used as mass bias correction standards for assay and isotope composition
248 measurements respectively, and IRMM 074/2 and NBL CRM U050 were used for quality control.
249 Protactinium measurements at LANL were made using static multicollection with ^{231}Pa and ^{233}Pa
250 measured on SEMs. A U standard, NBL CRM U010 was used for mass bias corrections and NBL
251 CRM U005-A was used for quality control. All data were corrected for mass bias, peak tailing,
252 acid blank contributions, instrument background, Faraday-ion counting gain corrections, and
253 hydride interferences ($^{235}\text{U}+^1\text{H}$ on ^{236}U and $^{232}\text{Th}+^1\text{H}$ on ^{233}Pa).

254

255 At LLNL, U and Pa measurements were made using a Nu Plasma HR MC-ICP-MS. Uranium
256 IDMS measurements were made using a static routine with ^{233}U , ^{235}U , and ^{238}U measured on
257 Faraday collectors. Uranium isotope composition measurements were made using a static routine
258 with ^{235}U and ^{238}U on Faraday detectors and ^{233}U , ^{234}U , and ^{236}U on ion counters. Mass bias
259 corrections for all measurements were made with NBL CRM U010, and NBL CRMs U005-A,
260 129-A, and 112-A were used for quality control. Protactinium measurements were made using
261 static multi-collection with ^{231}Pa and ^{233}Pa on ion counters. Mass bias corrections for Pa
262 measurements were made using U standard CRM U010 and quality control was done using CRM
263 U005-A. All measurements were corrected for mass bias, peak tailing, Faraday-ion counting gain
264 corrections, and acid blank contributions.

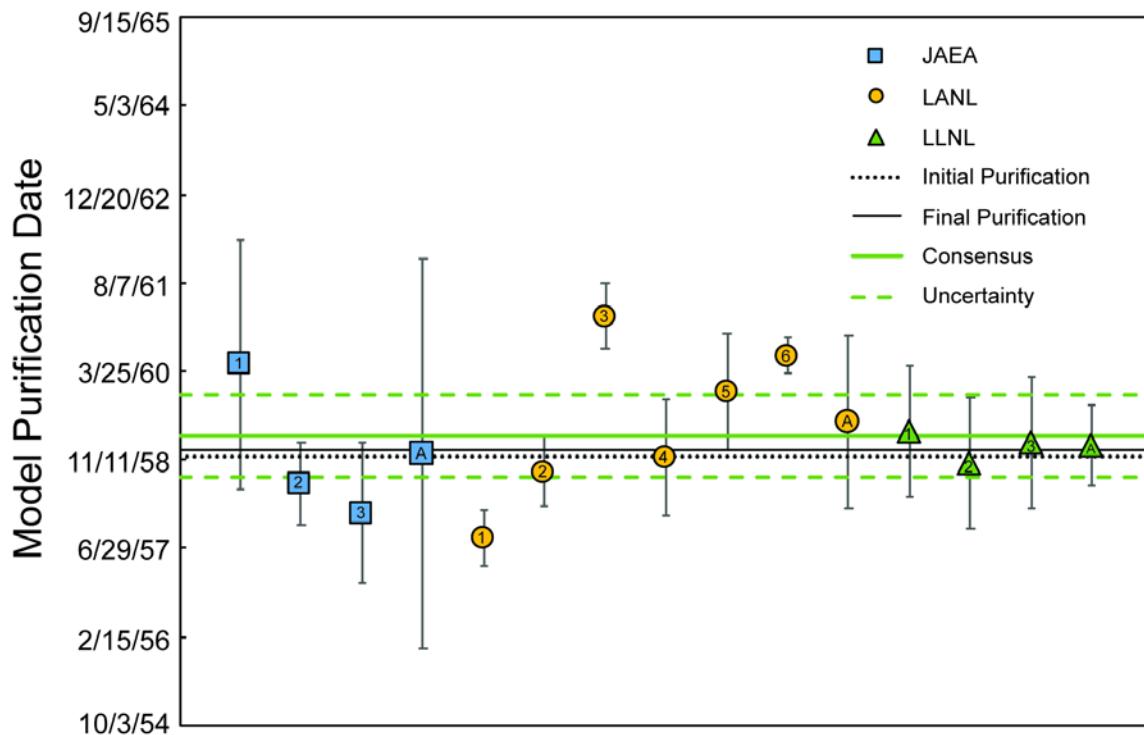
265

266

268 **Results and discussion**

269 Individual CRM U100 $^{231}\text{Pa}/^{235}\text{U}$ ratios measured by each laboratory and associated model
 270 purification dates are reported in **Table 2** and are shown graphically in **Fig. 1**. The average
 271 $^{231}\text{Pa}/^{235}\text{U}$ model purification dates measured by JAEA, LANL, and LLNL for CRM U100 were
 272 December 15, 1958 \pm 1106 days, June 12, 1959 \pm 487 days, and January 28, 1959 \pm 228 days
 273 respectively (**Fig. 1**). Given the small number of replicate measurements made by each laboratory
 274 ($n = 3$ to 6), the 95% ($k=2$) external uncertainties provided for the average model purification date
 275 for each laboratory were calculated using the following:

276


$$277 \text{ uncertainty } (k = 2) = t_{(1-\frac{\alpha}{2}),v} (\sigma / \sqrt{N_r}) \quad (2)$$

278 Where N_r is the number of replicates, $t_{(1-\alpha/2)}$ is the $100(1-\alpha/2)$ th percentile of the t-distribution
 279 corresponding to a probability $\alpha = 0.05$ and $v = N_r - 1$ degrees of freedom. This calculation
 280 provides the uncertainty of the mean of the replicates at the 95% confidence level. These average
 281 model purification dates are consistent within analytical uncertainty between laboratories. The
 282 model $^{231}\text{Pa}/^{235}\text{U}$ purification dates reported by participating laboratories are also consistent with
 283 the known production history of CRM U100, which according to production documents, was
 284 purified between December 3, 1958 and January 8, 1959 [23] (solid and dashed lines in **Fig. 1**).
 285 The model purification dates measured in this study also agree with prior published measurements
 286 of $^{230}\text{Th}/^{234}\text{U}$ and $^{231}\text{Pa}/^{235}\text{U}$ model ages for CRM U100 [11-12, 25]. Model ages measured by
 287 JAEA and LANL display the largest internal laboratory variation with model purification dates
 288 ranging between 1958 and 1960. Measurements made by LLNL were more internally consistent
 289 with model purification dates ranging between October 1958 and April 18, 1959. The observed
 290 agreement between $^{231}\text{Pa}/^{235}\text{U}$ model ages reported from three laboratories using different
 291 chemical purification and mass spectrometry methods demonstrates that the methods used by
 292 participating laboratories are valid for Pa-U age dating of bulk U materials. These results suggest
 293 that laboratories interested in Pa-U age dating of bulk U materials can make $^{231}\text{Pa}/^{235}\text{U}$

294 measurements using a variety of different spikes, resins, certified reference materials and
 295 instrumentation.

296 **Table 2** Interlaboratory $^{231}\text{Pa}/^{235}\text{U}$ Composition Results and Calculated Model Purification Dates
 297 for CRM U100

Laboratory	Sample ID	Reference Date	$^{231}\text{Pa}/^{235}\text{U}$	Uncertainty (k=2)	Model Age (years)	Uncertainty (k=2, years)	Model Purification Date	Uncertainty (k=2, days)
JAEA	U100-1	2019-04-10	5.80×10^{-8}	1.9×10^{-9}	59.0	1.9	1960-05-03	702
JAEA	U100-2	2019-04-10	5.987×10^{-8}	6.2×10^{-10}	60.83	0.63	1958-06-26	230
JAEA	U100-3	2019-04-10	6.03×10^{-8}	1.1×10^{-9}	61.3	1.1	1958-01-14	394
LANL	U100-1	2017-03-16	5.861×10^{-8}	4.3×10^{-10}	59.55	0.44	1957-08-27	161
LANL	U100-2	2017-07-13	5.793×10^{-8}	5.3×10^{-10}	58.86	0.54	1958-09-02	198
LANL	U100-3	2017-08-16	5.566×10^{-8}	5.1×10^{-10}	56.55	0.52	1961-01-30	188
LANL	U100-4	2018-03-19	5.838×10^{-8}	8.9×10^{-10}	59.32	0.91	1958-11-24	332
LANL	U100-5	2018-05-14	5.754×10^{-8}	8.7×10^{-10}	58.46	0.89	1959-11-28	325
LANL	U100-6	2018-09-13	5.731×10^{-8}	2.7×10^{-10}	58.23	0.28	1960-06-21	103
LLNL	U100-1	2017-07-18	5.78×10^{-8}	1.0×10^{-9}	58.3	1.0	1959-04-18	371
LLNL	U100-2	2017-07-18	5.83×10^{-8}	1.0×10^{-9}	58.7	1.0	1958-10-20	373
LLNL	U100-3	2017-07-18	5.79×10^{-8}	1.0×10^{-9}	58.4	1.0	1959-02-17	370

298

299 **Fig. 1** Interlaboratory model purification date results for CRM U100. Individual measurements
300 from each laboratory are shown as blue squares (JAEA), yellow circles (LANL), and green
301 triangles). The calculated average model purification date from each laboratory is shown using
302 the same symbol with a bold outline and is denoted with the letter ‘A’. The consensus model
303 purification date of March 26, 1959 ± 237 days calculated from the average of all individual
304 measurements ($n = 12$) is represented with a bold green line.

305 Assuming that the interlaboratory variation in measured $^{231}\text{Pa}/^{235}\text{U}$ atom ratios for CRM U100 is
306 representative of variation that might occur between forensic laboratories, one can calculate an
307 average consensus $^{231}\text{Pa}/^{235}\text{U}$ model purification date of CRM U100. The consensus model
308 purification date was calculated by taking the average of all twelve independent measurements
309 reported by JAEA, LANL, and LLNL (**Table 2** model purification dates). The expanded
310 uncertainty on the consensus value was calculated using Eq. (2). The calculated consensus model
311 purification date of CRM U100 based on data from this study is March 26, 1959 ± 237 days. The
312 calculated 237 day expanded uncertainty on the consensus date is assumed to be representative of
313 expected interlaboratory variation during Pa-U age dating by experienced radiochronometry
314 laboratories. This consensus purification date agrees within analytical uncertainty with the full
315 production history of CRM U100 [23], but is approximately two months younger than the last date
316 of purification from production records. Given the lack of certified reference materials that are
317 certified for $^{231}\text{Pa}/^{235}\text{U}$ radiochronometry, the consensus $^{231}\text{Pa}/^{235}\text{U}$ model purification date of
318 CRM U100 from this study may be used for quality control of future $^{231}\text{Pa}/^{235}\text{U}$ measurements of
319 bulk low-enriched U materials.

320

321 **References**

322 1. Kristo MJ, Gaffney AM, Marks N, Knight K, Cassata WS, Hutcheon ID (2016) Nuclear
323 forensic science: Analysis of nuclear material out of regulatory control. *Annu Rev Earth
324 Planet Sci* 44: 555-579.

325

326 2. Wallenius M, Morgenstern A, Apostolidis C, Mayer K (2002) Determination of the age of
327 highly enriched uranium. *Anal Bioanal Chem* 374(3): 379-384.

328

329 3. LaMont SP and Hall G (2005) Uranium age determination by measuring the $^{230}\text{Th}/^{234}\text{U}$ ratio.
330 *J Radioanal Nucl Chem* 264(2): 423-427.

331

332 4. Varga Z and Suranyi G (2007) Production date determination of uranium-oxide materials by
333 inductively coupled plasma mass spectrometry. *Anal Chim Acta* 599: 16-23.

334

335 5. Varga Z, Wallenius M, Mayer K (2010) Age determination of uranium samples by
336 inductively coupled plasma mass spectrometry using direct measurement and spectral
337 deconvolution. *J Anal At Spectrom* 25: 1958-1962.

338

339 6. Williams RW and Gaffney AM (2011). ^{230}Th - ^{234}U model ages of some uranium standard
340 reference materials. *Proc Radiochim Acta* 1: 31-35.

341

342 7. Pointurier F, Hubert A, Roger G (2013) A method for dating small amounts of uranium. *J*
343 *Radioanal Nucl Chem* 296: 593-598.

344

345 8. Gaffney AM, Hubert A, Kinman WS, Magara M, Okubo A (2015) Round-robin ^{230}Th - ^{234}U
346 age dating of bulk uranium for nuclear forensics. *J Radioanal Nucl Chem* 235: 129-132.

347

348 9. Treinen KC, Kinman WS, Chen Y, Zhu L, Cardon AMR, Steiner RE, Kayzar-Boggs TM,
349 Williams RW, Zhao YG (2017) US-DOE and CIAE international cooperation in age-dating
350 uranium standards. *J Radioanal Nucl Chem* 314 (3): 2469-2474.

351

352 10. Morgenstern A, Apostolidis C, Mayer K (2002) Age determination of highly enriched
353 uranium: Separation and analysis of ^{231}Pa . *Anal Chem* 74: 5513-5516.

354

355 11. Eppich GR, Williams RW, Gaffney AM, Schorzman KC (2013) ^{235}U - ^{231}Pa age dating of
356 uranium materials for nuclear forensic investigations. *J Anal At Spectrom* 28: 666-674.

357

358 12. Kayzar TM and Williams RW (2016) Developing Ra-226 and Ac-227 age-dating techniques
359 for nuclear forensics to gain insight from concordant and non-concordant radiochronometers.
360 J Radioanal Nucl Chem 307(3): 2061-2068.

361

362 13. Rolison JM, Treinen KC, McHugh KC, Gaffney AM, Williams RW (2017) Application of
363 the ^{226}Ra - ^{230}Th - ^{234}U and ^{227}Ac - ^{231}Pa - ^{235}U radiochronometers to uranium certified reference
364 materials. J Radioanal Nucl Chem 314: 2459-2467.

365

366 14. Higginson M, Gilligan C, Taylor F, Knight D, Kaye P, Shaw T, Thompson P (2018)
367 Development of rapid methodologies for uranium age dating. J Radioanal Nucl Chem 318:
368 157-164.

369

370 15. Varga Z, Nicholl A, Hrnecek E, Wallenius M, Mayer K (2018) Measurement of the
371 ^{231}Pa / ^{235}U ratio for the age determination of uranium materials. J Radioanal Nucl Chem 318
372 (3): 1565-1571.

373

374 16. Jones RT, Merritt JS, Okazaki A (1986) A measurement of the thermal neutron capture cross
375 section of ^{232}Th . Nucl Sci and Eng 93: 171-180.

376

377 17. Usman K and MacMahon TD (2000) Determination of the half-life of ^{233}Pa . App Radiat
378 Isotopes 52: 585-589.

379

380 18. Treinen KC, Samperton KM, Lindvall RE, Wimpenny JB, Gaffney AM, Bavio M, Baransky
381 EJ, Williams RW (2019) Evaluating uranium radiochronometry by single-collector mass
382 spectrometry for nuclear forensics: a multi-instrument investigation. J Radioanal Nucl Chem
383 DOI 10.1007/s10967-019-06832-y

384

385 19. Jaffey AH, Flynn KF, Glendenin LE, Bentley WC, Essling AM (1971) Precision
386 measurement of half-lives and specific activities of ^{235}U and ^{238}U . Phys Rev C4, 1889.

387

388 20. Robert J, Miranda CF, Muxart R (1969) Mesure de la periode du protactinium-231 par
389 microcalorimetrie. Radiochim Acta 11(2):104-108.

390

391 21. Bureau International des Poids et Mesures (BIPM) (2010) Monograph 5: Table of
392 Radionuclides, 5-A: 22:244. 465 http://www.nucleide.org/DDEP_WG/DDEPdata.htm. Accessed
393 11 March 2019.

394

395 22. National Bureau of Standards Special Publication 260-27 (1971) Standard reference
396 materials: Uranium isotopic standard reference materials. US Department of Commerce, US
397 Government Printing Office, Washington DC.

398

399 23. Petit GS (1960) Preparation of uranium isotopic standards for the National Bureau of
400 Standards. Report Number KL-8 Addendum-18. Union Carbide Nuclear Company, Oak
401 Ridge Tennessee.

402

403 24. Essex RM, Williams RW, Treinen KC, Colle R, Fitzgerald R, Galea R, Keightley J, LaRosa
404 J, Laureano-Perez L, Nour S, Pibida L (2019) Preparation and calibration of a ^{231}Pa reference
405 material. J Radioanal Nucl Chem DOI 10.1007/s10967-019-06711-6

406

407 25. Treinen KC, Gaffney AM, Rolison JM, Samperton KM, McHugh KC, Miller ML, Williams
408 RW (2018) Improved protactinium spike calibration method applied to ^{231}Pa - ^{235}U age-dating
409 of certified reference materials for nuclear forensics. J Radioanal Nucl Chem 318(1): 209-
410 219.