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ABSTRACT

Plasma physics is an exciting field of study with a wide variety of nonlinear processes that
come into play. Examples of such processes include the interaction of small-scale turbulence
with large-scale plasma structures and the nonlinear saturation of plasma instabilities, for
example those of magneto-hydrodynamical nature. During this Truman LDRD project, I
studied a collection of nonlinear problems that are of interest to the field of plasma physics.
This LDRD report summarizes four main research accomplishments.

First, a new statistical model for describing inhomogeneous drift-wave turbulence inter-
acting with zonal flows was developed. This new model includes the effects of nonlinear
wave–wave collisions, which are expected to change the spectrum of the underlying DW
turbulence and therefore the generation of zonal flows.

Second, a new mathematical formalism was proposed to systematically apply the non-
linear WKB approximation to general field theories, including those often used in fluid
dynamics. This formalism represents an interesting tool for studying physical systems that
show an explicit scale separation.

Third, a weakly nonlinear model was developed to describe the magneto-Rayleigh–Taylor
instability. This instability is of paramount importance to understand as it can reduce the
performance of magnetic-inertial-fusion (MIF) platforms. The developed models captures
the effects of harmonic generation and saturation of the linear growth of the instability.

Finally, a framework was proposed for scaling magneto-inertial fusion (MIF) targets to
larger pulsed-power drivers. From this framework, a set of scaling rules were derived that
conserve the physical regimes of MIF systems when scaling up in peak current. By doing so,
deleterious nonlinear processes that affect MIF performance may be kept at bay.
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1. INTRODUCTION

This Truman LDRD project was focused on studying a collection of problems of nonlinear
nature that are of interest in the field of plasma physics. This report summarizes the main
research accomplishments that were obtained during this project. The following chapters
will discuss four different projects in which I played a lead role. Each chapter is intended
as a summary of each project. The chapters provide the context and motivation behind the
research, they clearly state the main results obtained, and they discuss avenues of future
research that could be pursued as follow-up work. The results from these projects were
published in peer-reviewed journals. Some excerpts from these publications were used when
compiling the results for this report.

To provide further guidance to the reader, I summarize below the contents of each chap-
ter. It is worth mentioning that the chapters are independent from one another. Therefore,
if the reader finds a particular topic interesting, he or she can immediately refer to the
corresponding chapter of interest without having to read the previous material in the report.

In Chapter 2, I discuss my work on the formation of large-scale zonal flows (ZFs) from
inhomogeneous, small-scale drift-wave (DW) turbulence. ZFs are present in magnetic fusion
devices and in planetary atmospheres. The spontaneous formation of ZFs is often described
using statistical theories derived within the quasilinear approximation. In this regard, the
two main workhorse models are the second-order cumulant expansion (also known as CE2)
and the wave kinetic equation. However, the quasilinear approximation neglects wave–wave
collisions. Hence, some important effects such as the Batchelor–Kraichnan inverse-energy
cascade are not captured within this approximation. In this project, we developed a wave
kinetic equation that includes a DW collision operator in the presence of zonal flows. The
obtained collision operator conserves both the total enstrophy and energy of the system. In
this chapter, I shall present the main results obtained, as well as preliminary unpublished
simulations using this new formalism. The published results of this research are found in
Ref. [1].

In Chapter 3, I present a new mathematical formalism that was developed to elegantly
marry the nonlinear WKB approximation with general field theories, including those often
used in fluid dynamics. Nonlinear WKB is a multiscale technique for studying locally-plane-
wave solutions of nonlinear partial differential equations (PDEs). Its application comprises
two steps: (1) replacement of the original PDE with an extended system separating the large
scales from the small, and (2) reduction of the extended system to its slow manifold. In the
first part of this work, we provided a systematic method for replacing field theories, in which
their action functionals were known, with their nonlinear WKB-extended counterparts. In
the second part of this work, we show that variational fluid theories with particle relabeling
symmetry can be adapted so that a nonlinear WKB extension can be introduced while

15



remaining in the Eulerian frame for the fluid description. As an illustrative example, we use
our results to systematically deduce a variational model of high-frequency acoustic waves
interacting with a larger-scale compressible isothermal flow. Additional details on results
from this work are found in Ref. [2].

In Chapter 4, I discuss my work on developing a weakly nonlinear model for the magneto-
Rayleigh–Taylor instability. The magnetic-Rayleigh–Taylor (MRT) instability is a ubiqui-
tous phenomenon that occurs in magnetically-driven Z-pinch implosions. It is important
to understand this instability since it can decrease the performance of such implosions. In
this work, I proposed a theoretical model for the weakly nonlinear MRT instability that was
derived by asymptotically expanding an action principle for the nonlinear MRT instability.
The resulting theory captures the harmonic generation of MRT modes. It is shown that the
amplitude at which the linear magnetic-Rayleigh–Taylor instability exponential growth sat-
urates depends on the stabilization effect of the magnetic-field tension. Overall, the theory
provides an intuitive interpretation of the weakly nonlinear MRT instability and provides a
systematic approach for studying this instability in more complex settings. The results from
this work were published in Ref. [3].

In Chapter 5, I discuss the development of a new framework for scaling magneto-inertial
fusion (MIF) targets to larger pulsed-power drivers. The Magnetized Liner Inertial Fu-
sion (MagLIF) experimental platform represents the most successful demonstration of MIF
techniques for pursuing fusion in the laboratory. However, it is unclear how to scale MIF con-
cepts like MagLIF to more powerful pulsed-power drivers while avoiding significant changes
in physical regimes that could adversely impact performance. In this work, we propose a con-
servative approach for scaling general MIF implosions, including MagLIF. The framework
is based on a simple model describing a thin, current-driven, cylindrical shell that com-
presses a preheated, adiabatic fuel. By imposing that scaled implosions remain self-similar,
we obtain a set of scaling rules expressing key target design parameters and performance
metrics as functions of the maximum driver current Imax. We identify several scaling paths
offering unique, complementary benefits and trade-offs in terms of physics risks and driver
requirements. In the absence of alpha heating, our scaling paths exhibit neutron yield per-
unit-length scaling as Ŷ ∝ [I3

max, I
4.14
max] and ignition parameter scaling as χ ∝ [Imax, I

2.14
max].

Results of this work were published in Ref. [4].
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2. WAVE KINETIC EQUATION FOR INHOMOGENEOUS
DRIFT-WAVE TURBULENCE BEYOND THE QUASILINEAR
APPROXIMATION

2.1. Introduction

The interaction between drift-wave (DW) turbulence and zonal flows (ZFs) has been widely
studied in plasma physics [5; 6; 7; 8; 9; 10; 11]. In the context of magnetic fusion experiments
(MFE) [6; 12; 13], the spontaneous emergence of ZFs significantly affects the transport of
energy, momentum, and particles (see Fig. 2-1). Understanding this phenomenon is critical
to improving plasma confinement, but modeling the underlying physics remains difficult. For
example, direct numerical simulations of interacting DWs and ZFs strongly depend on the
initial conditions and the external random forcing. Moreover, to obtain meaningful conclu-
sions, numerous direct numerical simulations are needed to collect the minimum statistics
required. Therefore, statistical methods represent a useful alternative and are widely applied
in the DW-turbulence research, even at the cost of introducing approximations.

The modeling of homogeneous turbulence via statistical models has a long history. Per-
haps the simplest model is weak wave turbulence (WWT) theory [15]. In WWT theory,
the main object of study is the wave collision operator and the steady-state spectra that
it generates. From this model, the power law for the Batchelor–Kraichnan inverse-energy
cascade can been deduced. Although WWT theory is intuitive, it does have its downsides,
for example, it cannot capture the effects of resonance broadening in a self-consistent man-
ner [15]. To remedy this, other more advanced statistical closures have been developed to
solve this problem. Examples include the Direct Interaction Approximation (DIA) [16], the
Realizable Markovian Closure (RMC) [17], and the Martin–Siggia–Rose (MSR) formalism
[18]. However, these more advanced theories cannot describe inhomogeneous turbulence,
where DW propagate in a plasma that has spatial dependencies. This setting is of particular
interest when studying DWs interacting with ZFs.

To model the interaction of DWs and ZFs, one particular statistical approach is the
so-called quasilinear (QL) approximation [19], where the ZF equation is kept nonlinear and
the equation for DWs is linearized. This approximation effectively neglects the nonlinear
interactions between the DWs (which is the key element of homogeneous turbulence) and
only retains the nonlinear interaction with the ZFs. It is generally thought that ignoring
such wave–wave interactions is appropriate when specifically studying the emergence of zonal
flows. Within the quasilinear approximation, there exists multiple statistical formalisms.
Among these, the most accurate are the second-order cumulant expansion (CE2) [19; 20; 21;
22; 23] and the Wigner–Moyal [24; 25; 26; 27] formalisms. These theories do not assume a
scale separation between the DWs and ZFs, and they give the most accurate results within
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Phase-space methods are useful to study inhomogeneous wave turbulence.

• In certain regimes, large-scale zonal flows are
driven by small-scale wave turbulence.

• Zonal flows are important to study since they
reduce turbulence.

• In magnetic fusion, turbulence increases
particle transport.

• This reduces confinement in tokamaks.

• Zonal flows can shear turbulent eddies and
suppress turbulence. Hence,

• turbulent transport is reduced,
• confinement is improved.
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es the rapid gyromotion of a charged particle
about the magnetic field line. By use of low-
noise numerical algorithms (6, 7) and massive-
ly parallel computers, we were able to repro-
duce key features of turbulent transport ob-
served at the core of tokamak plasmas.

Previous toroidal gyrokinetic and gy-
rofluid (8) simulations of instabilities driven
by the ion-temperature gradient (ITG) in a
local geometry, which follows a magnetic
field line (8–10), have indicated that turbu-
lence-driven zonal flows play a crucial role in
regulating nonlinear saturation and transport
levels. However, global gyrokinetic simula-
tions, which treat the whole plasma volume,
either did not include (11) or did not observe
(12, 13) substantial effects of these self-gen-
erated flows in steady-state transport. Be-
cause local simulations are restricted to a
flux-tube domain of a few turbulence decor-
relation lengths with radially periodic bound-
ary conditions and assume scale separation
between the turbulence and equilibrium pro-
files, the key issues of transport scaling and
effects of steep pressure profiles in transport
barriers can be most effectively studied in
global simulations.

We developed a fully three-dimensional
(3D) global gyrokinetic toroidal code (GTC)
(7) based on the low-noise nonlinear !f
scheme (6) for studying both turbulence and
neoclassical physics. The code uses a general
geometry Poisson solver (14) and Hamiltoni-
an guiding center equations of motion (15) in
magnetic coordinates (16) to treat both ad-
vanced axisymmetric and nonaxisymmetric
configurations with realistic numerical mag-
netohydrodynamics equilibria. This global
code takes into account equilibrium profile
variation effects and has low particle noise.
Furthermore, a single code can simulate both
a full poloidal cross section and an annular
box to provide a connection between global
and local simulations. The GTC code was
implemented as a platform-independent pro-
gram and achieved nearly perfect scalability
on various massively parallel processing
(MPP) systems (for example, CRAY-T3E

and Origin-2000 supercomputers). This scal-
ability enables us to fully use the rapidly
increasing MPP computer power that present-
ly allows routine nonlinear simulations of
more than 108 particles to treat realistic plas-
mas parameters of existing fusion experi-
ments. Nevertheless, a more than two orders
of magnitude increase in computing power
will be required to assess turbulent transport
properties of reactor-relevant plasmas with
additional key features such as nonadiabatic
electron response, electromagnetic perturba-
tions, and larger system size.

The GTC code was benchmarked against
earlier analytic and computational models for
neoclassical transport (17) and toroidal ITG
simulations (7). Linear ITG growth rates and
real frequencies agree well with results from
linear gyrofluid code (8) calculations, and
steady-state transport results are consistent
with those from global gyrokinetic Cartesian
code (11) nonlinear simulations when turbu-
lence-driven E " B flows are suppressed. We
tested convergence by varying the size of
each time step, the number of grid points, and
the number of particles in nonlinear simula-
tions. The convergence of the ion heat con-
ductivity #i and fluctuation energy level with
respect to the number of particles was dem-
onstrated in nonlinear simulations with 20
million grid points with representative plas-
ma parameters from tokamak experiments.
The ion heat conductivity remained un-
changed when the number of particles was
increased from 32 million to 80 million. Sim-
ilar convergence of the fluctuation energy
was obtained with 80 million particles.

Turbulence-generated zonal flows in toroi-
dal plasmas are driven by the flux-surface–
averaged radially local charge separation and
mainly in the poloidal direction for high–aspect
ratio devices. Rosenbluth and Hinton (18)

showed that an accurate prediction of the un-
damped component of poloidal flows is impor-
tant in determining the transport level in non-
linear turbulence simulations and provided an
analytical test for predicting the residual flow
level in response to an initial flow perturbation.
We reproduced this test in gyrokinetic particle
simulations by solving the toroidal gyrokinetic
equation (19) with an initial source that is con-
stant on a flux surface and introduced a pertur-
bation of the poloidal flow. This flow was
relaxed through the transit time magnetic
pumping effect (20) followed by a slower
damped oscillation with a characteristic fre-
quency corresponding to that of the geodesic
acoustic mode (21). The residual level of this
flow measured from the simulation agrees well
with the theoretical prediction (18).

Turbulence-driven zonal flows are now
self-consistently included in the nonlinear
simulations of toroidal ITG instabilities. The
flows are generated by the Reynolds stress
(22) and can be considered as a nonlinear
instability associated with inverse cascade of
the turbulent spectra (23). Our global simu-
lations produced fluctuating E " B zonal
flows containing substantial components with
radial scales and frequencies comparable to
those of the turbulence. These results are in
qualitative agreement with flux-tube simula-
tions (8, 10) and demonstrate the possible
existence and the importance of such fluctu-
ating flows. These simulations used represen-
tative parameters of DIII-D tokamak high
confinement mode core plasmas, which have
a peak ion-temperature gradient at minor ra-
dius r $ 0.5 a with the following local param-
eters: R0/LT $ 6.9, Ln /LT $ 3.2, q $ 1.4,
(r/q )(dq /dr) $ 0.78, Te/Ti $ 1, and a/R0 $
0.36, where R0 is the major radius, LT and Ln

are the temperature and density gradient scale
lengths, respectively, Ti is the ion tempera-

Fig. 1. Time history of ion heat conductivities
with (solid) and without (dotted) E " B flows
in global simulations with realistic plasma
parameters.

Fig. 2. Poloidal contour plots of fluctuation potential (e%/Ti) in the steady state of nonlinear global
simulation with E " B flows included (A) and with the flows suppressed (B). The dominant poloidal
spectrum k& $ 0 mode is filtered out to highlight the differences in the turbulent eddy size.
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cause local simulations are restricted to a
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ary conditions and assume scale separation
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global simulations.
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vanced axisymmetric and nonaxisymmetric
configurations with realistic numerical mag-
netohydrodynamics equilibria. This global
code takes into account equilibrium profile
variation effects and has low particle noise.
Furthermore, a single code can simulate both
a full poloidal cross section and an annular
box to provide a connection between global
and local simulations. The GTC code was
implemented as a platform-independent pro-
gram and achieved nearly perfect scalability
on various massively parallel processing
(MPP) systems (for example, CRAY-T3E

and Origin-2000 supercomputers). This scal-
ability enables us to fully use the rapidly
increasing MPP computer power that present-
ly allows routine nonlinear simulations of
more than 108 particles to treat realistic plas-
mas parameters of existing fusion experi-
ments. Nevertheless, a more than two orders
of magnitude increase in computing power
will be required to assess turbulent transport
properties of reactor-relevant plasmas with
additional key features such as nonadiabatic
electron response, electromagnetic perturba-
tions, and larger system size.

The GTC code was benchmarked against
earlier analytic and computational models for
neoclassical transport (17) and toroidal ITG
simulations (7). Linear ITG growth rates and
real frequencies agree well with results from
linear gyrofluid code (8) calculations, and
steady-state transport results are consistent
with those from global gyrokinetic Cartesian
code (11) nonlinear simulations when turbu-
lence-driven E " B flows are suppressed. We
tested convergence by varying the size of
each time step, the number of grid points, and
the number of particles in nonlinear simula-
tions. The convergence of the ion heat con-
ductivity #i and fluctuation energy level with
respect to the number of particles was dem-
onstrated in nonlinear simulations with 20
million grid points with representative plas-
ma parameters from tokamak experiments.
The ion heat conductivity remained un-
changed when the number of particles was
increased from 32 million to 80 million. Sim-
ilar convergence of the fluctuation energy
was obtained with 80 million particles.

Turbulence-generated zonal flows in toroi-
dal plasmas are driven by the flux-surface–
averaged radially local charge separation and
mainly in the poloidal direction for high–aspect
ratio devices. Rosenbluth and Hinton (18)

showed that an accurate prediction of the un-
damped component of poloidal flows is impor-
tant in determining the transport level in non-
linear turbulence simulations and provided an
analytical test for predicting the residual flow
level in response to an initial flow perturbation.
We reproduced this test in gyrokinetic particle
simulations by solving the toroidal gyrokinetic
equation (19) with an initial source that is con-
stant on a flux surface and introduced a pertur-
bation of the poloidal flow. This flow was
relaxed through the transit time magnetic
pumping effect (20) followed by a slower
damped oscillation with a characteristic fre-
quency corresponding to that of the geodesic
acoustic mode (21). The residual level of this
flow measured from the simulation agrees well
with the theoretical prediction (18).

Turbulence-driven zonal flows are now
self-consistently included in the nonlinear
simulations of toroidal ITG instabilities. The
flows are generated by the Reynolds stress
(22) and can be considered as a nonlinear
instability associated with inverse cascade of
the turbulent spectra (23). Our global simu-
lations produced fluctuating E " B zonal
flows containing substantial components with
radial scales and frequencies comparable to
those of the turbulence. These results are in
qualitative agreement with flux-tube simula-
tions (8, 10) and demonstrate the possible
existence and the importance of such fluctu-
ating flows. These simulations used represen-
tative parameters of DIII-D tokamak high
confinement mode core plasmas, which have
a peak ion-temperature gradient at minor ra-
dius r $ 0.5 a with the following local param-
eters: R0/LT $ 6.9, Ln /LT $ 3.2, q $ 1.4,
(r/q )(dq /dr) $ 0.78, Te/Ti $ 1, and a/R0 $
0.36, where R0 is the major radius, LT and Ln

are the temperature and density gradient scale
lengths, respectively, Ti is the ion tempera-

Fig. 1. Time history of ion heat conductivities
with (solid) and without (dotted) E " B flows
in global simulations with realistic plasma
parameters.

Fig. 2. Poloidal contour plots of fluctuation potential (e%/Ti) in the steady state of nonlinear global
simulation with E " B flows included (A) and with the flows suppressed (B). The dominant poloidal
spectrum k& $ 0 mode is filtered out to highlight the differences in the turbulent eddy size.
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Figure 1. True-colour mosaic of Jupiter acquired by Cassini. The portrait shows Jupiter’s zonal
bands, the Great Red Spot and other vortices, several discrete storms within the orange band north
of the equator and also west of the Great Red Spot, and two equatorial hot spots at the northern
edge of the equatorial band near the planetary limb. NASA image PIA04866 (PIA images can be
accessed at NASA’s Planetary Photojournal, http://photojournal.jpl.nasa.gov).

and engineering. Jupiter’s atmosphere constitutes an immense fluid dynamics experiment of a
scale that could never be achieved in the laboratory, and one that continues to challenge state-
of-the-art computers. In many cases, the analogue for observed dynamical phenomena is not
the Earth’s atmosphere, but the Earth’s oceans or the outer layers of the Sun. Another major
challenge to our scientific progress is the fact that we observe just a few hundred kilometres
into a planet with an equatorial radius of 71 492 km (to the 1 bar level). In fact, the interior is
not completely hidden, since the properties and motions at much deeper levels may influence
what happens in the outer layers.

Jupiter’s jets, vortices and storms are studied with the goal of understanding their nature,
behaviour, and roles in the planetary-scale circulation and energetics. What physics organizes
the fluid into jets and vortices, and what is the resulting three-dimensional structure? What
processes power the storms and maintain the jets and vortices against dissipation? On Earth,
the large-scale circulations are driven primarily by the equator-to-pole gradient in sunlight
absorbed by the surface and atmosphere. On Jupiter, the energetics are less straightforward;
the equator-to-pole temperature contrast is nearly zero, and the fluxes of internal (primordial)
energy and sunlight are comparable (though the total available energy is ∼20 times less than that
for the Earth). At a more detailed level, what mechanisms, such as convection or turbulence,
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Figure 3. Zonal winds in 1979 and 2000, convective storms, and lightning. The thick line shows
the wind speeds measured by Porco et al (2003) on Cassini images. The thin line shows winds
measured by Limaye (1986) on Voyager 2 images. The profiles are remarkably similar, though
some changes in jet speed (e.g. at 24˚N) are apparent. Shaded (clear) bands mark areas of cyclonic
(anticyclonic) shear in the zonal winds. Short horizontal lines at the left margin of the figure note
the latitudes of features interpreted to be convective storms in Cassini images (Porco et al 2003).
Similar marks at the right margin note the latitudes of lightning strikes in Galileo and Cassini
images (Little et al 1999, Dyudina et al 2004).

and Conrath (1993), Ingersoll (1998b), Irwin (2003), Bagenal et al (2004)). Our discussion
of theory and simulation reaches back further in time and fills an important gap by focusing
particular attention on the dynamical mechanisms that produce Jupiter’s jet streams, which
have not been extensively reviewed in the literature. As such, we seek to complement the
reviews of Ingersoll (1990), Marcus (1993), Dowling (1995a) and Ingersoll et al (2004).
We begin with a brief overview of the Galileo and Cassini imaging investigations at Jupiter.
We then present four sections discussing the advances in observation, theory, experiment and
simulation relevant to Jupiter’s zonal jets, vortices, storms and equatorial features. Throughout
the paper we use System III west longitudes and planetographic latitudes, calculated assuming
equatorial and polar radii of 71 492 km and 66 854 km, respectively, at the 1 bar pressure level.

2. Galileo and Cassini at Jupiter

After visits from both Voyager spacecraft in 1979, only Earth-based telescopes viewed Jupiter
until the Galileo spacecraft arrived in 1995. A multi-billion dollar mission, Galileo was
designed to spend years circling the planet and flying by its moons while returning data from
an array of onboard experiments and a probe released into Jupiter’s atmosphere. Technical

Introduction Polarization e↵ects Ponderomotive e↵ects Zonal flows Conclusions

Phase-space methods are useful to study inhomogeneous wave turbulence.

• In certain regimes, large-scale zonal flows are
driven by small-scale wave turbulence.

• Zonal flows are important to study since they
reduce turbulence.

• In magnetic fusion, turbulence increases
particle transport.

• This reduces confinement in tokamaks.

• Zonal flows can shear turbulent eddies and
suppress turbulence. Hence,

• turbulent transport is reduced,
• confinement is improved.

From:&JAERI

es the rapid gyromotion of a charged particle
about the magnetic field line. By use of low-
noise numerical algorithms (6, 7) and massive-
ly parallel computers, we were able to repro-
duce key features of turbulent transport ob-
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ary conditions and assume scale separation
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code takes into account equilibrium profile
variation effects and has low particle noise.
Furthermore, a single code can simulate both
a full poloidal cross section and an annular
box to provide a connection between global
and local simulations. The GTC code was
implemented as a platform-independent pro-
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(MPP) systems (for example, CRAY-T3E
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ability enables us to fully use the rapidly
increasing MPP computer power that present-
ly allows routine nonlinear simulations of
more than 108 particles to treat realistic plas-
mas parameters of existing fusion experi-
ments. Nevertheless, a more than two orders
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will be required to assess turbulent transport
properties of reactor-relevant plasmas with
additional key features such as nonadiabatic
electron response, electromagnetic perturba-
tions, and larger system size.
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neoclassical transport (17) and toroidal ITG
simulations (7). Linear ITG growth rates and
real frequencies agree well with results from
linear gyrofluid code (8) calculations, and
steady-state transport results are consistent
with those from global gyrokinetic Cartesian
code (11) nonlinear simulations when turbu-
lence-driven E " B flows are suppressed. We
tested convergence by varying the size of
each time step, the number of grid points, and
the number of particles in nonlinear simula-
tions. The convergence of the ion heat con-
ductivity #i and fluctuation energy level with
respect to the number of particles was dem-
onstrated in nonlinear simulations with 20
million grid points with representative plas-
ma parameters from tokamak experiments.
The ion heat conductivity remained un-
changed when the number of particles was
increased from 32 million to 80 million. Sim-
ilar convergence of the fluctuation energy
was obtained with 80 million particles.
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stant on a flux surface and introduced a pertur-
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pumping effect (20) followed by a slower
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quency corresponding to that of the geodesic
acoustic mode (21). The residual level of this
flow measured from the simulation agrees well
with the theoretical prediction (18).
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simulations of toroidal ITG instabilities. The
flows are generated by the Reynolds stress
(22) and can be considered as a nonlinear
instability associated with inverse cascade of
the turbulent spectra (23). Our global simu-
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flows containing substantial components with
radial scales and frequencies comparable to
those of the turbulence. These results are in
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tative parameters of DIII-D tokamak high
confinement mode core plasmas, which have
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respect to the number of particles was dem-
onstrated in nonlinear simulations with 20
million grid points with representative plas-
ma parameters from tokamak experiments.
The ion heat conductivity remained un-
changed when the number of particles was
increased from 32 million to 80 million. Sim-
ilar convergence of the fluctuation energy
was obtained with 80 million particles.

Turbulence-generated zonal flows in toroi-
dal plasmas are driven by the flux-surface–
averaged radially local charge separation and
mainly in the poloidal direction for high–aspect
ratio devices. Rosenbluth and Hinton (18)

showed that an accurate prediction of the un-
damped component of poloidal flows is impor-
tant in determining the transport level in non-
linear turbulence simulations and provided an
analytical test for predicting the residual flow
level in response to an initial flow perturbation.
We reproduced this test in gyrokinetic particle
simulations by solving the toroidal gyrokinetic
equation (19) with an initial source that is con-
stant on a flux surface and introduced a pertur-
bation of the poloidal flow. This flow was
relaxed through the transit time magnetic
pumping effect (20) followed by a slower
damped oscillation with a characteristic fre-
quency corresponding to that of the geodesic
acoustic mode (21). The residual level of this
flow measured from the simulation agrees well
with the theoretical prediction (18).

Turbulence-driven zonal flows are now
self-consistently included in the nonlinear
simulations of toroidal ITG instabilities. The
flows are generated by the Reynolds stress
(22) and can be considered as a nonlinear
instability associated with inverse cascade of
the turbulent spectra (23). Our global simu-
lations produced fluctuating E " B zonal
flows containing substantial components with
radial scales and frequencies comparable to
those of the turbulence. These results are in
qualitative agreement with flux-tube simula-
tions (8, 10) and demonstrate the possible
existence and the importance of such fluctu-
ating flows. These simulations used represen-
tative parameters of DIII-D tokamak high
confinement mode core plasmas, which have
a peak ion-temperature gradient at minor ra-
dius r $ 0.5 a with the following local param-
eters: R0/LT $ 6.9, Ln /LT $ 3.2, q $ 1.4,
(r/q )(dq /dr) $ 0.78, Te/Ti $ 1, and a/R0 $
0.36, where R0 is the major radius, LT and Ln

are the temperature and density gradient scale
lengths, respectively, Ti is the ion tempera-

Fig. 1. Time history of ion heat conductivities
with (solid) and without (dotted) E " B flows
in global simulations with realistic plasma
parameters.

Fig. 2. Poloidal contour plots of fluctuation potential (e%/Ti) in the steady state of nonlinear global
simulation with E " B flows included (A) and with the flows suppressed (B). The dominant poloidal
spectrum k& $ 0 mode is filtered out to highlight the differences in the turbulent eddy size.
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Introduction Polarization e↵ects Ponderomotive e↵ects Zonal flows Conclusions

Phase-space methods are useful to study inhomogeneous wave turbulence.

• In certain regimes, large-scale zonal flows are
driven by small-scale wave turbulence.

• Zonal flows are important to study since they
reduce turbulence.

• In magnetic fusion, turbulence increases
particle transport.

• This reduces confinement in tokamaks.

• Zonal flows can shear turbulent eddies and
suppress turbulence. Hence,

• turbulent transport is reduced,
• confinement is improved.
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es the rapid gyromotion of a charged particle
about the magnetic field line. By use of low-
noise numerical algorithms (6, 7) and massive-
ly parallel computers, we were able to repro-
duce key features of turbulent transport ob-
served at the core of tokamak plasmas.

Previous toroidal gyrokinetic and gy-
rofluid (8) simulations of instabilities driven
by the ion-temperature gradient (ITG) in a
local geometry, which follows a magnetic
field line (8–10), have indicated that turbu-
lence-driven zonal flows play a crucial role in
regulating nonlinear saturation and transport
levels. However, global gyrokinetic simula-
tions, which treat the whole plasma volume,
either did not include (11) or did not observe
(12, 13) substantial effects of these self-gen-
erated flows in steady-state transport. Be-
cause local simulations are restricted to a
flux-tube domain of a few turbulence decor-
relation lengths with radially periodic bound-
ary conditions and assume scale separation
between the turbulence and equilibrium pro-
files, the key issues of transport scaling and
effects of steep pressure profiles in transport
barriers can be most effectively studied in
global simulations.

We developed a fully three-dimensional
(3D) global gyrokinetic toroidal code (GTC)
(7) based on the low-noise nonlinear !f
scheme (6) for studying both turbulence and
neoclassical physics. The code uses a general
geometry Poisson solver (14) and Hamiltoni-
an guiding center equations of motion (15) in
magnetic coordinates (16) to treat both ad-
vanced axisymmetric and nonaxisymmetric
configurations with realistic numerical mag-
netohydrodynamics equilibria. This global
code takes into account equilibrium profile
variation effects and has low particle noise.
Furthermore, a single code can simulate both
a full poloidal cross section and an annular
box to provide a connection between global
and local simulations. The GTC code was
implemented as a platform-independent pro-
gram and achieved nearly perfect scalability
on various massively parallel processing
(MPP) systems (for example, CRAY-T3E

and Origin-2000 supercomputers). This scal-
ability enables us to fully use the rapidly
increasing MPP computer power that present-
ly allows routine nonlinear simulations of
more than 108 particles to treat realistic plas-
mas parameters of existing fusion experi-
ments. Nevertheless, a more than two orders
of magnitude increase in computing power
will be required to assess turbulent transport
properties of reactor-relevant plasmas with
additional key features such as nonadiabatic
electron response, electromagnetic perturba-
tions, and larger system size.

The GTC code was benchmarked against
earlier analytic and computational models for
neoclassical transport (17) and toroidal ITG
simulations (7). Linear ITG growth rates and
real frequencies agree well with results from
linear gyrofluid code (8) calculations, and
steady-state transport results are consistent
with those from global gyrokinetic Cartesian
code (11) nonlinear simulations when turbu-
lence-driven E " B flows are suppressed. We
tested convergence by varying the size of
each time step, the number of grid points, and
the number of particles in nonlinear simula-
tions. The convergence of the ion heat con-
ductivity #i and fluctuation energy level with
respect to the number of particles was dem-
onstrated in nonlinear simulations with 20
million grid points with representative plas-
ma parameters from tokamak experiments.
The ion heat conductivity remained un-
changed when the number of particles was
increased from 32 million to 80 million. Sim-
ilar convergence of the fluctuation energy
was obtained with 80 million particles.

Turbulence-generated zonal flows in toroi-
dal plasmas are driven by the flux-surface–
averaged radially local charge separation and
mainly in the poloidal direction for high–aspect
ratio devices. Rosenbluth and Hinton (18)

showed that an accurate prediction of the un-
damped component of poloidal flows is impor-
tant in determining the transport level in non-
linear turbulence simulations and provided an
analytical test for predicting the residual flow
level in response to an initial flow perturbation.
We reproduced this test in gyrokinetic particle
simulations by solving the toroidal gyrokinetic
equation (19) with an initial source that is con-
stant on a flux surface and introduced a pertur-
bation of the poloidal flow. This flow was
relaxed through the transit time magnetic
pumping effect (20) followed by a slower
damped oscillation with a characteristic fre-
quency corresponding to that of the geodesic
acoustic mode (21). The residual level of this
flow measured from the simulation agrees well
with the theoretical prediction (18).

Turbulence-driven zonal flows are now
self-consistently included in the nonlinear
simulations of toroidal ITG instabilities. The
flows are generated by the Reynolds stress
(22) and can be considered as a nonlinear
instability associated with inverse cascade of
the turbulent spectra (23). Our global simu-
lations produced fluctuating E " B zonal
flows containing substantial components with
radial scales and frequencies comparable to
those of the turbulence. These results are in
qualitative agreement with flux-tube simula-
tions (8, 10) and demonstrate the possible
existence and the importance of such fluctu-
ating flows. These simulations used represen-
tative parameters of DIII-D tokamak high
confinement mode core plasmas, which have
a peak ion-temperature gradient at minor ra-
dius r $ 0.5 a with the following local param-
eters: R0/LT $ 6.9, Ln /LT $ 3.2, q $ 1.4,
(r/q )(dq /dr) $ 0.78, Te/Ti $ 1, and a/R0 $
0.36, where R0 is the major radius, LT and Ln

are the temperature and density gradient scale
lengths, respectively, Ti is the ion tempera-

Fig. 1. Time history of ion heat conductivities
with (solid) and without (dotted) E " B flows
in global simulations with realistic plasma
parameters.

Fig. 2. Poloidal contour plots of fluctuation potential (e%/Ti) in the steady state of nonlinear global
simulation with E " B flows included (A) and with the flows suppressed (B). The dominant poloidal
spectrum k& $ 0 mode is filtered out to highlight the differences in the turbulent eddy size.
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es the rapid gyromotion of a charged particle
about the magnetic field line. By use of low-
noise numerical algorithms (6, 7) and massive-
ly parallel computers, we were able to repro-
duce key features of turbulent transport ob-
served at the core of tokamak plasmas.

Previous toroidal gyrokinetic and gy-
rofluid (8) simulations of instabilities driven
by the ion-temperature gradient (ITG) in a
local geometry, which follows a magnetic
field line (8–10), have indicated that turbu-
lence-driven zonal flows play a crucial role in
regulating nonlinear saturation and transport
levels. However, global gyrokinetic simula-
tions, which treat the whole plasma volume,
either did not include (11) or did not observe
(12, 13) substantial effects of these self-gen-
erated flows in steady-state transport. Be-
cause local simulations are restricted to a
flux-tube domain of a few turbulence decor-
relation lengths with radially periodic bound-
ary conditions and assume scale separation
between the turbulence and equilibrium pro-
files, the key issues of transport scaling and
effects of steep pressure profiles in transport
barriers can be most effectively studied in
global simulations.

We developed a fully three-dimensional
(3D) global gyrokinetic toroidal code (GTC)
(7) based on the low-noise nonlinear !f
scheme (6) for studying both turbulence and
neoclassical physics. The code uses a general
geometry Poisson solver (14) and Hamiltoni-
an guiding center equations of motion (15) in
magnetic coordinates (16) to treat both ad-
vanced axisymmetric and nonaxisymmetric
configurations with realistic numerical mag-
netohydrodynamics equilibria. This global
code takes into account equilibrium profile
variation effects and has low particle noise.
Furthermore, a single code can simulate both
a full poloidal cross section and an annular
box to provide a connection between global
and local simulations. The GTC code was
implemented as a platform-independent pro-
gram and achieved nearly perfect scalability
on various massively parallel processing
(MPP) systems (for example, CRAY-T3E

and Origin-2000 supercomputers). This scal-
ability enables us to fully use the rapidly
increasing MPP computer power that present-
ly allows routine nonlinear simulations of
more than 108 particles to treat realistic plas-
mas parameters of existing fusion experi-
ments. Nevertheless, a more than two orders
of magnitude increase in computing power
will be required to assess turbulent transport
properties of reactor-relevant plasmas with
additional key features such as nonadiabatic
electron response, electromagnetic perturba-
tions, and larger system size.

The GTC code was benchmarked against
earlier analytic and computational models for
neoclassical transport (17) and toroidal ITG
simulations (7). Linear ITG growth rates and
real frequencies agree well with results from
linear gyrofluid code (8) calculations, and
steady-state transport results are consistent
with those from global gyrokinetic Cartesian
code (11) nonlinear simulations when turbu-
lence-driven E " B flows are suppressed. We
tested convergence by varying the size of
each time step, the number of grid points, and
the number of particles in nonlinear simula-
tions. The convergence of the ion heat con-
ductivity #i and fluctuation energy level with
respect to the number of particles was dem-
onstrated in nonlinear simulations with 20
million grid points with representative plas-
ma parameters from tokamak experiments.
The ion heat conductivity remained un-
changed when the number of particles was
increased from 32 million to 80 million. Sim-
ilar convergence of the fluctuation energy
was obtained with 80 million particles.

Turbulence-generated zonal flows in toroi-
dal plasmas are driven by the flux-surface–
averaged radially local charge separation and
mainly in the poloidal direction for high–aspect
ratio devices. Rosenbluth and Hinton (18)

showed that an accurate prediction of the un-
damped component of poloidal flows is impor-
tant in determining the transport level in non-
linear turbulence simulations and provided an
analytical test for predicting the residual flow
level in response to an initial flow perturbation.
We reproduced this test in gyrokinetic particle
simulations by solving the toroidal gyrokinetic
equation (19) with an initial source that is con-
stant on a flux surface and introduced a pertur-
bation of the poloidal flow. This flow was
relaxed through the transit time magnetic
pumping effect (20) followed by a slower
damped oscillation with a characteristic fre-
quency corresponding to that of the geodesic
acoustic mode (21). The residual level of this
flow measured from the simulation agrees well
with the theoretical prediction (18).

Turbulence-driven zonal flows are now
self-consistently included in the nonlinear
simulations of toroidal ITG instabilities. The
flows are generated by the Reynolds stress
(22) and can be considered as a nonlinear
instability associated with inverse cascade of
the turbulent spectra (23). Our global simu-
lations produced fluctuating E " B zonal
flows containing substantial components with
radial scales and frequencies comparable to
those of the turbulence. These results are in
qualitative agreement with flux-tube simula-
tions (8, 10) and demonstrate the possible
existence and the importance of such fluctu-
ating flows. These simulations used represen-
tative parameters of DIII-D tokamak high
confinement mode core plasmas, which have
a peak ion-temperature gradient at minor ra-
dius r $ 0.5 a with the following local param-
eters: R0/LT $ 6.9, Ln /LT $ 3.2, q $ 1.4,
(r/q )(dq /dr) $ 0.78, Te/Ti $ 1, and a/R0 $
0.36, where R0 is the major radius, LT and Ln

are the temperature and density gradient scale
lengths, respectively, Ti is the ion tempera-

Fig. 1. Time history of ion heat conductivities
with (solid) and without (dotted) E " B flows
in global simulations with realistic plasma
parameters.

Fig. 2. Poloidal contour plots of fluctuation potential (e%/Ti) in the steady state of nonlinear global
simulation with E " B flows included (A) and with the flows suppressed (B). The dominant poloidal
spectrum k& $ 0 mode is filtered out to highlight the differences in the turbulent eddy size.
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• In magnetic fusion, turbulence increases
particle transport.
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suppress turbulence. Hence,

• turbulent transport is reduced,
• confinement is improved.

From:&JAERI

es the rapid gyromotion of a charged particle
about the magnetic field line. By use of low-
noise numerical algorithms (6, 7) and massive-
ly parallel computers, we were able to repro-
duce key features of turbulent transport ob-
served at the core of tokamak plasmas.

Previous toroidal gyrokinetic and gy-
rofluid (8) simulations of instabilities driven
by the ion-temperature gradient (ITG) in a
local geometry, which follows a magnetic
field line (8–10), have indicated that turbu-
lence-driven zonal flows play a crucial role in
regulating nonlinear saturation and transport
levels. However, global gyrokinetic simula-
tions, which treat the whole plasma volume,
either did not include (11) or did not observe
(12, 13) substantial effects of these self-gen-
erated flows in steady-state transport. Be-
cause local simulations are restricted to a
flux-tube domain of a few turbulence decor-
relation lengths with radially periodic bound-
ary conditions and assume scale separation
between the turbulence and equilibrium pro-
files, the key issues of transport scaling and
effects of steep pressure profiles in transport
barriers can be most effectively studied in
global simulations.

We developed a fully three-dimensional
(3D) global gyrokinetic toroidal code (GTC)
(7) based on the low-noise nonlinear !f
scheme (6) for studying both turbulence and
neoclassical physics. The code uses a general
geometry Poisson solver (14) and Hamiltoni-
an guiding center equations of motion (15) in
magnetic coordinates (16) to treat both ad-
vanced axisymmetric and nonaxisymmetric
configurations with realistic numerical mag-
netohydrodynamics equilibria. This global
code takes into account equilibrium profile
variation effects and has low particle noise.
Furthermore, a single code can simulate both
a full poloidal cross section and an annular
box to provide a connection between global
and local simulations. The GTC code was
implemented as a platform-independent pro-
gram and achieved nearly perfect scalability
on various massively parallel processing
(MPP) systems (for example, CRAY-T3E

and Origin-2000 supercomputers). This scal-
ability enables us to fully use the rapidly
increasing MPP computer power that present-
ly allows routine nonlinear simulations of
more than 108 particles to treat realistic plas-
mas parameters of existing fusion experi-
ments. Nevertheless, a more than two orders
of magnitude increase in computing power
will be required to assess turbulent transport
properties of reactor-relevant plasmas with
additional key features such as nonadiabatic
electron response, electromagnetic perturba-
tions, and larger system size.

The GTC code was benchmarked against
earlier analytic and computational models for
neoclassical transport (17) and toroidal ITG
simulations (7). Linear ITG growth rates and
real frequencies agree well with results from
linear gyrofluid code (8) calculations, and
steady-state transport results are consistent
with those from global gyrokinetic Cartesian
code (11) nonlinear simulations when turbu-
lence-driven E " B flows are suppressed. We
tested convergence by varying the size of
each time step, the number of grid points, and
the number of particles in nonlinear simula-
tions. The convergence of the ion heat con-
ductivity #i and fluctuation energy level with
respect to the number of particles was dem-
onstrated in nonlinear simulations with 20
million grid points with representative plas-
ma parameters from tokamak experiments.
The ion heat conductivity remained un-
changed when the number of particles was
increased from 32 million to 80 million. Sim-
ilar convergence of the fluctuation energy
was obtained with 80 million particles.

Turbulence-generated zonal flows in toroi-
dal plasmas are driven by the flux-surface–
averaged radially local charge separation and
mainly in the poloidal direction for high–aspect
ratio devices. Rosenbluth and Hinton (18)

showed that an accurate prediction of the un-
damped component of poloidal flows is impor-
tant in determining the transport level in non-
linear turbulence simulations and provided an
analytical test for predicting the residual flow
level in response to an initial flow perturbation.
We reproduced this test in gyrokinetic particle
simulations by solving the toroidal gyrokinetic
equation (19) with an initial source that is con-
stant on a flux surface and introduced a pertur-
bation of the poloidal flow. This flow was
relaxed through the transit time magnetic
pumping effect (20) followed by a slower
damped oscillation with a characteristic fre-
quency corresponding to that of the geodesic
acoustic mode (21). The residual level of this
flow measured from the simulation agrees well
with the theoretical prediction (18).

Turbulence-driven zonal flows are now
self-consistently included in the nonlinear
simulations of toroidal ITG instabilities. The
flows are generated by the Reynolds stress
(22) and can be considered as a nonlinear
instability associated with inverse cascade of
the turbulent spectra (23). Our global simu-
lations produced fluctuating E " B zonal
flows containing substantial components with
radial scales and frequencies comparable to
those of the turbulence. These results are in
qualitative agreement with flux-tube simula-
tions (8, 10) and demonstrate the possible
existence and the importance of such fluctu-
ating flows. These simulations used represen-
tative parameters of DIII-D tokamak high
confinement mode core plasmas, which have
a peak ion-temperature gradient at minor ra-
dius r $ 0.5 a with the following local param-
eters: R0/LT $ 6.9, Ln /LT $ 3.2, q $ 1.4,
(r/q )(dq /dr) $ 0.78, Te/Ti $ 1, and a/R0 $
0.36, where R0 is the major radius, LT and Ln

are the temperature and density gradient scale
lengths, respectively, Ti is the ion tempera-

Fig. 1. Time history of ion heat conductivities
with (solid) and without (dotted) E " B flows
in global simulations with realistic plasma
parameters.

Fig. 2. Poloidal contour plots of fluctuation potential (e%/Ti) in the steady state of nonlinear global
simulation with E " B flows included (A) and with the flows suppressed (B). The dominant poloidal
spectrum k& $ 0 mode is filtered out to highlight the differences in the turbulent eddy size.
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about the magnetic field line. By use of low-
noise numerical algorithms (6, 7) and massive-
ly parallel computers, we were able to repro-
duce key features of turbulent transport ob-
served at the core of tokamak plasmas.

Previous toroidal gyrokinetic and gy-
rofluid (8) simulations of instabilities driven
by the ion-temperature gradient (ITG) in a
local geometry, which follows a magnetic
field line (8–10), have indicated that turbu-
lence-driven zonal flows play a crucial role in
regulating nonlinear saturation and transport
levels. However, global gyrokinetic simula-
tions, which treat the whole plasma volume,
either did not include (11) or did not observe
(12, 13) substantial effects of these self-gen-
erated flows in steady-state transport. Be-
cause local simulations are restricted to a
flux-tube domain of a few turbulence decor-
relation lengths with radially periodic bound-
ary conditions and assume scale separation
between the turbulence and equilibrium pro-
files, the key issues of transport scaling and
effects of steep pressure profiles in transport
barriers can be most effectively studied in
global simulations.

We developed a fully three-dimensional
(3D) global gyrokinetic toroidal code (GTC)
(7) based on the low-noise nonlinear !f
scheme (6) for studying both turbulence and
neoclassical physics. The code uses a general
geometry Poisson solver (14) and Hamiltoni-
an guiding center equations of motion (15) in
magnetic coordinates (16) to treat both ad-
vanced axisymmetric and nonaxisymmetric
configurations with realistic numerical mag-
netohydrodynamics equilibria. This global
code takes into account equilibrium profile
variation effects and has low particle noise.
Furthermore, a single code can simulate both
a full poloidal cross section and an annular
box to provide a connection between global
and local simulations. The GTC code was
implemented as a platform-independent pro-
gram and achieved nearly perfect scalability
on various massively parallel processing
(MPP) systems (for example, CRAY-T3E

and Origin-2000 supercomputers). This scal-
ability enables us to fully use the rapidly
increasing MPP computer power that present-
ly allows routine nonlinear simulations of
more than 108 particles to treat realistic plas-
mas parameters of existing fusion experi-
ments. Nevertheless, a more than two orders
of magnitude increase in computing power
will be required to assess turbulent transport
properties of reactor-relevant plasmas with
additional key features such as nonadiabatic
electron response, electromagnetic perturba-
tions, and larger system size.

The GTC code was benchmarked against
earlier analytic and computational models for
neoclassical transport (17) and toroidal ITG
simulations (7). Linear ITG growth rates and
real frequencies agree well with results from
linear gyrofluid code (8) calculations, and
steady-state transport results are consistent
with those from global gyrokinetic Cartesian
code (11) nonlinear simulations when turbu-
lence-driven E " B flows are suppressed. We
tested convergence by varying the size of
each time step, the number of grid points, and
the number of particles in nonlinear simula-
tions. The convergence of the ion heat con-
ductivity #i and fluctuation energy level with
respect to the number of particles was dem-
onstrated in nonlinear simulations with 20
million grid points with representative plas-
ma parameters from tokamak experiments.
The ion heat conductivity remained un-
changed when the number of particles was
increased from 32 million to 80 million. Sim-
ilar convergence of the fluctuation energy
was obtained with 80 million particles.

Turbulence-generated zonal flows in toroi-
dal plasmas are driven by the flux-surface–
averaged radially local charge separation and
mainly in the poloidal direction for high–aspect
ratio devices. Rosenbluth and Hinton (18)

showed that an accurate prediction of the un-
damped component of poloidal flows is impor-
tant in determining the transport level in non-
linear turbulence simulations and provided an
analytical test for predicting the residual flow
level in response to an initial flow perturbation.
We reproduced this test in gyrokinetic particle
simulations by solving the toroidal gyrokinetic
equation (19) with an initial source that is con-
stant on a flux surface and introduced a pertur-
bation of the poloidal flow. This flow was
relaxed through the transit time magnetic
pumping effect (20) followed by a slower
damped oscillation with a characteristic fre-
quency corresponding to that of the geodesic
acoustic mode (21). The residual level of this
flow measured from the simulation agrees well
with the theoretical prediction (18).

Turbulence-driven zonal flows are now
self-consistently included in the nonlinear
simulations of toroidal ITG instabilities. The
flows are generated by the Reynolds stress
(22) and can be considered as a nonlinear
instability associated with inverse cascade of
the turbulent spectra (23). Our global simu-
lations produced fluctuating E " B zonal
flows containing substantial components with
radial scales and frequencies comparable to
those of the turbulence. These results are in
qualitative agreement with flux-tube simula-
tions (8, 10) and demonstrate the possible
existence and the importance of such fluctu-
ating flows. These simulations used represen-
tative parameters of DIII-D tokamak high
confinement mode core plasmas, which have
a peak ion-temperature gradient at minor ra-
dius r $ 0.5 a with the following local param-
eters: R0/LT $ 6.9, Ln /LT $ 3.2, q $ 1.4,
(r/q )(dq /dr) $ 0.78, Te/Ti $ 1, and a/R0 $
0.36, where R0 is the major radius, LT and Ln

are the temperature and density gradient scale
lengths, respectively, Ti is the ion tempera-

Fig. 1. Time history of ion heat conductivities
with (solid) and without (dotted) E " B flows
in global simulations with realistic plasma
parameters.

Fig. 2. Poloidal contour plots of fluctuation potential (e%/Ti) in the steady state of nonlinear global
simulation with E " B flows included (A) and with the flows suppressed (B). The dominant poloidal
spectrum k& $ 0 mode is filtered out to highlight the differences in the turbulent eddy size.
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(A)

(B)

Figure 2-1. Zonal flows are present in magnetic fusion experiments and in plane-
tary atmospheres. Understanding their interactions with small-scale turbulence
is essential to understand. As an example, when ZFs emerge in tokamaks,
they are known to suppress the ion heat conduction, as shown in the top-right
corner of the figure. Also, ZFs are known to reduce the magnitude of small-
scale turbulence as shown in the bottom-left corner. (Images are taken from
Refs. [7; 14].)
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We present a systematic derivation of a wave kinetic equation describing the dynamics of a
statistically inhomogeneous incoherent wave field in a medium with a weak quadratic nonlinearity.
The medium can be nonstationary and inhomogeneous. Primarily based on the Weyl phase-space
representation, our derivation makes use of the well-known ordering assumptions of geometrical
optics and of a statistical closure based on the quasinormal approximation. The resulting wave
kinetic equation describes the wave dynamics in the ray phase space. It captures linear e↵ects, such
as refraction, linear damping, and external sources, as well as nonlinear wave scattering. This general
formalism could potentially serve as a stepping stone for future studies of weak wave turbulence
interacting with mean fields in nonstationary and inhomogeneous media.

I. INTRODUCTION
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Wave turbulence is an ubiquotous phenomenon present
in many physical systems; e.g., water-wave turbulence
[1, 2], magnetohydrodynamic turbulence in astrophysics
[3], turbulence in Bose–Einstein condensates [4, 5], and
plasma turbulence [6, 7]. Analytical studies of wave tur-
bulence, i.e., the dynamics of out-of-equilibrium nonlin-
ear waves, have primarily focused on the development of
statistical closures. Among these closures, weak turbu-
lence theory (WTT) has become a well-understood sta-
tistical theory for weakly interacting waves. (A modern
review of WTT is given in Ref. [8].)

A common paradigm in WWT is to assume that the
medium, and hence the turbulent fields, are statistically
homogeneous. This means that all statistically averaged
quantities are invariant under spatial translations so the
waves are conveniently described in the spatial-Fourier
representation. Then, a wave kinetic equation is obtained
that governs the wave action density in the wave-vector
space. However, the assumption of homogeneous turbu-
lence has its limitations. As an example, drift-wave tur-
bulence in magnetically confined fusion plasmas is known
to be a↵ected by shearing of the magnetic fields and by
the presence of zonal flows [9–14]. Regarding the lat-
ter, the shearing of drift waves by zonal flows can lead
to spectacular e↵ects that are missed by homogeneous
WTT, such as the suppression of drift-wave turbulence
by zonal flows [9, 10, 15–17]. Hence, complete theories of
wave turbulence should consider inhomogeneities in the
medium and in the external forcing.

The aim of this paper is to systematically construct
such inhomogeneous WTT. Here we shall assume that the
medium, in which the waves propagate, is weakly non-
stationary and inhomogeneous; i.e., the relevant charac-
teristic period (temporal or spatial) of the waves is small
compared to the inhomogeneity scale of the underlying
medium. Under this assumption, it is possible to com-

bine arguments that are well-known in geometrical op-
tics (GO) [18] with those frequently used in statistical
descriptions of wave turbulence [19, 20]. It is to be noted
that the idea of developing an inhomogeneous WTT is
not new; in fact, previous WTT have been presented for
describing inhomogeneous Bose–Einstein condensates [4],
plasma wave turbulence [7, 11, 21], and Rossby-wave tur-
bulence [22]. In order to obtain dynamical equations on
the ray phase space (x,k) (here, x is the spatial coordi-
nate, and k is the wavevector coordinate), previous works
have proposed a variety of methods. For example, one
approach makes use of Gabor wavelets to project the fluc-
tuating wave field to a (x,k) space. In statistical theories
based on correlation functions, another approach consists
in writing the dynamical functions in terms of slow and
fast variables and then Fourier-transforming the fast vari-
ables. Both methods lead to WKEs describing the wave
action density on the ray phase-space. However, these
approaches usually involve tedious calculations that are
very specific to the problem of interest.

The general procedure that we shall employ in the
present derivation of the WKE is based on the Weyl
symbol calculus [23, 24]. This procedure has several
advantages. After choosing a statistical closure for the
wave dynamics, all further manipulations are inherently
done in the Weyl phase-space representation. All func-
tions involved are defined through the Weyl transforma-
tion and depend on the phase-space variables, which are
treated on the same footing. The Weyl transformation
allows to derive an equation for the fluctuations that is
formally correct to all orders in the inhomogeneities of
the medium. By using a well-known ordering hierarchy
[25, 26] that is consistent with the GO approximation, we
obtain a WKE [see Eq. (48)] that captures linear e↵ects,
such as refraction, linear damping, and external sources,
as well as nonlinear wave scattering. This procedure not
only systematizes di�cult calculations, which can lead to
corrections to previous WKE models (see, e.g., Ref. [27]),
but also can be extended to higher-order theories.
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Figure 2-2. Schematic diagram portraying the various statistical models for mod-
eling DW turbulence. Along the x axis, models are ordered according to how
they deal with inhomogeneities in the plasma. To be more specific, models
sitting on the x = 0 axis do not consider inhomogeneities. The CE2 and WM
formalisms do not assume any scale separation; therefore, they are placed on
the right of the diagram. Along the y axis, models are ordered according to
the complexity of the statistical closure. Quasilinear theory is placed on the
bottom since it neglects nonlinear wave–wave interactions among the DWs.
The most complete formalism in terms of the statistical closure involved is the
Martin–Siggia–Rose (MSR) description. The work discussed in this chapter
added nonlinear wave–wave collisions to the wave-kinetic-equation description.

the quasilinear approach. However, they do involve PDEs which are nonlocal in nature, and
therefore the underlying physical interpretation can be somewhat obscured.

Another popular quasilinear approach is the wave kinetic equation (WKE) model [28;
24; 25; 29; 30; 5; 31; 32; 33; 34; 35; 36; 37; 38; 39]. In this framework, the DW are assumed to
be of smaller scale compared to the larger-scale zonal flows. By introducing an explicit scale
separation, it is possible to invoke the geometrical-optics approximation and to localize the
CE2 and Wigner–Moyal formalisms [28; 24]. Although the WKE-based description may miss
some physics [40] that the CE2 and WM theories do capture, the WKE has the intuitive form
of a Liouville equation for the DW action density J in the ray phase space [28; 24; 25; 29; 40]:

∂tJ + {J,Ω} = 2ΓJ, (2.1)

where J is the DW action density, Ω is the local DW frequency, Γ is a dissipation rate due
to interactions with ZFs, and {·, ·} is the canonical Poisson bracket. (For the sake of clarity,
terms related to external forcing and dissipation are omitted here.) In this description, DW
intuitively propagate in a ray phase-space and are absorbed when a ZF emerges. The last
term found in Refs. [28; 24] is essential to conserve energy and enstrophy in the system.
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Our approach is based on three main theoretical pillars.

Turbulence theory

Weyl calculus

Wave theory

I The fields are separated into their mean and fluctuating parts.

I We obtain the eqs. for the ZF velocity and the DW correlation operator.

I The quasinormal approx. is used to statistically close the equations.

I The Weyl symbol calculus is used to project the closed operator equations
into the 8-dim. ray phase space (t,x, !,k).

I This gives a Wigner–Moyal formulation of DW–ZF interactions with
nonlinear DW collisions.

I We use the geometrical-optics parameter ✏go = max ( ⌧dw

⌧zf
, �dw

Lzf
, LD

Lzf
)⌧ 1.

I Based on the GO ordering, the Wigner–Moyal eqs. can be simplified.

I We obtain a collisional WKE model for DW–ZF interactions
that includes nonlinear wave–wave scattering.
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Figure 2-3. The calculation of a collisional wave-kinetic-equation model for de-
scribing the interaction between DWs and ZFs required combining elements
from turbulence theory, the phase-space Weyl calculus, and general wave the-
ory, in particular geometrical optics.

However, as with all quasilinear models, Eq. (2.1) neglects nonlinear wave–wave scat-
tering, and in consequence, is not able to capture the Batchelor–Kraichnan inverse-energy
cascade [22] or produce the Kolmogorov–Zakharov spectra for DWs [11]. If the DW spec-
trum is modified due to the presence of collisions, it is entirely possible that the ensuing
interaction with ZFs may be altered. Hence, a question remains as to whether the exist-
ing WKE for inhomogeneous turbulence can be complemented with a wave–wave collision
operator C[J, J ].

Under the auspices of the Truman Fellowship, the theory of DW–ZF interactions was
expanded by explicitly calculating the wave–wave collision operator C[J, J ] for DWs. Strictly
speaking, this operator had been derived before for the case of homogenoeus turbulence
[11]. However, the goal of this project was to derive it for the case of inhomogeneous DW
turbulence under the umbrella of the wave-kinetic-equation formalism. A diagram of how
this work fits into the general DW-ZF turbulence theory is shown in Fig. 2-2. The main
results of this work were published in Ref. [1].

2.2. Main result: Derivation of a wave-kinetic-equation model with nonlinear
wave–wave collisions included

Broadly speaking, our work combined elements from homogeneous turbulence theory [15],
the Weyl symbol calculus [41; 42; 43], and general wave theory, in particular geometrical
optics [44; 45; 46]. Below, I shall summarize the main steps in the paper.

The starting point of the calculation was the generalized Hasegawa–Mima equation
(gHME) [47; 31]. Based on homogeneous weak-wave-turbulence (WWT) theory [15], we sep-
arated the main dynamical variable, the electric potential ψ, into its mean and fluctuating
components. The mean part of the potential was associated to the large-scale, slowly-varying
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ZF fields, while the fluctuating component was associated to the small-scale, DW turbulence.
To construct a statistical theory, a two-point correlation operator Ŵ = 〈〈|w̃〉 〈w̃|〉〉 for the
DWs was introduced, where w̃ is a fluctuating electrostatic vorticity and 〈〈·〉〉 is some aver-
aging method. We preferred to work with the abstract operator Ŵ as it was coordinate free,
and therefore many of the ensuing calculations were able to be computed symbolically. As
it is usual with statistical theories, the introduction of correlation operator lead to the well-
known closure problem, where equations are always needed to be found for the higher-order
moments. To statistically close the equations, we utilized the quasinormal approximation,
which is related to the random-phase approximation. This statistical closure captures the
leading-order nonlinear DW collisions. As a testament of the various manipulations involved
in these calculations, the coordinate-free governing equation for the correlation operator was
found to be

[D̂H, Ŵ]− + i[D̂A, Ŵ]+ = 2iε2nl

[
F̂ (D̂−1)†

]
A
− 2iε2nl

[
η̂ Ŵ

]
A

+ 2iε2
[
Ŝ(D̂−1)†

]
A
, (2.2)

where [·, ·]± are the symmetric and antisymmetric commutation brackets, D̂H is the Hermi-

tian part of the DW dispersion operator, D̂A is the corresponding anti-Hermitian part, and
Ŝ is a source term for the DW fluctuations. The small parameters εnl and εgo are simply

ordering parameters, whose meaning is not necessary to explain. The operators F̂ and η̂
depend nonlinearly on the two-point correlation operator Ŵ. These operators act as the
nonlinear coupling terms that are usually encountered in WWT theory. From these, the
DW collisional operator emerges. These operators are symbolically written as

η̂
.
= −

∫
d3x d3y | x 〉 〈 y | (D̂−1)†K̂(x) Ŵ K̂†(y), (2.3)

F̂
.
=

1

2

∫
d3x d3y | x 〉 〈 y |Tr[ K̂(x) Ŵ K̂†(y) Ŵ ], (2.4)

where K̂ is some coupling kernel.

The result in Eqs. (2.2)–(2.4) is general and coordinate free. However, in order to do a
practical calculation, it was necessary to project these equations into a coordinate space. For
inhomogeneous turbulence, it is often convenient to project the dynamics of the correlation
operator onto the extended ray phase space (ω, t,x,k), where ω is the wave frequency and k
is the wavevector [24; 25; 40; 30]. As first shown in Ref. [24], the projection to the extended
phase space can be done systematically using the Weyl symbol calculus [41; 42; 43]. This
procedure lead to an equation that governs the dynamics of the Wigner function W (ω, t,x,k)
describing the DW fluctuations. The Wigner function is formally defined as [42]

W (t,x, ω,k) =

∫
dt′ d3x′ ei(ωs−k·x

′)/ε 〈 t+ 1
2
t′,x + 1

2
x′ | Ŵ | t− 1

2
t′,x− 1

2
x′ 〉

=

∫
dt′ d3x′ ei(ωs−k·x

′)/ε〈〈w̃ (t+ 1
2
t′,x + 1

2
x′
)
w̃
(
t− 1

2
t′,x− 1

2
x′
)
〉〉. (2.5)

At this point, even though the abstract Eq. (2.2) was projected into a phase-space, the result-
ing Wigner–Moyal equation was still hopelessly complicated since it is a pseudo-differential
equation. In other words, it is a partial differential equation of infinite order!
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To remedy this situation, it was necessary to reduce the order of the governing PDE.
This was done by assuming that there is a temporal and spatial scale separation between
the DW and ZF fields. Specifically, let τdw and λdw respectively denote the characteristic
period and wavelength of the DWs. In a similar manner, the characteristic time and length
scales of the ZFs are given by Tzf and Lzf , respectively. The scale separation between DWs
and ZFs is characterized by the geometrical-optics (GO) parameter

εgo
.
= max

(
τdw

Tzf

,
λdw

Lzf

)
� 1. (2.6)

Introducing a scale-separation ordering allowed to neglect the higher-order derivatives ap-
pearing in the Wigner–Moyal equation. The final result was a wave kinetic equation that
contained a wave–wave collision operator [1].

The obtained model for DW–ZF interactions is the following. The equations for the wave
action density J(t, y,k) for the DW fluctuations and of the ZF velocity field U(t, y) are

∂tJ + {J,Ω} = −2µdwJ + 2ΓJ + Sext + ε C[J, J ], (2.7)

∂tU + µzfU = ε2
∂

∂y

∫
d2k

(2πε)2

kxky
k4

D

J(t, y,k). (2.8)

where {·, ·} =
←−
∂x ·
−→
∂k −

←−
∂k ·
−→
∂x. The wave frequency Ω and dissipation term Γ are given by

Ω(t, y,k)
.
= kxU − (β − U ′′)kx/k2

D, (2.9a)

Γ(t, y,k)
.
= −U ′′′kxky/k4

D, (2.9b)

where β is a measure of the background density gradients and k2
D
.
= k2 +1. Also, Sext(t, y,k)

in Eq. (2.7) is a source term for the fluctuations. The last term in Eq. (2.7) is the newly
found collision operator for inhomogeneous DW turbulence. It is given by

C[J, J ](t, y,k)
.
= Snl[J, J ]− 2γnl[J ]J, (2.10)

where γnl[J ] and Snl[J, J ] are

γnl[J ](t, y,k)
.
=

∫
d2p d2q

(2πε)2
δ2(k− p− q) Θ(t, y,k,p,q)M(p,q)M(p,k) J(t, y,p),

(2.11)

Snl[J, J ](t, y,k)
.
=

∫
d2p d2q

(2πε)2
δ2(k− p− q) Θ(t, y,k,p,q) |M(p,q)|2 J(t, y,p)J(t, y,q).

(2.12)

Here Θ(t, y,k,p,q)
.
= πδ(∆Ω), and

∆Ω(t, y,k,p,q)
.
= Ω(t, y,k)− Ω(t, y,p)− Ω(t, y,q). (2.13)

One can identify ∆Ω = 0 as the frequency-resonance condition. Finally, the kernel M(p,q)
in Eqs. (2.11) and (2.12) is

M(p,q)
.
= ez · (p× q)

(
q−2

D − p−2
D

)
. (2.14)
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C [J, J] describes nonlinear wave scattering.
I The nonlinear dissipation coe↵. �nl[J] and the nonlinear source term Snl[J, J] are

�nl[J](t, y ,k)
.
=

Z
d2p d2q

(2⇡)2
�2(k� p� q)⇥(t, y ,k,p,q) M(p,q)M(p,k) J(t, y ,p),

Snl[J, J](t, y ,k)
.
=

Z
d2p d2q

(2⇡)2
�2(k� p� q)⇥(t, y ,k,p,q) |M(p,q)|2 J(t, y ,p)J(t, y ,q).

I Here ⇥(t, y ,k,p,q)
.
= ⇡�(�H) and

�H(t, y ,k,p,q)
.
= H(t, y ,k)� H(t, y ,p)� H(t, y ,q).

I M(p,q) is a scattering cross section

M(p,q)
.
= ez · (p⇥ q)

⇣
q�2
D � p�2

D

⌘
.

k

p

q p

q

k

k
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q
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k
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GO approximation, these modes are decoupled, but at
higher orders, the resonant modes can interact leading
to linear mode conversion [43–46]. For simplicity, here
we only consider the case of a single excited wave mode.

Let us now substitute Eq. (41) into Eq. (39). From the
skew-symmetry of the eight-dimensional Poisson brack-
ets, one has {DH, �(DH)} = 0. Since the wave action is
independent of the frequency variable, one obtains

�
(@�DH)@tJ+{DH, J}

�
�(DH) + 2DA�(DH)J

=⇡�1 Im
�
[D�1]�

�
F � 2 Im (�) �(DH)J

+ ⇡�1 Im
�
[D�1]�

�
S, (42)

where {·, ·} .
=
��
@ x · ��@ k �

��
@ k · ��@ x denotes the con-

ventional six-dimensional Poisson bracket. Note that
[D�1]� ' (D�1)� to the lowest (zeroth) order in ✏ [47].
Upon using the Sokhotski–Plemelj theorem [48], we re-
place [D�1] in Eq. (42) with its limiting form as DA tends
to zero:

[D�1]� ' 1

DH � iDA
� i⇡�(DH) + P 1

DH
, (43)

where “P” denotes the Cauchy principal value. Then,
inserting this Eq. (43) into Eq. (42) leads to

[(@�DH)@tJ + {DH, J}] �(DH) + 2DA�(DH)J

= �(DH)F � Im [�] �(DH)J + �(DH)S. (44)

One then integrates Eq. (44) over the wave frequency
variable and uses

�(DH(z)) = (@�DH)�1(t,x,k) �(! � �(t,x,k)), (45)

where �(t,x,k) is the wave frequency satisfying
DH(t,x,�(t,x,k),k) = 0 and

@DH

@!
(t,x,k)

.
=

✓
@DH

@!

◆

�=�(t,x,k)

(t,x,k). (46)

After substituting the standard GO relations

@�

@x
(t,x,k) = �

✓
@DH/@x

@DH/@!

◆

�=�

(t,x,k), (47a)

@�

@k
(t,x,k) = �

✓
@DH/@k

@DH/@!

◆

�=�

(t,x,k), (47b)

one obtains the wave kinetic equation

@tJ + {J,�} = 2�J + Sext + C[J, J ] (48)

where the linear growth-rate coe�cient and the external
source term are given by

�(t,x,k)
.
= �

✓
DA

@DH/@!

◆

�=�

(t,x,k), (49a)

Sext(t,x,k)
.
=

✓
S

@DH/@!

◆

�=�

(t,x,k). (49b)

Also, C[J, J ] in Eq. (48) represents a wave scattering op-
erator, which is given by

C[J, J ]
.
= Snl[J, J ]� 2�nl[J ]J (50)

The nonlinear dissipation-rate coe�cient �nl[J ](t,x,k)
and the nonlinear source term Snl[J, J ](t,x,k) arising
from the wave–wave interactions are given by

�nl[J ](t,x,k)
.
=

✓
Im �

@DH/@!

◆

�=�

(t,x,k), (51a)

Snl[J, J ](t,x,k)
.
=

✓
F

@DH/@!

◆

�=�

(t,x,k). (51b)

As shown in Appendix C, to the leading order in ✏, these
terms are given by

�nl[J ](t,x,k) = �
Z

d3p d3q

(2⇡)3
�3(k� p� q)

�(t,x,k,p,q)

N Re[ M(t,x,p,q)M�(t,x,p,�k) ] J(t,x,p), (52a)

Snl[J, J ](t,x,k) =

Z
d3p d3q

(2⇡)3
�3(k� p� q)

�(t,x,k,p,q)

N |M(t,x,p,q)|2 J(t,x,p)J(t,x,q). (52b)

Here �(t,x,k,p,q)
.
= ⇡�(��), and

��(t,x,k,p,q)
.
= �(t,x,k)� �(t,x,p)� �(t,x,q).

(53)
Also,

M(t,x,p,q)
.
= M(t,x, p0,p, q0,q)|p0=�(t,x,p), q0=�(t,x,q),

(54)

where M(x, p, q) is the scattering cross section

M(x, p, q)
.
= ↵(x, p)�(x, q) + ↵(x, q)�(x, p), (55)

where ↵(z) and �(z) are the Weyl symbols of the opera-

tors b↵ and b�, respectively. Note that M(x, p, q) is sym-
metric with respect to its arguments p and q. Finally,
N (t,x,k,p,q) is a normalization factor:

N .
= @�DH(t,x,k) @�DH(t,x,p) @�DH(t,x,q). (56)
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✓
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@DH/@!
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✓
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@DH/@!
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Z

d3p d3q

(2⇡)3
�3(k� p� q)
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N Re[ M(t,x,p,q)M�(t,x,p,�k) ] J(t,x,p), (52a)

Snl[J, J ](t,x,k) =

Z
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N |M(t,x,p,q)|2 J(t,x,p)J(t,x,q). (52b)

Here �(t,x,k,p,q)
.
= ⇡�(��), and

��(t,x,k,p,q)
.
= �(t,x,k)� �(t,x,p)� �(t,x,q).

(53)
Also,

M(t,x,p,q)
.
= M(t,x, p0,p, q0,q)|p0=�(t,x,p), q0=�(t,x,q),

(54)

where M(x, p, q) is the scattering cross section

M(x, p, q)
.
= ↵(x, p)�(x, q) + ↵(x, q)�(x, p), (55)

where ↵(z) and �(z) are the Weyl symbols of the opera-

tors b↵ and b�, respectively. Note that M(x, p, q) is sym-
metric with respect to its arguments p and q. Finally,
N (t,x,k,p,q) is a normalization factor:
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= @�DH(t,x,k) @�DH(t,x,p) @�DH(t,x,q). (56)
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C [J, J] describes nonlinear wave scattering.
I The nonlinear dissipation coe↵. �nl[J] and the nonlinear source term Snl[J, J] are
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GO approximation, these modes are decoupled, but at
higher orders, the resonant modes can interact leading
to linear mode conversion [43–46]. For simplicity, here
we only consider the case of a single excited wave mode.

Let us now substitute Eq. (41) into Eq. (39). From the
skew-symmetry of the eight-dimensional Poisson brack-
ets, one has {DH, �(DH)} = 0. Since the wave action is
independent of the frequency variable, one obtains

�
(@�DH)@tJ+{DH, J}

�
�(DH) + 2DA�(DH)J

=⇡�1 Im
�
[D�1]�

�
F � 2 Im (�) �(DH)J

+ ⇡�1 Im
�
[D�1]�

�
S, (42)

where {·, ·} .
=
��
@ x · ��@ k �

��
@ k · ��@ x denotes the con-

ventional six-dimensional Poisson bracket. Note that
[D�1]� ' (D�1)� to the lowest (zeroth) order in ✏ [47].
Upon using the Sokhotski–Plemelj theorem [48], we re-
place [D�1] in Eq. (42) with its limiting form as DA tends
to zero:

[D�1]� ' 1

DH � iDA
� i⇡�(DH) + P 1

DH
, (43)

where “P” denotes the Cauchy principal value. Then,
inserting this Eq. (43) into Eq. (42) leads to

[(@�DH)@tJ + {DH, J}] �(DH) + 2DA�(DH)J

= �(DH)F � Im [�] �(DH)J + �(DH)S. (44)

One then integrates Eq. (44) over the wave frequency
variable and uses

�(DH(z)) = (@�DH)�1(t,x,k) �(! � �(t,x,k)), (45)

where �(t,x,k) is the wave frequency satisfying
DH(t,x,�(t,x,k),k) = 0 and

@DH

@!
(t,x,k)

.
=

✓
@DH

@!

◆

�=�(t,x,k)

(t,x,k). (46)

After substituting the standard GO relations

@�

@x
(t,x,k) = �

✓
@DH/@x

@DH/@!

◆

�=�

(t,x,k), (47a)

@�

@k
(t,x,k) = �

✓
@DH/@k

@DH/@!

◆

�=�

(t,x,k), (47b)

one obtains the wave kinetic equation

@tJ + {J,�} = 2�J + Sext + C[J, J ] (48)

where the linear growth-rate coe�cient and the external
source term are given by

�(t,x,k)
.
= �

✓
DA

@DH/@!

◆

�=�

(t,x,k), (49a)

Sext(t,x,k)
.
=

✓
S

@DH/@!

◆

�=�

(t,x,k). (49b)

Also, C[J, J ] in Eq. (48) represents a wave scattering op-
erator, which is given by

C[J, J ]
.
= Snl[J, J ]� 2�nl[J ]J (50)

The nonlinear dissipation-rate coe�cient �nl[J ](t,x,k)
and the nonlinear source term Snl[J, J ](t,x,k) arising
from the wave–wave interactions are given by

�nl[J ](t,x,k)
.
=

✓
Im �

@DH/@!

◆

�=�

(t,x,k), (51a)

Snl[J, J ](t,x,k)
.
=

✓
F

@DH/@!

◆

�=�

(t,x,k). (51b)

As shown in Appendix C, to the leading order in ✏, these
terms are given by

�nl[J ](t,x,k) = �
Z

d3p d3q

(2⇡)3
�3(k� p� q)

�(t,x,k,p,q)

N Re[ M(t,x,p,q)M�(t,x,p,�k) ] J(t,x,p), (52a)

Snl[J, J ](t,x,k) =

Z
d3p d3q

(2⇡)3
�3(k� p� q)

�(t,x,k,p,q)

N |M(t,x,p,q)|2 J(t,x,p)J(t,x,q). (52b)

Here �(t,x,k,p,q)
.
= ⇡�(��), and

��(t,x,k,p,q)
.
= �(t,x,k)� �(t,x,p)� �(t,x,q).

(53)
Also,

M(t,x,p,q)
.
= M(t,x, p0,p, q0,q)|p0=�(t,x,p), q0=�(t,x,q),

(54)

where M(x, p, q) is the scattering cross section

M(x, p, q)
.
= ↵(x, p)�(x, q) + ↵(x, q)�(x, p), (55)

where ↵(z) and �(z) are the Weyl symbols of the opera-

tors b↵ and b�, respectively. Note that M(x, p, q) is sym-
metric with respect to its arguments p and q. Finally,
N (t,x,k,p,q) is a normalization factor:

N .
= @�DH(t,x,k) @�DH(t,x,p) @�DH(t,x,q). (56)
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GO approximation, these modes are decoupled, but at
higher orders, the resonant modes can interact leading
to linear mode conversion [43–46]. For simplicity, here
we only consider the case of a single excited wave mode.

Let us now substitute Eq. (41) into Eq. (39). From the
skew-symmetry of the eight-dimensional Poisson brack-
ets, one has {DH, �(DH)} = 0. Since the wave action is
independent of the frequency variable, one obtains

�
(@�DH)@tJ+{DH, J}

�
�(DH) + 2DA�(DH)J

=⇡�1 Im
�
[D�1]�

�
F � 2 Im (�) �(DH)J

+ ⇡�1 Im
�
[D�1]�

�
S, (42)

where {·, ·} .
=
��
@ x · ��@ k �

��
@ k · ��@ x denotes the con-

ventional six-dimensional Poisson bracket. Note that
[D�1]� ' (D�1)� to the lowest (zeroth) order in ✏ [47].
Upon using the Sokhotski–Plemelj theorem [48], we re-
place [D�1] in Eq. (42) with its limiting form as DA tends
to zero:

[D�1]� ' 1

DH � iDA
� i⇡�(DH) + P 1

DH
, (43)

where “P” denotes the Cauchy principal value. Then,
inserting this Eq. (43) into Eq. (42) leads to

[(@�DH)@tJ + {DH, J}] �(DH) + 2DA�(DH)J

= �(DH)F � Im [�] �(DH)J + �(DH)S. (44)

One then integrates Eq. (44) over the wave frequency
variable and uses

�(DH(z)) = (@�DH)�1(t,x,k) �(! � �(t,x,k)), (45)

where �(t,x,k) is the wave frequency satisfying
DH(t,x,�(t,x,k),k) = 0 and

@DH

@!
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@!

◆
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one obtains the wave kinetic equation

@tJ + {J,�} = 2�J + Sext + C[J, J ] (48)

where the linear growth-rate coe�cient and the external
source term are given by
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from the wave–wave interactions are given by
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As shown in Appendix C, to the leading order in ✏, these
terms are given by
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where M(x, p, q) is the scattering cross section
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.
= ↵(x, p)�(x, q) + ↵(x, q)�(x, p), (55)

where ↵(z) and �(z) are the Weyl symbols of the opera-

tors b↵ and b�, respectively. Note that M(x, p, q) is sym-
metric with respect to its arguments p and q. Finally,
N (t,x,k,p,q) is a normalization factor:

N .
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.
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.
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GO approximation, these modes are decoupled, but at
higher orders, the resonant modes can interact leading
to linear mode conversion [43–46]. For simplicity, here
we only consider the case of a single excited wave mode.

Let us now substitute Eq. (41) into Eq. (39). From the
skew-symmetry of the eight-dimensional Poisson brack-
ets, one has {DH, �(DH)} = 0. Since the wave action is
independent of the frequency variable, one obtains

�
(@�DH)@tJ+{DH, J}

�
�(DH) + 2DA�(DH)J

=⇡�1 Im
�
[D�1]�

�
F � 2 Im (�) �(DH)J

+ ⇡�1 Im
�
[D�1]�

�
S, (42)

where {·, ·} .
=
��
@ x · ��@ k �

��
@ k · ��@ x denotes the con-

ventional six-dimensional Poisson bracket. Note that
[D�1]� ' (D�1)� to the lowest (zeroth) order in ✏ [47].
Upon using the Sokhotski–Plemelj theorem [48], we re-
place [D�1] in Eq. (42) with its limiting form as DA tends
to zero:

[D�1]� ' 1

DH � iDA
� i⇡�(DH) + P 1

DH
, (43)

where “P” denotes the Cauchy principal value. Then,
inserting this Eq. (43) into Eq. (42) leads to

[(@�DH)@tJ + {DH, J}] �(DH) + 2DA�(DH)J

= �(DH)F � Im [�] �(DH)J + �(DH)S. (44)

One then integrates Eq. (44) over the wave frequency
variable and uses

�(DH(z)) = (@�DH)�1(t,x,k) �(! � �(t,x,k)), (45)

where �(t,x,k) is the wave frequency satisfying
DH(t,x,�(t,x,k),k) = 0 and

@DH

@!
(t,x,k)

.
=

✓
@DH

@!

◆

�=�(t,x,k)

(t,x,k). (46)

After substituting the standard GO relations

@�

@x
(t,x,k) = �

✓
@DH/@x

@DH/@!

◆

�=�

(t,x,k), (47a)

@�

@k
(t,x,k) = �

✓
@DH/@k

@DH/@!

◆

�=�

(t,x,k), (47b)

one obtains the wave kinetic equation

@tJ + {J,�} = 2�J + Sext + C[J, J ] (48)

where the linear growth-rate coe�cient and the external
source term are given by

�(t,x,k)
.
= �

✓
DA

@DH/@!

◆

�=�

(t,x,k), (49a)

Sext(t,x,k)
.
=

✓
S

@DH/@!

◆

�=�

(t,x,k). (49b)

Also, C[J, J ] in Eq. (48) represents a wave scattering op-
erator, which is given by

C[J, J ]
.
= Snl[J, J ]� 2�nl[J ]J (50)

The nonlinear dissipation-rate coe�cient �nl[J ](t,x,k)
and the nonlinear source term Snl[J, J ](t,x,k) arising
from the wave–wave interactions are given by

�nl[J ](t,x,k)
.
=

✓
Im �

@DH/@!

◆

�=�

(t,x,k), (51a)

Snl[J, J ](t,x,k)
.
=

✓
F

@DH/@!

◆

�=�

(t,x,k). (51b)

As shown in Appendix C, to the leading order in ✏, these
terms are given by

�nl[J ](t,x,k) = �
Z

d3p d3q

(2⇡)3
�3(k� p� q)

�(t,x,k,p,q)

N Re[ M(t,x,p,q)M�(t,x,p,�k) ] J(t,x,p), (52a)

Snl[J, J ](t,x,k) =

Z
d3p d3q

(2⇡)3
�3(k� p� q)

�(t,x,k,p,q)

N |M(t,x,p,q)|2 J(t,x,p)J(t,x,q). (52b)

Here �(t,x,k,p,q)
.
= ⇡�(��), and

��(t,x,k,p,q)
.
= �(t,x,k)� �(t,x,p)� �(t,x,q).

(53)
Also,

M(t,x,p,q)
.
= M(t,x, p0,p, q0,q)|p0=�(t,x,p), q0=�(t,x,q),

(54)

where M(x, p, q) is the scattering cross section

M(x, p, q)
.
= ↵(x, p)�(x, q) + ↵(x, q)�(x, p), (55)

where ↵(z) and �(z) are the Weyl symbols of the opera-

tors b↵ and b�, respectively. Note that M(x, p, q) is sym-
metric with respect to its arguments p and q. Finally,
N (t,x,k,p,q) is a normalization factor:

N .
= @�DH(t,x,k) @�DH(t,x,p) @�DH(t,x,q). (56)
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Figure 2-4. Schematic diagram of the nonlinear processes involved in the DW
collision operator. The incoherent-noise term Snl represents two DW quanta
merging to produce a third DW fluctuation. The coherent response γnl is the
opposite process, where one DW fluctuation decays into two other quanta.

Equations (2.7)–(2.14) are the main result of the work. These equations describe the
coupled interaction between an incoherent wave bath of DWs and a coherent ZF velocity
field. The collisional WKE (2.7) governs the dynamics of the wave-action density J for
DWs. The left-hand side of Eq. (2.7) describes the wave refraction governed by the wave
frequency Ω [Eq. (2.9a)], which serves as a Hamiltonian for the system. On the right-hand
side, µdw represents weak dissipation due to the external environment, and Γ denotes linear
dissipation caused by the ZFs [29; 24]. The term Sext represents an external source term for
the DW fluctuations.

The nonlinear term C[J, J ] in Eq. (2.7) plays the role of the wave scattering operator.
It is composed of two terms, γnl and Snl, which arise from nonlinear wave–wave interactions.
The nonlinear source term Snl in (2.12) is a bilinear functional on the action density J . It is
always positive and represents contributions to J(t, y,k) coming from waves with wavevectors
p and q different from k. This term is also known as (the variance of) incoherent noise [15].
The nonlinear damping-rate term γnl in Eq. (2.11) linearly depends on J and represents a
sink term where the wave action in the k wavevector is transferred to other modes with
different wavevectors. The effects described by γnl are called the coherent response [15].
These nonlinear wave–wave interactions are schematically represented in Fig. 2-4.

Equation (2.8) governs the dynamics of the ZFs. The second term on the left-hand side
represents linear dissipation or drag acting on the ZF velocity field. The right-hand side acts
as a source term for the generation of ZFs. Its origin can be traced back to Reynolds-stress
term in the momentum equation for fluids. As shown, the source term for ZFs depends on
a weighted integral over momentum of the DW distribution function.

The obtained formulation is fundamentally different from the previously reported homo-
geneous weak-wave-turbulence models for DW turbulence [11; 15]. While DWs are described
as an incoherent fluctuating field as usual, ZFs are now treated as coherent structures, which
are missed in homogeneous-turbulence theory. The obtained model motivates future investi-
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Figure 2-5. Sequence of images showing the convergence to the solution of the
steady-state, homogenous collisional WKE given in Eq. (2.15).

gations of the effects of nonlinear wave–wave scattering on DW–ZF interactions, in particular,
the spontaneous emergence of ZFs and the eventual saturation of the ZFs and the DW spec-
tra. This theory might also help better understand the validity domain of the quasilinear
approach to DW turbulence that has been commonly used in the literature.

2.3. Student-intern mentoring and numerical simulation of the obtained model

Reference [1] only presented the mathematical derivation for the collisional wave-kinetic-
equation model. As part of Sandia’s student-intern program, I worked with Daniel Davis to
discretize the equations above and solve them numerically. Daniel Davis coded the equations
above into a MatLab script. His work was financially supported by the research budget
included in the Truman Fellowship.
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It is important to mention that this internship was a great learning experience for Daniel
Davis and myself. Working with Daniel Davis was a great opportunity to practice my
mentoring skills. Before this project, Daniel had no prior experience on numerical integration
of dynamical systems. During the first month of his internship, Daniel quickly learned how to
discretize in both time and space some well-known linear PDEs, for example, the advection,
the diffusion, and wave equations. In order to gain sufficient experience before tackling the
main research project, Daniel and I reviewed these example problems, and he implemented
the corresponding algorithms in MATLAB. For some problems, he solved the equations in
both cartesian and cylindrical coordinates. He also implemented finite-difference and finite-
volume schemes. I am happy to say that, at the end of his internship, Daniel implemented a
finite-volume method that used a fifth-order variable–time-step Runge–Kutta integrator to
solve the governing equations for drift waves and zonal flows. His code is the first algorithm
that considers nonlinear wave–wave collisions in inhomogeneous turbulence.

To verify the collision operator implemented by Daniel, he implemented an iterative
solver that would find the steady state solution of the homogeneous collisional wave-kinetic
equation with no zonal flows:

0 = −µdwJ + Sext + C[J, J ]. (2.15)

For this exercise, Sext(k) was an annular-type forcing in momentum space. More specifically,
Sext(k) ∝ exp (− (|k|2− 1)/(2σ2)). This type of forcing is typically used in DW calculations
as it physically represents a DW source term that is isotropic in momentum space and
that introduces fluctuation quanta at the scale of the ion gyroradius (in normalized units).
Figure 2-5 shows several snapshots of the iterations in the steady-state solver. The initial
guess was such that J = Sext/µdw. As shown, in the presence of the collision operator,
the steady-state DW distribution function Wst(k) concentrates near the (kx, ky) ' (0,±1)
regions. Interesting structures appear in the inner part of those regions as well. Since the
shape of the DW distribution function is modified by the presence of the wave–wave collision
operator, the growth rate of the ZFs in an inhomogeneous-turbulence simulation could be
modified. This can be clearly seen from the source term on the right-hand side of Eq. (2.8).
As shown, the forcing depends on the momentum integral of kxkyW . When calculating
the integral, the isotropic annulus would lead to a larger value compared to the steady-
state distribution function shown in Fig. 2-5. This simple exercise hints that perhaps DW
collisions could slow down the ZF growth.

Figure 2-6 shows the time evolution of the ZFs with and without the effects of the
nonlinear wave–wave collisions. As initial conditions for these simulations, the distribution
function of the DWs was set to zero, and the ZF velocity was set to some random, small-
amplitude noise. An isotropic, external source was added similar to that used above. The
left-hand side of Fig. 2-6 shows the simulation result with no DW collisions. As shown,
a coherent and periodic ZF appears spontaneously after some time. This is the so-called
zonostrophic instability [19; 20; 21; 22; 23]. The code produced by Daniel agreed with the
results given in previous works that did not include the effects of wave–wave collisions, e.g.,
see Refs. [28; 24; 29].
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Figure 2-6. Time evolution of the ZF velocity. The top and bottom subfigures
show simulation results including and not including nonlinear DW collisions,
respectively. Simulation parameters were β = 3, µdw = 0.25, and µzf = 0.1.

The right-hand side of Fig. 2-6 shows the simulation result when including DW collisions.
As shown, the change is quite dramatic: no ZFs appear. For this particular set of simulation
parameters, the end state corresponds to an almost homogeneous, turbulent state. There-
fore, it seems that the DW wave–wave collisions can effectively suppress the generation of
ZFs. From these results, we believe that DW wave–wave collisions could play a role in the
generation of ZFs. However, the examples shown in Fig. 2-6 were chosen to highlight the
role that the DW collision operator can play. For other simulation parameters, ZFs would
emerge regardless whether or not the collision operator was included. For this reason, a more
detailed analysis needs to be done on these results, so no publication has yet come out from
this work.
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2.4. Conclusions and future work

As shown in the previous section, preliminary simulations show that DW collisions could
play a role in the emergence of ZFs. However, some additional amount of work is needed to
clear all the details and submit this result for publication.

As a more general comment, it is clear that phase-space methods provide an intuitive
framework for the study of more general turbulence beyond that of DWs. Recently, these
methods have been applied to study the emergence of large-scale structures from compress-
ible Navier–Stokes turbulence [48]. Phase-space methods can also be useful for studying
magneto-hydrodynamic (MHD) turbulence and the spontaneous emergence of large-scale
magnetic fields (dynamo effect). For example, the magnetorotational dynamo has only been
studied statistically using CE2 theory [49]. It would be interesting to investigate if a wave-
kinetic description of the same problem can provide a simple intuitive model in which the
interaction coefficients are explicitly given and where the growth rates can be computed an-
alytically. Pursuing this line of research could open synergistic opportunities with university
collaborators and enhance our understanding of the MHD turbulence in general.
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3. VARIATIONAL WKB IN THE EULERIAN FRAME

3.1. Introduction

Nonlinear WKB is a powerful tool for studying solutions of partial differential equations
(PDEs) in which there exists an explicit temporal and/or spatial scale separation. In these
situations, the local behavior of solutions can be well approximated by a plane wave at
any point. Nonlinear WKB, which is a generalization of the usual WKB method for linear
PDEs, goes back at least to the mid 1960’s, when it was used to study large-amplitude locally-
plane-wave solutions of a variety of systems, including the Bousinesque equations [50] and
the Kortweg-DeVries equation [51]. Generally speaking, given a (possibly nonlinear) system
of PDEs of the form

F b(ϕa(x), ∂µϕ
a(x), . . . ) = 0, (3.1)

where the unknown is multi-component field ϕa(x), application of nonlinear WKB comprises
two steps. First, Eq. (3.1) is extended to a larger system of PDEs using a procedure referred
as “nonlinear WKB extension.” Second, scale separation present in the original system of
PDEs, either in F b or the initial conditions, is leveraged to identify slow solutions of the
extended system. As an example, this amounts to finding eigenmodes of wave equations.
The power of this procedure comes from the fact that rapidly oscillating locally-plane-wave
solutions ϕa of Eq. (3.1) correspond to slowly-varying solutions of the extended system,
which are easier to treat using asymptotic methods.

In broad strokes, the nonlinear WKB extension procedure amounts to the following.
First, one introduces the nonlinear WKB ansatz

ϕa(x) = ϕ̃a(x, S(x)), (3.2)

where ϕ̃a(x, θ) is 2π-periodic in the second argument and S(x) represents a phase function.
More explicitly, since ϕ̃a is periodic in the second argument, it can be written as a sum of
Fourier harmonics in θ so that

ϕ̃a(x, θ) =
∞∑

n=−∞
ϕ̂ane

inθ. (3.3)

Thus, the nonlinear WKB ansatz (3.2) differs from the conventional WKB ansatz in that it
contains all harmonics in S. The term “nonlinear” is appropriate here because the ansatz
(3.2) can handle nonlinear terms appearing in the PDE (3.1) that produce harmonic coupling.
The ansatz (3.2) is then substituted into Eq. (3.1) and the chain rule is applied to express
x-derivatives of ϕ in terms of x- and θ-derivatives of ϕ̃ and S. Finally, the argument S(x)
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in any of the derivatives of ϕ̃a is replaced with any arbitrary angle θ in order to obtain the
extended system:

F b(ϕ̃a(x, θ), ∂µϕ̃
a(x, θ) + ∂µS(x)∂θϕ̃

a(x, θ), . . . ) = 0. (3.4)

The dependent variables are now ϕ̃a(x, θ) and S(x), while the independent variables are x
and θ. Each solution (ϕ̃a, S) of Eq. (3.4) yields a solution ϕa of Eq. (3.1), with ϕa given by
Eq. (3.2). In this sense, Eq. (3.4) extends the original equation (3.1).

In this work, we studied the nonlinear WKB extension procedure, i.e., the passage from
Eq. (3.1) to Eq. (3.4), and its application to conventional field theories whose action func-
tionals are assumed to be known. Specifically, we were concerned on how the nonlinear
WKB extension can be applied to a particular class of PDEs from fluid mechanics known as
Euler-Poincaré equations [52]. Such equations describe the evolution of ideal, i.e. dissipation-
free, fluids. In the Euler-Poincaré setting, we addressed the question of whether structural
properties of the original system of PDEs (3.1) are inherited by the extended equations (3.4).

3.2. Main result #1: Nonlinear WKB-extension of classical field theories

In the first part of Ref. [2], we showed how to obtain the NL-WKB extension of an
arbitrary classical field theory, whose original action is assumed to be already known. In
order to broadly present the main result, let us introduce the following basic concepts. Let ϕ
be a multicomponent field defined on the manifold M . Within the compact subset U ⊂M ,
the local action functional for ϕ is defined as

AU(ϕ) =

∫

U

L(x, ϕ(x), ∂ϕ(x)) dx. (3.5)

Here ∂ϕ(x) is a matrix that has entries [∂ϕ(x)]aµ = ∂µϕ
a(x). We say that a field ϕ is a critical

point of AU if

d

dε

∣∣∣∣
0

AU(ϕ+ εδϕ) = 0 (3.6)

for all δϕ ∈ C that vanish on the boundary ∂U of the subset U .

Suppose that C contains all smooth fields with compact support. Then it is a standard
result in the calculus of variations that ϕ is a critical point of AU for all U ⊂M if and only
if ϕ satisfies the system of second-order PDE known as the Euler-Lagrange equations:

∂L
∂ϕa

(x, ϕ(x), ∂ϕ(x)) =
∂

∂xµ

(
∂L
∂vaµ

(x, ϕ(x), ∂ϕ(x))

)
, (3.7)

where vaµ(x)
.
= ∂µϕ

a. This kind of systems is referred as a first-order classical field theory.

Given a first-order classical field theory, the NL-WKB extension procedure may be ap-
plied to the theory’s Euler-Lagrange equations. From the discussion given in the Introduction
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of this Chapter, the NL-WKB extension of the Euler–Lagrange equations (3.7) is the system
of partial differential equations

∂L
∂ϕa

(j(x, θ)) =

(
∂

∂xµ
+ ∂µS(x)

∂

∂θ

)(
∂L
∂vaµ

(j(x, θ))

)
, (3.8)

where

j(x, θ) = (x, ϕ̃(x, θ), ∂ϕ̃(x, θ) + ∂θϕ̃(x, θ)∂S(x)) (3.9)

is convenient shorthand notation. In the above, ϕ̃ = ϕ̃(x, θ) is the extended field that
depends on the coordinate x of the manifold M and on the coordinate θ for the local phase.
Here S = S(x) is a phase function that depends on x. As discussed in the previous section,
the parameter θ is arbitrary and acts as an additional coordinate.

In Ref. [2], the first goal was to determine whether an action functional that directly
generates Eq. (3.8) exists, and if so, how can we find its expression. It is worth mentioning
that the reason why this is an important question to be answered is that, once a convenient
action principle is identified, it can then be used to discover underlying properties of the
scale-separated system. This occurs because all the information about the physical system is
contained with the Lagrangian. Also, asymptotic models can be derived by approximating
the Lagrangian only. Conservation properties of the original and reduced system can be
deduced by identifying symmetries of their corresponding Lagrangians. In summary, directly
working with the Lagrangian allows to perform well-controlled approximations of the original
physical system.

Excitingly, the corresponding NL-WKB action for Eq. (3.8) does exist, and we developed
a systematic approach to find it in Ref. [2]. In this report, I shall only provide some heuristic
arguments that hint to the result. Suppose ϕ is a solution of the Euler-Lagrange equations
that locally has the appearance of a plane wave. Formally, we write ϕ(x) = ϕ̃(x, S(x)). By
the chain rule, these functions satisfy

∂L
∂ϕa

(j(x, θ))

∣∣∣∣
θ=S(x)

=
∂

∂xµ

(
∂L
∂vaµ

(j(x, S(x)))

)
=

(
∂

∂xµ
+ ∂µS(x)

∂

∂θ

)(
∂L
∂vaµ

(j(x, θ))

) ∣∣∣∣
θ=S(x)

,

(3.10)

where we have used the shorthand notation j(x, θ) introduced in Eq. (3.9). Because the phase
function is rapidly rotating, we can extract more information from Eq. (3.10) by considering
the latter in a spacetime region that is small compared with the long spacetime scale, but
large compared with the short spacetime scale. In other words, this can be considered as a
mesoscale region. In such a region, we may regard the argument x in j(x, S(x)) as being fixed,
while the argument S(x) retains its rapidly oscillating character. If we make the assumption
that S(x) makes at least one complete rotation in our intermediate, mesoscale region, we
may therefore conclude that Eq. (3.8), which is the strengthened version of Eq. (3.10), must
be satisfied.

Now, let us consider the application of similar heuristic arguments to the original varia-
tional principle whose action is given by Eq. (3.5). Suppose once more that ϕ is a solution of
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the field theory that is locally a plane wave. Then, as before, we may write ϕ(x) = ϕ̃(x, S(x)).
Moreover, the action AU evaluated on this special ϕ can be written as

AU(ϕ) =

∫

U

L(j(x, S(x))) dx. (3.11)

Because the phase function S is rapidly oscillating by hypothesis, we may partition the
integration domain U = ∪iUi into cells with diameters that are large compared with the
short scale and short compared with the large scale, and then write AU(ϕ) =

∑
iAUi

(ϕ). In
each of the integrals AUi

the first argument of j(x, S(x)) may be replaced with the center xi
of cell Ui without appreciably changing the value of the integral. Moreover, because S(x)
varies rapidly in Ui, the dominant contribution to the integral AUi

is given by averaging over
S(x) according to

AUi
≈ 1

2π

∫ 2π

0

∫

Ui

L(j(xi, θ)) dx dθ. (3.12)

If we now interpret the previously established formula AU(ϕ) =
∑

iAUi
(ϕ) as a Riemann

sum, we conclude that the action functional evaluated on a locally-plane ϕ is approximately

AU(ϕ) ≈ 1

2π

∫ 2π

0

∫

U

L(j(x, θ)) dx dθ

≡ ÃU×S1(ϕ̃, S), (3.13)

where we have introduced the extended action functional ÃU×S1(ϕ̃, S). Here S1 denotes the
interval [0, 2π). Moreover, because ϕ is by assumption a critical point of AU , this argument
suggests that

d

dε

∣∣∣∣
0

ÃU×S1(ϕ̃+ εδϕ̃, S + εδS) ≈ 0, (3.14)

where δϕ̃(x, θ) and δS(x) are arbitrary functions that vanish when x ∈ ∂U . These heuristic
arguments hint that Eq. (3.8) do follow from a variational principle.

In Ref. [2], it is shown that the action principle that generates Eq. (3.8) is indeed given
by Eq. (3.13), or more explicitly,

AU×S1(ϕ̃, S) =
1

2π

∫

S1

∫

U

L(x, ϕ̃(x, θ), ∂ϕ̃(x, θ) + ∂θϕ̃(x, θ)∂S(x)) dx dθ. (3.15)

The action above is a functional over the fields ϕ̃ and the phase function S. Note that
the action functional above is identical to Whitham’s averaged Lagrangian [53; 54]. When
varying the action with respect to the fields ϕ̃ and S, we obtain

∂L
∂ϕ̃a

=

(
∂

∂xµ
+ ∂µS

∂

∂θ

)(
∂L
∂ṽaµ

)
, (3.16)

0 =
∂

∂xµ

∫

S1

∂ϕ̃

∂θ

∂L
∂ṽµ

dθ, (3.17)
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Figure 3-1. The nonlinear WKB extension of ordinary first-order classical field theories.

where I have omitted writing the explicit variable dependencies. Of course, the first equation
(3.16) corresponds to the NL-WKB extension of the original Euler–Lagrange equation given
in Eq. (3.8). This equation arises from the variation of the action with respect to ϕ̃. Equa-
tion (3.17) is obtained when varying the action with respect to S and is physically interpreted
as an action-conservation equation. More fundamentally, this last equation arises from the
gauge symmetry of the action with respect to constant rotations of the phase θ. The main
ideas between the action principle, the Euler–Lagrange equations, and their corresponding
NL-WKB extended versions are summarized in Fig. 3-1.

3.3. Main result #2: NL-WKB extension of Euler–Poincaré fluid systems

The result discussed above is useful for identifying variational principles that govern
the NL-WKB extension of a large class of dissipation-free PDEs. However, it is not directly
applicable to PDEs commonly used for modeling fluid dynamics. In particular, they cannot
be applied directly to the fluid-mechanical PDEs that arise from Euler–Lagrange or Euler–
Poincaré variational principles.

Let us consider the ideal isothermal Euler equations in order to understand the main
difficulty when dealing with fluid equations. The isothermal Euler equations are given by

∂tρ+ ∇ · (ρu) = 0, (3.18)

ρ(∂tu + u ·∇u) = −c2∇ρ (3.19)

where the unknown fields are the mass density ρ(t,x) and the fluid velocity u(t,x). Here
c is a constant representing the speed of small-amplitude sound waves. This system of
equations fits the general type of PDEs discussed in the previous section. Equations (3.18)
and (3.19) arise from an Euler-Lagrange variational principle [52], which is explained as
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Towards the development of continuum field theories describing
wave–mean-flow interactions

D. E. RUIZ AND J. W. BURBY

Overview

• In many problems involving continuum field theories, a major
challenge consists in “multiscale modeling.”

• This is the process of obtaining theoretical models that correctly
and efficiently capture the dynamics of low-frequency, large-
scale flows while including the influence of high-frequency
(HF), small-scale flows (such as waves).

• Here we present recent progress in developing such multiscale
continuum models for plasma physics.

• Our method consists in marrying three main ingredients:
– nonlinear WKB,

– variational principles via Euler–Poincaré reduction, and

– slow-manifold analysis.

• The analytic methods proposed here are applicable to any first-
order field theory and will be used to study other more com-
plicated multiscale problems in plasma physics.

Basic model and nonlinear WKB

• Let’s consider the multi-fluid–Poisson system

@t⇢↵ + r · (⇢↵u↵) = 0,

m↵@tu↵ + m↵(u↵ · r)u↵ = �⇢↵rP↵[⇢↵]� q↵r�,

�r · r� = 4⇡
X

↵

q↵⇢↵,

where

⇢↵(t,x) : number density of particle species ↵,
u↵(t,x) : velocity field of particle species ↵,
�(t,x) : electrostatic potential,
P↵[⇢↵] : barotropic pressure of particle species ↵.

• To (potentially) account for nonlinear waves, we adopt the
nonlinear (NL) WKB ansatz for the dynamical variables; e.g.,

⇢(t,x) = e⇢(t,x, S(t,x)) =
1X

n=0

<
⇥
e⇢n(t,x)einS(t,x)

⇤
.

• After substituting, we get the NL-WKB extended equations:

@S
t e⇢↵ + rS · (e⇢↵eu↵) = 0,

m↵@
S
t eu↵ + m↵(eu↵ · rS)eu↵ = �e⇢�1

↵ rSP↵[e⇢↵]� q↵re�,

�rS · rS e� = 4⇡
X

↵

q↵e⇢↵,

where @S
t

.
= @t + (@tS)@✓ and rS .

= r + (rS)@✓ (chain rule).

• The goal is to develop an averaged model that describes the
interaction of mean flows and electrostatic Langmuir waves.

Euler–Poincaré variational principles
• To construct good multiscale models, it is almost imperative to

do asymptotic approximations within a variational principle.

• For the multi-fluid–Poisson system, there is no known varia-
tional principle (VP) in the space of fields (⇢,u, �). Other alter-
nate VPs are not convenient for our purposes. These include

– Clebsch formulation, Low’s reprentation, potential flows,...

• With Euler–Poincaré (EP) theory, one can construct an action
⇤ =

R t2
t1

(Lsym+Lem�H)dt for the multi-fluid–Poisson system.

Lsym
.
=

X

↵

Z

Q

[m↵u↵ · v↵ + ⇢↵(@t + v↵ · r)�↵] d3x

Lem
.
=

Z

Q

|r�|2
8⇡

d3x

H
.
=

X

↵

Z

Q

hm↵

2
|u↵|2 + q⇢↵� + ⇢↵ U↵(⇢↵)

i
d3x,

where U↵ is the internal energy so that P↵ = U↵ + ⇢↵U 0
↵.

• In this formulation, u↵ is not the same as v↵. Instead,

v↵
.
= (@tg↵) � g�1

↵ ,

where g↵ : Q0 ! Q is a diffeomorphism that maps labels x0 2
Q0 of fluid parcels to their current positions x 2 Q at time t.

• In this VP, the action is a functional along the paths of fields
(⇢↵,u↵,g↵, �↵)

label space Q0

configuration space Q

Xt = gt(x0)

x0

Weyl transformation
• The Weyl transform is a mapping of an operator in a Hilbert

space to a function in phase space [4].

• The Weyl symbol A(x,p, t) of an operator bA(t) is defined as

A(x,p, t)
.
=

Z
d2s e�ip·s hx + s/2| bA|x� s/2 i .

• For any bC = bA bB, the corresponding Weyl symbols satisfy

C(x,p, t) = A(x,p, t) ? B(t,x,p).

Here "?" refers to the Moyal product

A ? B
.
= Aei bL/2B,

and bL is the Janus operator

bL .
=
 �
@x · �!@p �

 �
@p · �!@x.

Hermann Weyl• The [ bA, bB]⌥ map into the Moyal brackets:

�i[ bA, bB]� , {{A, B}} .
= �i (A ? B �B ? A) = 2A sin

⇣
bL/2

⌘
B,

[ bA, bB]+ , [[A, B]]
.
= A ? B + B ? A = 2A cos

⇣
bL/2

⌘
B.

• Examples of Weyl transforms are the following:

f(bx) , f(x), g(bp) , g(p), bxibpj , xipj + (i/2)�i
j .

Main theoretical result: Wigner–Moyal formulation

• Applying the Weyl transformation and zonal averaging gives

@tW = {{H, W}} + [[�, W ]] + F � 2µdwW,

@tU + µzfU =
@

@y

Z
d2p

(2⇡)2
1

p2
D

? pxpyW ?
1

p2
D

,

where

W (y,p, t) : zonal-averaged Wigner function for the DWs,
U(y, t) : ZF velocity,

F (y,p) : forcing function of DW turbulence,

µdw,zf : DW and ZF dissipation coefficients.

• We also introduced H and �:

H(y,p, t)
.
= ��px/p2

D + pxU + [[U 00, px/p2
D]]/2,

�(y,p, t)
.
= {{U 00, px/p2

D}}/2.

• This is the Wigner–Moyal formulation of DW–ZF interactions
[2]. Driftons are treated as particles in phase space, except now
they are quantumlike particles, i.e., have nonzero wavelengths.

• The function H can be interpreted as the Weyl symbol of the
drifton Hamiltonian, whereas � determines the dissipation of
DW quanta that is caused specifically by DW–ZF interactions.

• This formulation can be understood as an alternative phase-
space representation of the CE2 equations [5].

• For isolated systems (F = 0 and µdw,zf = 0), this formulation
exactly conserves the total enstrophy and potential energy

Z(t) = Zdw(t) + Zzf(t) =
1

2

Z
d2p

(2⇡)2
dy W +

1

2

Z
dy (U 0)2,

E(t) = Edw(t) + Ezf(t) =
1

2

Z
d2p

(2⇡)2
dy

W

p2
D

+
1

2

Z
dy U2.

Geometrical-optics limit and the wave kinetic equation

• The WKE model can be systematically derived from the
Wigner–Moyal formulation. Let’s assume

✏
.
= max

⇢
�dw

�zf
,
LD

�zf

�
⌧ 1.

• Using the lowest-order approximations of the Moyal brackets,
one obtains

@tW = {H, W} + 2�W + F � 2µdwW,

@tU + µzf U =
@

@y

Z
d2p

(2⇡)2
pxpyW

p4
D

,

where {·, ·} is the canonical Poisson bracket and

H ' ��px/p2
D + pxU + pxU 00/p2

D,

� ' {U 00, px/p2
D}/2 = �pxpyU 000/p4

D.

• This is the WKE model describing ZF–DW interactions [5].
This WKE model conserves the total enstrophy and energy in-
variants of the original parent model.

• In previous works, higher derivatives of the ZF velocity field
U were neglected. This approximation lead to the traditional
WKE (tWKE) model [1], where

H ' ��px/p2
D + pxU, � ' 0.

• The tWKE model does not conserve the total enstrophy of the
system. This leads to incorrect results when simulating the
spontaneous formation of ZFs from DW turbulence.
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Figure 1: The ZF velocity U(y, t) after numerically integrating the WKE (a) and
tWKE (b) models. Both simulations used the same parameters and initial condi-
tions. The WKE model predicts ZFs with a particular �zf . In the tWKE case, the
smaller scale of the ZFs is set by the numerical grid resolution [5].
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Figure 2: The total, DW, and ZF enstrophies obtained by numerically integrat-
ing the WKE (a) and tWKE (b) models. As shown, at t ' 10 the tWKE predicts
that the total enstrophy in the system is larger than the enstrophy injected by the
external forcing; namely, Zext

.
= (t/2)2⇡�1

R
dy d2p F . In contrast, the total en-

strophy in the WKE model is always smaller than Zext.
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3. It would be interesting to include eddy–eddy interactions or "wave collision operators" by using the techniques presented here.
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Overview

• In many problems involving continuum field theories, a major
challenge consists in “multiscale modeling.”

• This is the process of obtaining theoretical models that correctly
and efficiently capture the dynamics of low-frequency, large-
scale flows while including the influence of high-frequency
(HF), small-scale flows (such as waves).

• Here we present recent progress in developing such multiscale
continuum models for plasma physics.

• Our method consists in marrying three main ingredients:
– nonlinear WKB,

– variational principles via Euler–Poincaré reduction, and

– slow-manifold analysis.

• The analytic methods proposed here are applicable to any first-
order field theory and will be used to study other more com-
plicated multiscale problems in plasma physics.

Basic model and nonlinear WKB

• Let’s consider the multi-fluid–Poisson system

@t⇢↵ + r · (⇢↵u↵) = 0,

m↵@tu↵ + m↵(u↵ · r)u↵ = �⇢↵rP↵[⇢↵]� q↵r�,

�r · r� = 4⇡
X

↵

q↵⇢↵,

where

⇢↵(t,x) : number density of particle species ↵,
u↵(t,x) : velocity field of particle species ↵,
�(t,x) : electrostatic potential,
P↵[⇢↵] : barotropic pressure of particle species ↵.

• To (potentially) account for nonlinear waves, we adopt the
nonlinear (NL) WKB ansatz for the dynamical variables; e.g.,

⇢(t,x) = e⇢(t,x, S(t,x)) =
1X

n=0

<
⇥
e⇢n(t,x)einS(t,x)

⇤
.

• After substituting, we get the NL-WKB extended equations:

@S
t e⇢↵ + rS · (e⇢↵eu↵) = 0,

m↵@
S
t eu↵ + m↵(eu↵ · rS)eu↵ = �e⇢�1

↵ rSP↵[e⇢↵]� q↵re�,

�rS · rS e� = 4⇡
X

↵

q↵e⇢↵,

where @S
t

.
= @t + (@tS)@✓ and rS .

= r + (rS)@✓ (chain rule).

• The goal is to develop an averaged model that describes the
interaction of mean flows and electrostatic Langmuir waves.

Euler–Poincaré variational principles
• To construct good multiscale models, it is almost imperative to

do asymptotic approximations within a variational principle.

• For the multi-fluid–Poisson system, there is no known varia-
tional principle (VP) in the space of fields (⇢,u, �). Other alter-
nate VPs are not convenient for our purposes. These include

– Clebsch formulation, Low’s reprentation, potential flows,...

• With Euler–Poincaré (EP) theory, one can construct an action
⇤ =

R t2
t1

(Lsym+Lem�H)dt for the multi-fluid–Poisson system.

Lsym
.
=

X

↵

Z

Q

[m↵u↵ · v↵ + ⇢↵(@t + v↵ · r)�↵] d3x

Lem
.
=

Z

Q

|r�|2
8⇡

d3x

H
.
=

X

↵

Z

Q

hm↵

2
|u↵|2 + q⇢↵� + ⇢↵ U↵(⇢↵)

i
d3x,

where U↵ is the internal energy so that P↵ = U↵ + ⇢↵U 0
↵.

• In this formulation, u↵ is not the same as v↵. Instead,

v↵
.
= (@tg↵) � g�1

↵ ,

where g↵ : Q0 ! Q is a diffeomorphism that maps labels x0 2
Q0 of fluid parcels to their current positions x 2 Q at time t.

• In this VP, the action is a functional along the paths of fields
(⇢↵,u↵,g↵, �↵)

label space Q0

configuration space Q

Xt = gt(x0)

x0

Weyl transformation
• The Weyl transform is a mapping of an operator in a Hilbert

space to a function in phase space [4].

• The Weyl symbol A(x,p, t) of an operator bA(t) is defined as

A(x,p, t)
.
=

Z
d2s e�ip·s hx + s/2| bA|x� s/2 i .

• For any bC = bA bB, the corresponding Weyl symbols satisfy

C(x,p, t) = A(x,p, t) ? B(t,x,p).

Here "?" refers to the Moyal product

A ? B
.
= Aei bL/2B,

and bL is the Janus operator

bL .
=
 �
@x · �!@p �

 �
@p · �!@x.

Hermann Weyl• The [ bA, bB]⌥ map into the Moyal brackets:

�i[ bA, bB]� , {{A, B}} .
= �i (A ? B �B ? A) = 2A sin

⇣
bL/2

⌘
B,

[ bA, bB]+ , [[A, B]]
.
= A ? B + B ? A = 2A cos

⇣
bL/2

⌘
B.

• Examples of Weyl transforms are the following:

f(bx) , f(x), g(bp) , g(p), bxibpj , xipj + (i/2)�i
j .

Main theoretical result: Wigner–Moyal formulation

• Applying the Weyl transformation and zonal averaging gives

@tW = {{H, W}} + [[�, W ]] + F � 2µdwW,

@tU + µzfU =
@

@y

Z
d2p

(2⇡)2
1

p2
D

? pxpyW ?
1

p2
D

,

where

W (y,p, t) : zonal-averaged Wigner function for the DWs,
U(y, t) : ZF velocity,

F (y,p) : forcing function of DW turbulence,

µdw,zf : DW and ZF dissipation coefficients.

• We also introduced H and �:

H(y,p, t)
.
= ��px/p2

D + pxU + [[U 00, px/p2
D]]/2,

�(y,p, t)
.
= {{U 00, px/p2

D}}/2.

• This is the Wigner–Moyal formulation of DW–ZF interactions
[2]. Driftons are treated as particles in phase space, except now
they are quantumlike particles, i.e., have nonzero wavelengths.

• The function H can be interpreted as the Weyl symbol of the
drifton Hamiltonian, whereas � determines the dissipation of
DW quanta that is caused specifically by DW–ZF interactions.

• This formulation can be understood as an alternative phase-
space representation of the CE2 equations [5].

• For isolated systems (F = 0 and µdw,zf = 0), this formulation
exactly conserves the total enstrophy and potential energy

Z(t) = Zdw(t) + Zzf(t) =
1

2

Z
d2p

(2⇡)2
dy W +

1

2

Z
dy (U 0)2,

E(t) = Edw(t) + Ezf(t) =
1
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Z
d2p

(2⇡)2
dy

W
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+
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2

Z
dy U2.

Geometrical-optics limit and the wave kinetic equation

• The WKE model can be systematically derived from the
Wigner–Moyal formulation. Let’s assume

✏
.
= max

⇢
�dw

�zf
,
LD

�zf

�
⌧ 1.

• Using the lowest-order approximations of the Moyal brackets,
one obtains

@tW = {H, W} + 2�W + F � 2µdwW,

@tU + µzf U =
@

@y

Z
d2p

(2⇡)2
pxpyW

p4
D

,

where {·, ·} is the canonical Poisson bracket and

H ' ��px/p2
D + pxU + pxU 00/p2

D,

� ' {U 00, px/p2
D}/2 = �pxpyU 000/p4

D.

• This is the WKE model describing ZF–DW interactions [5].
This WKE model conserves the total enstrophy and energy in-
variants of the original parent model.

• In previous works, higher derivatives of the ZF velocity field
U were neglected. This approximation lead to the traditional
WKE (tWKE) model [1], where

H ' ��px/p2
D + pxU, � ' 0.

• The tWKE model does not conserve the total enstrophy of the
system. This leads to incorrect results when simulating the
spontaneous formation of ZFs from DW turbulence.
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Figure 1: The ZF velocity U(y, t) after numerically integrating the WKE (a) and
tWKE (b) models. Both simulations used the same parameters and initial condi-
tions. The WKE model predicts ZFs with a particular �zf . In the tWKE case, the
smaller scale of the ZFs is set by the numerical grid resolution [5].
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Figure 2: The total, DW, and ZF enstrophies obtained by numerically integrat-
ing the WKE (a) and tWKE (b) models. As shown, at t ' 10 the tWKE predicts
that the total enstrophy in the system is larger than the enstrophy injected by the
external forcing; namely, Zext

.
= (t/2)2⇡�1

R
dy d2p F . In contrast, the total en-

strophy in the WKE model is always smaller than Zext.
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I. INTRODUCTION

Xt = gt(x0)

x0

gt : Q0 ! Q

ht : Q! Q0.

Nonlinear WKB is a powerful tool for studying solutions of partial di↵erential equations

(PDE) whose local behavior about any point is well approximated by a plane wave. The

method, which is a generalization of the usual WKB method for linear PDE, goes back

at least to the mid 1960’s, when it was used to study large-amplitude locally-plane-wave

solutions of a variety of systems, including the Bousinesque equations[? ] and the Kortweg-

DeVries equation.[? ] Generally speaking, given a PDE of the form

F b('a(x), @µ'
a(x), @2

µ⌫'
a(x), . . . ) = 0, (1)

for the unknown multi-component field 'a, application of nonlinear WKB comprises two

steps. First Eq. (1) is extended to a larger system of PDE through introduction of the

ansatz

'a(x) = '̃a(x, S(x)), (2)

where '̃a(x, ✓) is 2⇡-periodic in the second argument, and S(x) is referred to as a phase

function. The extension is obtained by substituting Eq. (2) into Eq. (1), applying the chain

rule, and then replacing S(x) (but not derivatives of S) with an arbitrary angle ✓ to obtain

F b('̃a(x, ✓), @µ'̃
a(x, ✓) + @µS(x)@✓'̃

a(x, ✓), . . . ) = 0. (3)

As is readily checked, each solution ('̃a, S) of Eq. (3) yields a solution 'a of Eq. (1), where

'a is given by Eq. (2). It is in this sense that Eq. (3) extends the original equation (1).

Next, scale separation present in the original system of PDE, either in F b or the initial

conditions, is leveraged to identify slow solutions of the extended system (3). The power

of this procedure comes from the fact that, after appropriate asymptotic scaling, rapidly

oscillating locally-plane-wave solutions 'a of Eq. (1) correspond to slowly-varying solutions

('̃a, S) of the extended system (3), which are easier to treat using asymptotic methods.

In this paper we will study the nonlinear WKB extension procedure, i.e. the passage from

Eq. (1) to Eq. (3), as an interesting mathematical construction in its own right, independent
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Figure 3-2. The configuration map gt encodes the information on the temporal
dynamics of the fluid elements with labels x0. Its inverse ht

.
= g−1

t is called the
back-to-labels map. The function ht provides the label x0 of the fluid element
found at an Eulerian position x at time t.

follows. Let Q be a compact region that represents the fluid container, and let Q0 be a
diffeomorphic copy of Q equipped with a non-vanishing function ρ0 : Q0 → R that represents
a reference configuration of fluid elements. A path t 7→ g(t) ∈ Diff(Q0, Q) in the space of
diffeomorphisms Q0 → Q is a critical point of the functional

Aρ0(g) =

∫ t2

t1

∫

Q0

1

2
|ġ(x0)|2 ρ0(x0) dx0 −

∫
c2ρ0(x0)ln

(
ρ0(x0)

det(∇0g)(x0)

)
dx0 (3.20)

if and only if Eq. (3.19) is satisfied with ρ and u defined according to

ρ(x) =
1

det(∇0g)(g−1(x))
ρ0(g−1(x)), (3.21)

u(x) = ġ(g−1(x)), (3.22)

where we have suppressed the time argument t for the sake of presentation. In particular,
because ρ is defined by Eq. (3.21), the continuity equation (3.18) is satisfied.

Before continuing further, it might be worth explaining the physical origin of the config-
uration map gt. Suppose that, at the initial time t0 before the system is evolved, one divides
the fluid into infinitesimally small elements. We then assign to each element a so-called
label, which for convenience could be their initial positions x0. The configuration map gt
encodes the information about the temporal motion of these fluid elements. Specifically, for
an element with label x0 it provides its position Xt at each time t. Similarly, the inverse
function of ht

.
= g−1

t is called the back-to-labels map. Physically, when providing an Eulerian
position x and a time t, the back-to-labels map provides the label x0 of the fluid element
found at that position. These notions are illustrated in Fig. 3-2.

The difficulty with Eq. (3.20) is that the field that appears in the action functional is
g(x0, t) instead of ρ(t,x) or u(t,x), as one might expect from experience with classical field
theory. In fact, g is not even defined on the same domain as ρ or u. (The domain of gt is
technically the label space Q0.) It is not at all obvious how the NL-WKB extension procedure
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can be applied to the variational principle of Eqs. (3.18) and (3.19). This occurs because it
is not physical to assign a phase S(x) to a field that lives in the configuration space Q0; in
other words, phases are assigned to Eulerian positions, not labels or initial positions.

To remedy this problem, we introduced a phase-space variational principle that does fit
the mold of classical field theories. For the particular case of isothermal fluids, the Lagrangian
of this variational principle is given by [2]

L =

∫

Q

(ρu · v + ρ(∂t + v ·∇)χ) d3x−
∫

Q

[
ρ

2
|u|2 + c2

sρ ln

(
ρ

ρref

)]
d3x, (3.23)

where ρ is the fluid density, u is the fluid velocity, χ is a scalar field that acts as a Lagrange
multiplier, and ρref is a reference density. Note that the v(t,x) is an independent fluid
velocity that is defined via the inverse of the configuration map, h

.
= g−1, which is the

back-to-labels map introduced earlier. In terms of the configuration map, the velocity field
v is usually defined as v

.
= ġ ◦ g−1, or equivalently v(t,x) = [∂tg(t,x0)]x0=g−1(t,x). In terms

of the back-to-labels map, it is equivalently written as

v
.
= −ḣ · (∇h)−1. (3.24)

Note that, in contrast to the action given in Eq. (3.20), here the fields h, ρ, u, and χ are
all independent. Therefore, this variational principle falls into the class of conventional field
theories that was discussed in the previous section.

For the sake of clarity, let us take the variations of action with Lagrangian (3.23). We
first note that the back-to-labels map h only appears in the Lagrangian through the velocity
field v. Therefore, it can be shown that, when varying the h, this will induce a variation on
v such that δv = ξ̇ + (v ·∇)ξ − (ξ ·∇)v, where ξ

.
= −δh · (∇h)−1. In some sense, one

could say that the variations of v are constrained. The resulting Euler–Lagrange equations
are given by

δu : v = u, (3.25)

δχ : ∂tρ+ ∇ · (ρv) = 0, (3.26)

δρ : ∂tχ+ v ·∇χ = −u · v +
1

2
|u|2 + c2

s + c2
s ln

(
ρ

ρref

)
, (3.27)

δh : ∂t(ρu + ρ∇χ) + ∇ · [v ⊗ (ρu + ρ∇χ)] = −(ρui + ρ∂iχ)∇vi. (3.28)

This system of equations comprises more equations than the original isothermal Euler equa-
tions (3.18) and (3.19). Nevertheless, the fields v and χ can be easily eliminated. Doing so
immediately leads to the isothermal Euler equations that we wanted to derive.

The more general case of barotropic Euler equations was treated in Ref. [2]. This allowed
us to cast this type of fluid equations into the framework of conventional classical field
theories. After doing so, we then found a variational principle for the NL-WKB extended
fluid equations. Another interesting theoretical result that was shown is that the variational
principle for the extended WKB fluid system admits loops of relabeling transformations
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as a symmetry group. Therefore, Noether’s theorem implies that the NL-WKB extended
Eulerian equations possess a family of circulation invariants parameterized by S1.

As a pedagogical example of how the methods developed can be useful, we used the
techniques above to obtained a reduced, asymptotic model describing wave–mean-flow inter-
actions [2]. Specifically, we studied the time-averaged interaction between a small-amplitude,
high-frequency acoustic wave and a slowly varying isothermal perfect fluid. The main steps
of the calculation were the following. We first cast the variational principle for isothermal
fluids in the WKB framework. Then, we separated the fields into a slowly-varying component
representing the background fluid motion and a rapidly-varying component representing the
small-amplitude acoustic wave. Using ideas from slow-manifold theory [55; 56], we solved
for the rapidly-varying fields. (This was equivalent to finding the eigenmodes corresponding
to acoustic oscillations.) Once the expressions for the rapidly-varying fields were obtained,
these were inserted back into the NL-WKB extended Lagrangian. The Lagrangian was then
simplified and truncated to the leading order in the amplitude of the acoustic wave.

The resulting action principle describing the wave–mean-flow interaction is given by
A =

∫ t2
t1

L dt, where the Lagrangian L is

L(h̄, ū, ρ̄, χ̄, I, S) =

∫

Q

[
ρ̄ū · v̄ + ρ̄

(
∂tχ̄+ v̄ ·∇χ̄

)]
d3x

−
∫

Q

[
ρ̄

2
|u|2 + c2

sρ̄ ln

(
ρ̄

ρref

)]
d3x

− ε2
∫

Q

I (∂tS + v̄ ·∇S + cs|∇S|) d3x. (3.29)

In the Lagrangian above, the first line on the right-hand side represents the symplectic part

of the action. Here the variables ρ̄, ū, and v̄
.
= − ˙̄h ·(∇h̄)−1 represent the bulk flow variables.

It is worth clarifying that the mean back-to-labels map h̄ and the mean configuration map
ḡ describe the bulk fluid motion that is supposed to be slowly varying. Also, here χ̄ acts as
a Lagrange multiplier that enforces the continuity equation. The second line in Eq. (3.29)
represents the Hamiltonian for the bulk fluid flow. It is composed by a kinetic component
and a potential component related to the fluid pressure. Finally, the last line corresponds
to the Lagrangian describing the wave motion. Here S is the phase function for the acoustic
oscillation, and I is the acoustic-wave action density, which is given by

I .
=

1

2π

∫

S1

ρ̄
cs
|∇S|

(
ρ̃

ρ̄

)2

dθ, (3.30)

where ρ̃(t,x, θ) is the fluctuating density.

In the wave–mean-flow action with Lagrangian (3.29), the independent fields are h̄, ρ̄,
ū, χ̄, I, and S. Varying the action with respect to these fields and eliminating the fields v̄
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and χ̄ leads to the following governing equations:

∂tρ̄+ ∇ · (ρ̄ū) = 0, (3.31)

ρ̄∂tū + ρ̄ū ·∇ū = −c2
s∇ρ̄−∇

(
I∇S ⊗∇S

|∇S|

)
, (3.32)

∂tI + ∇ · (vgI) = 0, (3.33)

∂tS + ū ·∇S + cs|∇S| = 0. (3.34)

These equations describe a high-frequency, small-amplitude acoustic wave interacting with
a slowly-varying, isothermal bulk fluid. Equation (3.31) is obviously the continuity equation
for the bulk flow. Equation (3.32) corresponds to the momentum conservation equation.
Note that the last term represents a ponderomotive pressure acting on the bulk fluid which
is generated by the acoustic wave. Equation Eq. (3.33) represents the action conservation
equation for the acoustic wave. In essence, this equation propagates the envelope of the
acoustic wave. Finally, Eq. (3.34) represents the dispersion relation. In this case, ω(t,x)

.
=

−∂tS is the wave frequency, k(t,x)
.
= ∇S is the wavevector, and Ω(t,x)

.
= ū · k + cs|∇S| is

the Doppler-shifted acoustic-wave frequency.

3.4. Conclusions and future work

The principle objective of the original proposal that was submitted for the Truman
Fellowship was to develop an advanced theoretical model for laser–plasma interactions (LPI)
in magnetized environments such as those encounted in the MagLIF preheat stage [57; 58].
It was initially thought that the techniques that were being developed in this work would
eventually serve as a building block for tackling the much harder LPI problem. However,
towards the end of this project, it was concluded that these techniques were not going to
be useful to describe in detail the MagLIF preheat stage and that the cost-benefit ratio
for continuing such a project would be too high. In other words, results coming from the
originally proposed project would not impact much the mainstream research done at Sandia.
Below, I shall expand more on these ideas and briefly mention some of the major setbacks
that were encountered.

Starting with the technical aspects, one of the first difficulties that emerged was that
the technique of slow-manifold reduction was mathematically “too rigid” for systematically
deriving the sought LPI model. As an example, when introducing the scale separation
for the eventual asymptotic analysis, the mathematics would force the frequency of the
electromagnetic waves to be much higher than the plasma frequency. This would physically
cause the electromagnetic waves to not refract at all by the surrounding plasma. Without
the possibility of refraction, there was no chance that the electromagnetic waves would self-
focus, which is an effect that is often seen in preheat experiments. It is possible, however,
that this difficulty could have been overcome with additional work.

The MagLIF preheat environment is also uniquely challenging to model using a classical
field theory. Inverse Bremsstrahlung is the main mechanism for heating the plasma when the
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laser is injected into the MagLIF fuel. This mechanism is caused by collisions of oscillating
electrons with the surrounding plasma ions. Describing this process within the framework
of a variational principle is not straightforward, as it is essentially a dissipative process that
removes laser quanta (or wave action) and transfers the laser energy to the plasma. Another
technical difficulty was that, in the typical laser intensity in which the Z beamlet laser
operates for laser preheating, the filamentation of the laser is thermally driven rather than
ponderomotively driven. As the name suggests, ponderomotive filamentation is driven by
conventional ponderomotive forces and is the dominant effect in high-intensity lasers. These
forces can be readily described by variational principles [59; 60; 61; 62]. In contrast, thermal
filamentation involves the effects of heat conduction [63] and is usually dominant for lower-
intensity lasers. Modeling heat conduction is notoriously more difficult within a variational
framework. Both absorption by inverse Bremsstrahlung and thermal filamentation modify
the laser intensity profile, which in turn modifies the processes in LPI such as stimulated
scattering.

From a more practical standpoint, there were also other concerns on how a new developed
LPI model would actually be implemented into a production code currently used at Sandia.
The main production codes that are currently used for describing experiments on Z are
based on the magneto-hydrodynamic (MHD) approximation. Within this approximation,
the codes can impressively describe many aspects of the experiments done on Z. However,
by the nature of the approximation itself, the codes are incapable of describing electrostatic
oscillations. As it is well known, it is necessary to capture these oscillation since they are
necessary to describe stimulated Raman scattering. Without the computational capability
to self-consistently model these oscillations or to implement a sufficient model for them into
a production code in a timely manner, it quickly became dubious if any model that would
arise from this research could actually be put into practical use.

Having said the above, the theoretical tools that were developed in this project could
be used to describe more complex academic scenarios involving nonlinear waves interacting
with bulk fluid flow. For example, expanding the Lagrangian to higher-order terms with
respect to the wave amplitude should lead to effects such as wave harmonic generation
and nonlinear couplings between multiple waves, e.g., stimulated scattering [64]. Other
possibilities include studying corrections to ray trajectories caused by space-dependent wave
polarization [65; 66; 67] in wave–mean-flow problems arising in fluids and plasmas.

As a final note, one of the advantages of the Truman Fellowship is that it provides the
Fellow the freedom to explore the diverse research areas pursued at Sandia without the
hesitation of immediately being forced to be involved in a research project. After learning
more about the local research thrusts and discovering the difficulties that lied ahead for
the originally proposed project, I decided that it was perhaps more beneficial to Sandia if
I changed the focus of my research to topics that were more relevant to the local effort. In
this vein and as it will be shown below, this shift in focus led to research projects on the
magnetic Rayleigh–Taylor instability which affects confinement in MagLIF experiments and
on the scaling of magneto-inertial fusion targets to larger pulsed-power drivers.
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4. WEAKLY NONLINEAR MAGNETIC RAYLEIGH–TAYLOR
INSTABILITY

4.1. Introduction

The magnetic-Rayleigh–Taylor instability (MRTI) occurs in pinch plasmas in which the
J × B, or magnetomotive, force is used to compress matter [68; 69; 70; 71]. For example,
in the MagLIF experimental platform [72; 73; 74; 75], the MRTI develops as the driving
magnetic pressure accelerates the liner throughout the implosion. In analogy to the classical
Rayleigh–Taylor instability, this configuration is dynamically unstable. In general, it is
important to better understand MRTI since it can compromise the integrity of metal liners,
which in turn, is a significant factor for determining target performance in MagLIF [76].

The magnetic-Rayleigh–Taylor (MRT) instability has been extensively studied through-
out the years. Refs. [77; 78] reported the use of radiograph-based techniques to diagnose
the dynamics of seeded MRT instabilities on Z-pinch implosions. Shortly afterwards, MRT
growth was experimentally characterized on smooth coated and uncoated liners [79; 80]. In
Ref. [81], the spontaneous appearance of helical structures in axially magnetized Z pinches
was reported. These structures were also investigated in further detail in Refs. [82; 83].
Finally, MRTI was also experimentally studied in planar geometry in Ref. [84].

From the theoretical perspective, the first studies on MRTI were done by Kruskal and
Schwarzchild [85], Chandrasekhar [86], and Harris [87]. After those seminal works, linear
MRTI was further investigated by including various additional effects. For example, Refs. [88;
89] discussed linear MRTI in a slab geometry while including magnetic fields embedded
inside the conducting fluid. MRTI was also investigated in cylindrical geometry [90], and
the analysis was extended to finite-width shells [91]. The stabilizing effects due to finite
compressibility and elasticity of the heavy conducting fluid were reported in Refs. [92; 93;
94; 95]. Similarly, sheared flows and sheared magnetic fields were found to be MRT stabilizing
in Refs. [96; 97]. The effects due to axial magnetic-flux compression on the liner exterior
were investigated in Ref. [98] to explain the helical structures reported in Ref. [81]. Finally,
Bell–Plesset effects in imploding shells were discussed in Refs. [99; 100], and the effects due
to finite-Larmor radius were also investigated in Ref. [101].

The theoretical studies above have primarily investigated MRTI in the linear phase.
However, it is well known that MRT perturbations can develop strong nonlinear structures
during current-driven implosions [79; 80; 81]. In this regard, numerical simulations have
been used to study nonlinear MRTI in Z-pinch implosions. As an example, the effects
of MRTI on the integrity of imploding cylindrical liners were studied in Refs. [102; 103].
The emergence of helical structures in axially magnetized Z pinches was also investigated
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Figure 4-1. Schematic diagram of the geometry considered for the present MRTI
study. The fluid slab is denoted by the shaded region. The magnetic field is
represented by the stream lines. The field ξ(t,x) describes the fluid–vacuum
interface.

numerically [104]. From the theoretical perspective, interesting results on nonlinear RTI and
MRTI in accelerating planar slabs and cylindrical implosions have been reported [105; 106;
107; 108; 109]. Concerning MRTI in cylindrical implosions [106; 107; 108; 109], these studies
used the so-called thin-shell approximation where the wavelength of the perturbations is
large compared to the shell thickness. Although this approximation only covers a subset of
possible MRTI modes, it does allow to analytically investigate the fully nonlinear stages of
this instability with relatively simple mathematical methods.

Given the fundamental importance of this instability for Z-pinch implosions, as part
of the Truman Fellowship, I studied the weakly-nonlinear stage of the MRTI. To simplify
the analysis of the problem, I considered the single-interface MRT problem considered in
Refs. [85; 86]. A schematic of the geometry considered is shown in Fig. 4-1. In this problem,
a semi-infinite fluid slab is supported by a magnetic field. Here the magnetic field plays
the role of a light fluid supporting the heavy fluid on top. The goal of this study was
to develop a theoretical model that allowed for the generation of MRT harmonics and for
their eventual coupling. Such a model was developed using the framework of variational
principles. The model described the emergence of MRT spikes and bubbles, and it was also
used to calculate the effects of the magnetic field on the saturation amplitude of the MRTI
exponential growth. I shall briefly discuss some details of these results below. Results from
this work were published in Ref. [3].

4.2. Main result #1: Development of a MRTI variational principle

One way to construct well-controlled asymptotic approximations for dynamical systems is
to directly approximate a variational principle δΛ = 0 from which the exact equations can
be derived [110; 111; 66; 61]. Based on a variational principle for irrotational fluids with a
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free surface [112], I found that the action Λ for the MRTI can be written as

Λ =

∫ t2

t1

L[ξ, φ, ψ, ∂tξ, ∂tφ] dt, (4.1)

where L is the Lagrangian of the system. The Lagrangian L can be separated into a fluid
component and a magnetic component:

L
.
= Lfluid[ξ, φ] + LB[ξ, ψ], (4.2)

where

Lfluid
.
=

∫

D

∫ +L

ξ

ρ

[
∂

∂t
φ− 1

2
(∇φ)2 − gz

]
dz d2x, (4.3)

LB
.
=

1

8π

∫

D

∫ ξ

−L
|B0 + ∇ψ|2 dz d2x. (4.4)

In the above, ξ(t,x) is a field describing the fluid–magnetic-field interface, φ is the flow
potential for the velocity field v

.
= −∇φ, B0 is a background magnetic field, ψ is a potential

to describe the perturbations of the magnetic field so that B = B0 + ∇ψ, and g is the
acceleration of the fluid. Also, L serves as constant to denote the upper and lower boundary
of the domain along the z axis. The integration domain D is a dx × dy periodic box in the
xy plane.

For the sake of completeness, let us verify that the action (4.1) indeed leads to the
nonlinear equations for MRTI. Varying the action with respect to the flow potential φ gives
two equations. Inside the fluid slab [z > ξ(t,x)], one finds that the flow potential satisfies
Laplace’s equation

∇2φ = 0. (4.5)

This is the incompressibility condition. At the fluid interface, where z = ξ(t,x), we find the
nonlinear advection equation of the fluid interface:

[
∂tξ −∇φ ·∇ξ + ∂zφ

]
z=ξ

= 0. (4.6)

In a similar manner, when varying the action with respect to the magnetic potential ψ, we
obtain two equations. In the vacuum region [z < ξ(t,x)], the magnetic potential satisfies
Laplace’s equation

∇2ψ = 0. (4.7)

Along the interface [z = ξ(t,x)], we find that the magnetic field B = B0 +∇ψ is parallel to
the surface of the perfectly conducting fluid:

∇(ξ − z) · [B0 + ∇ψ]z=ξ = 0. (4.8)

Finally, when varying the action with respect to the field ξ, we obtain

ρ

[
∂

∂t
φ− 1

2
(∇φ)2 − gz

]

z=ξ

=
1

8π

∣∣B0 + ∇ψ
∣∣2
z=ξ

, (4.9)
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Figure 4-2. (a) Time evolution of the first and second harmonics of the MRT
instability. (b) Surface perturbation ξ(t, x) evaluated at different times. In this
example, the fundamental wavenumber is k = 1, and the gravity constant is
g = 1. The initial conditions are ξ1(0) = 0.01, ξ2(0) = 0, and Φ1,2(0) = 0. Here
the strength of the magnetic field was chosen so that σ

.
= (k · vA)2/(kg) = 0.3.

which serves as the dynamical equation for the fluid flow potential φ.

In order to obtain a tractable weakly nonlinear model for MRTI, the dynamical fields
(ξ, φ, ψ) were expressed in terms of Fourier components as it is usually done in weakly-
nonlinear analyses for the RT instability [113; 114; 115; 116; 117; 118; 119; 120]. The cor-
responding Fourier series were substituted into the Lagrangian, and the Lagrangian was
then truncated up to a certain order in an asymptotic parameter. Once the approximated
Lagrangian was obtained, the corresponding equations of motion for the wNL MRTI were de-
rived by varying the approximated action. This procedure provided a systematic approach to
study wNL MRTI and lead to a set of Hamiltonian equations that self-consistently conserve
the energy of the system.

As an example, the wNL Lagrangian for the MRTI that includes the interaction of the
first and second MRT harmonics is given by [3]

L '
2∑

n=1

(
Φn

dξn
dt

)
−H(t, ξ1, ξ2,Φ1,Φ2), (4.10)

where the Hamiltonian H is

H '
2∑

n=1

(
nk

2
Φ2
n −

γ2
nk

2nk
ξ2
n

)
− k3

8
ξ2

1 Φ2
1 +

k2

2
ξ2 Φ2

1 −
1

2
(k · vA)2 ξ2

1ξ2 −
k

8
(k · vA)2 ξ4

1 . (4.11)

Here ξn are the Fourier components of the fluid–magnetic-field interface and Φn are the
Fourier components of the flow potential evaluated at the surface. Note that the latter act
as canonical conjugate variables of the Fourier components ξn. Also, γnk

.
= [gk− (k ·vA)2]1/2

is the linear growth rate for MRTI, and vA is the Alfven velocity associated to the background
magnetic field B0. The equations of motion for the first and second Fourier coefficients are
obtained by varying the action Λ =

∫ t2
t1
L dt using the Lagrangian (4.10). The resulting

41



equations are the following:

δΦ1 :
dξ1

dt
= kΦ1 −

k3

4
ξ2

1Φ1 + k2ξ2Φ1, (4.12)

δΦ2 :
dξ2

dt
= 2kΦ2, (4.13)

δξ1 :
dΦ1

dt
=
γ2
k(t)

k
ξ1 +

k3

4
ξ1Φ2

1 + (k · vA)2ξ1ξ2 +
k

2
(k · vA)2ξ3

1 , (4.14)

δξ2 :
dΦ2

dt
=
γ2

2k(t)

2k
ξ2 −

k2

2
Φ2

1 +
1

2
(k · vA)2ξ2

1 . (4.15)

These are the governing equations for the double-harmonic wNL MRTI. Note that the first
terms on the right-hand side are the usual linear terms that appear from a linear analysis of
the MRTI. The rest of the terms represent nonlinear couplings between the harmonics.

To discuss the temporal dynamics described by Eqs. (4.12)–(4.15), it is perhaps more
instructive to discuss the Hamiltonian H rather than the equations themselves. When one
varies the action, the terms inside the sum in Eq. (4.11) lead to the linear terms appearing in
Eqs. (4.12)–(4.15). The next two terms in Eq. (4.11) are the nonlinear coupling terms arising
from the kinetic part of the Hamiltonian H. The term proportional to ξ2

1 Φ2
1 represents

a nonlinear self-coupling of the first harmonic, and the term containing ξ2 Φ2
1 describes a

coupling between the first and second MRT harmonics. For the case of classical RTI, the
latter is, in fact, responsible for the nonlinear driving of the second harmonic by the first
harmonic. The last two terms in Eq. (4.11) contain nonlinear coupling terms of magnetic
origin. Similarly to before, the first term proportional to ξ2

1ξ2 represents a coupling between
the two MRTI modes, and the second term containing ξ4

1 represents a nonlinear self-coupling
of the first harmonic. It is worth noting that, contrary to the lowest-order contribution of
the magnetic energy (which is stabilizing), the magnetic self-coupling term proportional to
ξ4

1 appears to be MRT destabilizing due to its negative sign.

Figure 4-2 presents the temporal evolution of the Fourier coefficients ξ1 and ξ2 and of the
surface perturbation ξ(t, x) using Eqs. (4.12)–(4.15). During the first one or two e-folding
times, the amplitude of the first MRTI mode is small, and ξ1 grows exponentially [see Fig. 4-
2(a)]. As the fundamental MRT mode becomes sufficiently strong, it eventually begins to
drive the second MRT harmonic. When the nonlinear self-coupling and coupling with the
second harmonic are no longer negligible, ξ1 reaches a maximum and then rapidly decreases.
The resulting surface perturbation is shown in Fig. 4-2(b). Due to the presence of the second
harmonic, bubble and spike structures appear on the surface perturbation. Note, however,
that the rounding of the bubbles begins to deform for t & 6.7. This behavior is not physical
and signals the breakdown of wNL theory [121]. In terms of the time evolution of the first
harmonic ξ1, the breakdown of wNL theory roughly coincides with the inflection point for
ξ1. The dynamics beyond this point is no longer physical.
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Figure 4-3. Comparison between the asymptotic expressions in Eqs. (4.16)–
(4.17) and the numerical solutions of Eqs. (4.12)–(4.15). Same initial conditions
and parameters were used as in Fig. 4-2. The subfigures respectively correspond
to σ = {0.0, 0.25, 0.5, 0.75}.
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4.3. Main result #2: Effects of the magnetic field on the saturation of the
linear exponential growth

In contrast to linear theory, wNL theory allows to compute the limit of validity of the
asymptotic expansion. To do so, one must analytically calculate the temporal behavior of
the solutions of Eqs. (4.12)–(4.15) far from the transient phase but before the breakdown of
wNL theory. For constant g and B0 and with initial conditions such that only ξ1 is initially
nonzero, it is shown in Ref. [3] that the corresponding asymptotic solutions of Eqs. (4.12)–
(4.15) are given by

ξ1 ∼ ξ1,lin(t)

(
1− k(kg + γ2

k)γ2
2k

16gγ2
k

[ξ1,lin(t)]2
)
, (4.16)

ξ2 ∼ −
γ2

2k

4g
[ξ1,lin(t)]2, (4.17)

where ξ1,lin(t)
.
= (1/2)ξ1(0) exp(γkt) is the dominant component of the linear solution of ξ1.

In Fig. 4-3, the asymptotic expressions obtained in Eqs. (4.16) and (4.17) are compared to
the numerical solutions of Eqs. (4.12)–(4.15) using different values for the parameter σ

.
= (k ·

vA)2/(kg), which measures the stabilizing effect of the external magnetic field on the MRTI.
In all cases, the asymptotic expressions approximate well the numerical solutions for times
before the breakdown of wNL theory; i.e., in the temporal window after the transient phase
and to the saturation of the growth of ξ1. In particular, Fig. 4-3(c) shows the case for σ ' 1/2
where the growth rate γ2

2k for the second MRTI harmonic is zero. As expected, the second
Fourier component ξ2 lies close to zero until late times, and the Fourier component ξ1 closely
follows the linear growth. As shown in Fig. 4-3(d), where σ = 0.75, the numerical solution
for ξ1 and its asymptotic approximation indeed grow faster than the linear approximation
ξ1,lin. This confirms the remark given in the previous paragraph.

One way to evaluate the strength of nonlinear effects is to measure the difference be-
tween the linear and nonlinear solutions for the MRTI [114]. When this difference becomes
large, the asymptotic series used by the wNL theory usually breaks down, and the descrip-
tion is no longer valid. Let us determine then the regime of validity of the present wNL
theory. Let the saturation amplitude (SA) be defined as the amplitude ξ1,sat of the linear
MRT solution calculated at the time when the nonlinear solution differs by 10%, i.e., when
|ξ1,lin − ξ1|/ξ1,lin = 0.1 [122; 115]. Using this definition and substituting Eq. (4.16) leads to

kξ1,sat =

√
2

5
f(σ) ' 0.63f(σ), (4.18)

where

f(σ)
.
=

√∣∣∣∣
1− σ

(1− 2σ)(1− σ/2)

∣∣∣∣ (4.19)

is a function capturing the effects of the magnetic tension on the MRT saturation amplitude.
In terms of the MRT wavelength, Eq. (4.18) can be written as ξ1,sat ' 0.1λf(σ).
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Figure 4-4. Saturation amplitude kξ1,sat as a function of the parameter σ. The
continuous line is given by Eq. (4.18). The scatter points correspond to mea-
sured SAs obtained from numerical simulations which used k = 1 and g = 1.
The initial conditions were ξ1(0) = 0.001, ξ2(0) = 0, and Φ1,2(0) = 0.

The SA can be used to denote the limit of validity of wNL theory beyond which nonlinear
effects become strong. As an example, for the pure RTI case with no magnetic-field tension
(σ = 0), one has ξ1,sat ' 0.1λ which agrees with previously reported results [122; 115; 114].
Note that, when the fundamental mode has reached the SA for the unmagnetized case,
the second harmonic has grown to |ξ2/ξ1,sat| ' 0.31, in other words, almost a third of the
fundamental harmonic.

The SA calculated in Eq. (4.18) is plotted in Fig. 4-4 as a function of the dimensionless
parameter σ. The analytically calculated SA is also compared to measured SAs obtained
via numerical solutions of Eqs. (4.12)–(4.15). For the cases with magnetic-field tension,
the calculated SA shows good agreement for σ ∈ [0, 0.4] ∪ [0.6, 1). For 0 ≤ σ ≤ 0.4,
the SA remarkably increases as the magnetic-field tension becomes larger. It is interesting
that, although the magnetic-field tension stabilizes the linear growth of MRTI, it can also
increase the SA at which the linear MRTI transitions to the nonlinear phase. Note that a
similar effects happens in the case of the RT instability when the effects of surface tension
are included Ref. [119]. Remarkably as well, Fig. 4-4 shows that, for 0.6 ≤ σ ≤ 1.0, the
SA decreases as the magnetic-field tension increases. It actually falls below the saturation
amplitude of the pure RT case. This trend is not yet fully understood.

In the interval 0.4 ≤ σ ≤ 0.6 in Fig. 4-4, the calculated SA differs substantially from
the measured SA obtained from simulations. This occurs because the nonlinear correction
term in Eq. (4.16) tends to zero near σ ' 0.5 which in turn leads to the divergence of f(σ).
[In fact, one can see in Fig. 4-3(c) that the linear and wNL solutions are almost identical
throughout a large portion of the evolution of the MRTI.] To fix this issue, one would have
to calculate higher-order corrections to the asymptotic solutions given in Eqs. (4.16) and
(4.17). However, doing so would lead to terms that go beyond the accuracy of the theory
(4.10), so their significance would be questionable. Correcting this issue has been left for
future work.
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4.4. Conclusions and future work

The work published in Ref. [3] proposes a theoretical model to describe the weakly
nonlinear magnetic Rayleigh–Taylor instability (MRTI). The model is obtained by identifying
an exact action for the MRTI, approximating the MRTI Lagrangian, and then varying the
action to derive the governing approximated equations. The obtained wNL theory includes
the generation of MRT coupling and describes the emergence of MRT bubbles and spikes.
It is found that the amplitude at which the linear and weakly nonlinear solutions begin to
diverge depends on the stabilizing effect of the magnetic-field tension.

The present theoretical work can be extended to study the MRTI in more complex
settings. Since the Lagrangian for MRTI can be considered universal and independent of the
geometry considered, future research directions include studying MRTI in finite-width planar
slabs and in cylindrical shells with finite thickness. Such work could be useful to compare
weakly nonlinear theory to the experimental observations on the MRT instability reported in
Refs. [77; 78; 81]. Excitingly too, this methodology for deriving wNL theories for interfacial
instabilities is also applicable to study the Richtmyer–Meshkov instability that is observed at
Sandia’s “Decel” experimental campaign on the Z machine [123]. These directions of future
research can also be complemented with detailed MHD simulations using the code Hydra.
After having learned how to use Hydra during this last stretch of my fellowship, it would
be interesting to compare the results from this line of theoretical work to detailed numerical
simulations and to experiment.
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5. CONSERVATIVE SCALING OF MAGNETO INERTIAL
FUSION TARGETS TO LARGER PULSED-POWER
DRIVERS

5.1. Introduction

For the last 60 years, achieving ignition and high neutron yields in the laboratory has
remained an elusive goal for plasma-physics research. Besides the well-known approach based
on magnetic-confinement fusion, one potential avenue for reaching this scientific milestone is
inertial confinement fusion (ICF). In the traditional laser-driven approach to ICF, powerful
lasers are utilized to directly or indirectly energize the outside surface of spherical capsules
in order to achieve high ablation pressures (∼ 100 Mbar) and implosion velocities greater
than ∼ 400 km/s. In contrast, magneto-inertial fusion (MIF) relaxes these stringent fuel
conditions by the introduction of strong magnetic fields in the fuel, which in turn modify
the transport properties within the fuel.

One particular MIF concept is the Magnetized Liner Inertial Fusion (MagLIF) platform
[73], which is currently being studied at the pulsed-power Z facility at Sandia National
Laboratories [124; 74; 75; 125]. The Z facility delivers a strong ∼18-MA electrical current
pulse to the cylindrical MagLIF target, which then implodes under the action of the J×B
force. Since MagLIF utilizes a relatively thick and heavy metallic cylindrical tamper, or
liner, the achievable implosion velocities are 70− 150 km/s, which are substantially lower to
those in traditional ICF. Therefore, since the fuel is not shock-heated, a 2–4-kJ 1-TW laser
is used to preheat the fuel in order to achieve an efficient adiabatic compression [58; 57].
Moreover, since the implosions are considerably slower (in the order of 100 ns), the fuel
must be premagnetized in order to reduce deleterious thermal conduction losses. This is
achieved by external pulsed coils which provide a 10–20 T, predominantly axial magnetic
field. The successful combination of these key ingredients in laboratory experiments has led
to significant thermonuclear yield production [75; 124] and significant plasma magnetization
inferred via secondary DT neutron emission [126; 127].

Given the relative success of the MagLIF platform and its interesting demonstrated
confinement parameter Pτ ∼ 0.8 Gbar-ns at ∼ 16 MA peak current [125], there has been a
strong interest in scaling the platform to higher peak currents, specifically to 45 MA or even
60 MA. However, scaling the MagLIF platform is not entirely straightforward. The space
of basic design parameters describing MagLIF is at least eight dimensional (see Fig. 5-1).
Apart from the delivered peak current, parameters include the curent rise time, the liner
outer radius, the liner aspect ratio (AR), the liner material, the height of the target, the
delivered preheat energy, the imposed external magnetic field, and the initial fuel density.
Given the necessity to explore a relatively large parameter space, scoping future MagLIF
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Figure 5-1. Schematic diagram with the main parameters characterizing a MIF
target. In the conservative scaling approach, we uniquely determine how these
parameters scale as functions of the maximum current Imax delivered to the
target.

designs at higher peak currents with present-day rad-MHD modeling tools can indeed become
overwhelming.

Nevertheless, several studies have explored the potential for MagLIF to generate high
fusion yields on future, higher-energy pulsed-power drivers [72; 74; 128; 129; 130]. Often,
these studies assume constraints on certain design parameters such as the current rise-time
of the pulsed-power generator, the target height, the liner AR, the liner material (usually
Breyllium or Gold in some cases), and the external magnetic field B0 in order to reduce the
dimensionality of the design space. Then, the remaining basic target parameters (target outer
radius, fuel preheat, and initial fuel densities) are explored, and an optimized configuration
is sought that maximizes the neutron yield or energy gain of the target implosions at a given
peak current [128; 130]. This so-called “optimized scaling” approach has been obtained from
hundreds of 1D LASNEX simulations. Excitingly, this approach predicts 1-MJ DT yields at
∼ 35 MA and ∼ 50 MJ at ∼ 60 MA for MagLIF (see Fig. 5-2)].

In this work, we proposed a new philosophy to “conservatively” scale general MIF tar-
gets, including MagLIF, to higher peak currents. Our scaling philosophy is inherently dif-
ferent from the “optimized” scaling approach. Instead of maximizing yield or energy gain
at a given peak current, we propose to identify scaling strategies that preserve much of the
physics regimes already known or being studied on today’s Z pulsed-power driver. By avoid-
ing significant deviations into unexplored and/or less well-understood regimes, we reduce
the risk of unexpected outcomes on future scaled-up experiments. Our approach seeks to
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Figure 5-2. DT fusion yield as a function of peak electrical current following
several proposed scaling strategies for the MagLIF platform. The red curves are
obtained from the optimized scaling approach assuming a AR6 liner. Predicted
yields with and without alpha heating are included. The green curve represents
a newly developed optimized scaling study that intends to conserve the liner
stability towards the MRTI. Finally, the blue curves and their shaded regions
represent the expected scaling laws using the ITC-t and ITC-r scaling paths.
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build confidence in the scaling potential for MIF by minimizing extrapolations away from
the most robustly studied neighborhoods of parameter space accessible to present-day exper-
iments. Another advantage of our approach is that it provides a one-to-one correspondence
between targets across driver energy scales; in other words, all the parameters characterizing
a MIF target are given as functions of the peak current for each scaling path considered.
Our main results are two-fold. First, we developed a scaling framework from which we can
explore different scaling strategies for future MIF targets. Second, from a subset of these
scaling strategies, we studied the scaling of the target parameters, the expected performance,
and the key mechanisms that affect target performance (e.g., magnetohydrodynamic insta-
bilities, impurity mix, radiation losses, thermal conduction losses, bulk mass flow losses,
magnetic flux losses, alpha heating, and laser-plasma instabilities). Details of these findings
are reported in Ref. [4].

5.2. Main result #1: Development of a current-scaling framework

The current-scaling framework that we proposed in Ref. [4] relied on four ideological
pillars: conserve the implosion dynamics via self-similar scaling, conserve the liner material,
conserve the liner resilience towards the magneto Rayleigh–Taylor instability (MRTI), and
conserve or even improve the physics regimes and transport of the fuel at stagnation. Below,
I shall comment on the models used and identify key dimensionless parameters that describe
a general MIF system including MagLIF.

For a relatively highly converging target such as MagLIF, it is important that future
scaled-up MagLIF targets do not increase their convergence at stagnation. As it is well-
known, highly converging ICF targets can be affected by (i) the MRTI that could shred
the liner and compromise the inertial confinement or by (ii) catastrophic mix from the
liner material that can cool down the hot fuel region [125]. To place these ideas into a
mathematical framework, in Ref. [4], we used a simple thin-shell model to describe the liner
implosion. The liner is driven by an external magnetic pressure source, and it is pushed from
the interior by an adiabatically compressed fuel. Upon introducing dimensionless variables,
we found two key dimensionless parameters that describe the implosion dynamics:

Π
.
= (10)−8 [Imax(MA)]2 · [trise(ns)]2

[m̂(g/cm)] · [R0(cm)]2
, (5.1)

Φ
.
= 1.33 · (10)−8 [Epreheat(kJ)] · [trise(ns)]2

[m̂(g/cm)] · [h(cm)] · [R0(cm)]2
. (5.2)

Here Imax is the peak electrical current, trise is the rise time of the current pulse, m̂ is the
mass per-unit-length of the liner, R0 is the liner outer radius, Epreheat is the preheat energy
delivered to the fuel, and h is the target height. The dimensionless parameter Π describes the
magnetic drive acting upon the liner. As an example, larger peak currents and less massive
liners will be driven harder or accelerated faster. This translates into a larger Π parameter.
Similarly, the dimensionless parameter Φ describes the amount of preheat energy delivered
to the fuel. More preheat energy will cause the fuel to push back on the imploding liner at
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larger radii (or equivalently, smaller convergence ratios). According to the thin-shell model,
in order to maintain the dimensionless acceleration history of the liner and the eventual
convergence ratio of stagnation, it is necessary to have

Π = const, Φ = const, (5.3)

when scaling up in peak current Imax. These two equations represent two constraints for the
scaling of the parameters appearing in Eqs. (5.1) and (5.2).

The second pillar for conservative scaling originates from the fact that all ICF approaches
are sensitive to material models, such as equations of state, radiation opacities, and electrical
and thermal conductivities. Establishing a credible scaling path for MIF requires demon-
strating sufficient understanding of the materials used. To avoid unnecessary uncertainties
associated with new material models, our scaling approach considers the same materials
used in present-day experiments across all proposed scales. In terms of the simple thin-shell
implosion model, this amounts to fixing the liner initial density so that

ρ0 = const. (5.4)

MIF implosions are subject to hydrodynamic instabilities that threaten to disrupt the
integrity of the imploding liner near stagnation and reduce the associated energy confinement
time for the hot fusion fuel [76]. Hydrodynamical instabilities are also believed to seed the
unwanted mix from the liner to the hot fuel region. In practice, the effects of instabilities are
reduced by choosing an appropriate initial liner AR to ensure a sufficiently stable tamper
during the fusion burn. The third pillar of conservative scaling intends to conserve the
robustness of MIF liners to these instabilities. A simple calculation given in Ref. [4] shows
that the growth of the most dangerous MRT modes in the interior of the liner depends
on three factors: the dimensionless acceleration history, the convergence ratio (CR) of the
implosion, and the liner in-flight aspect ratio (IFAR). Since we strive to maintain the self-
similar implosion trajectories for the liner, the first two factors are automatically conserved
by our scaling approach. The third factor, the liner IFAR, is essentially the time-dependent
ratio of the liner radius to its thickness. Intuitively, a liner with larger IFAR is more prone
to be affected by hydrodynamical instabilities since its relative thickness is smaller. Using
an adiabatic compression model for the liner and a simple momentum-conservation model,
it is shown in Ref. [4] that the dimensionless parameter that characterizes the magnitude of
the IFAR is given by

Ψ
.
= 0.062

(
γ − 1

γ

)
[R0(mm)]2 [ρref(g/cm3)]

[m̂(g/cm)]

(
[Imax(MA)]2

2π [R0(mm)]2 [Pref(Mbar)]

)1/γ

, (5.5)

where γ is the adiabatic parameter for the liner, ρref is the liner reference density, and Pref

is the reference pressure. These parameters enter the adiabatic equation of state for the
liner: P = Pref(ρ/ρref)

γ. Since our conservative scaling strategy advocates for the usage of
the same liner materials, the previous liner parameters are assumed to remain fixed when
scaling to higher peak currents. Therefore, in order to maintain the robustness of a MIF
liner to hydrodynamical instabilitites, it is necessary to conserve the following ratio:

Ψ ∝ R2
0

m̂

(
Imax

R0

)2/γ

= const. (5.6)

51



MIF systems may suffer from various energy-loss mechanisms, including radiation, con-
duction, and end losses, that may prohibit the fuel from reaching the expected fuel conditions
at stagnation. In this regard, the final pillar for conservative scaling is that, for future scaled-
up MIF targets, the physics regimes of the fusion fuel near stagnation should not depart too
much from those diagnosed in present-day experiments. More specifically, we strive to con-
serve the relative importance of the energy-loss channels to the PdV work done on the fuel.
Based on Ref. [72], it can be shown that the dimensionless parameters characterizing radia-
tion losses, electron-conduction losses, ion-conduction losses, and end-losses can be written
respectively as follows:

Υrad
.
= 9.623 · (10)4 [ρR(g/cm2)]

2 · [T (keV)]1/2 · [trise(ns)]

[Û(kJ/cm)]
, (5.7)

Υce
.
= 2.753

[T (keV)]7/2 · [trise(ns)]

[Û(kJ/cm)]
ge(xe), (5.8)

Υci
.
= 4.064 · (10)−2 [T (keV)]7/2 · [trise(ns)]

[Û(kJ/cm)]
gi(xi), (5.9)

Υend
.
= 4.595 · (10)3 [ρR2(g/cm)] · [T (keV)]3/2 · [trise(ns)]

[Û(kJ/cm)][h(cm)]
, (5.10)

where Û is the internal energy of the fuel per-unit-length. The functions ge(xe) and gi(xi)
are functions that depend on the electron and ion Hall parameters and describe the degree of
magnetization of the fusion fuel. The parameters above are evaluated at plasma conditions
near stagnation. When these parameters are small, the relative importance of the corre-
sponding loss channel is low. When scaling MIF targets, it is important to understand how
these parameters will scale at higher peak currents.

The dimensionless parameters in Eqs. (5.7)–(5.10) also provide an intuitive overview of
the various choices that can be made when designing a MIF platform. For example, it is well
known that, at fixed stagnation pressures, MIF targets with higher fuel temperatures will
perform better due to the strong dependence of the fusion reactivity on fuel temperature.
Therefore, when scaling MIF targets to larger pulsed-power drivers, one possibility is to
scale the initial fuel density and the preheat energy in such a way that higher temperatures
at stagnation are achieved. However, as shown in Eqs. (5.8)–(5.10), increasing the fuel
temperature alone may lead to larger conduction losses and end losses, which could prevent
the fuel from reaching the desired state at stagnation. However, Eqs. (5.8)–(5.10) also tell
a MIF-target designer how to mitigate those risks. Specifically, electron conduction losses
can be held at bay by increasing the external magnetic field, which enters the electron Hall
parameter xe. [In the highly magnetized regime, ge(xe) ∝ x−2

e ∝ (B0T
3/2/ρ)−2.] When the

fuel temperature rises, end losses increase because the ion acoustic velocity, which sets the
characteristic speed of the rarefraction wave exiting the ends of the liner, will increase. To
mitigate this effect, the target height h appearing in the denominator of Eq. (5.10) must be
increased. This is only one example of a specific scaling strategy where the fuel temperature
is increased with peak current. More detailed discussions on other scaling strategies are
given in Ref. [4].
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Table 5-1. Summary of the specific scaling strategies for MIF target parameters
that were investigated in the current-scaling work. One convenience of the
conservative scaling theory is that explicit expressions are given for the scaling
of all the relevant quantities characterizing a MIF target.
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TABLE III. Summary of the specific scaling strategies for MIF target parameters that are investigated in this work. The scaling
rules for the ITC scaling approaches are obtained by assuming � = 9/4 for the adiabatic constant of the liner equation of state,
intended to reproduce roughly the properties of beryllium liners subjected to multi-Mbar drive pressures.

Target parameter Gen. scaling PVC-t PVC-r ITC-t ITC-r
(↵, �, ✏, ⇠) equation (1, 1, 0, 0) (1, 4/3, � 2/3, 0) (0, 0, 9/7, 9/7) (0, 3/7, 3/7, 0)

Liner density (23) const const const const
Rise time (39) Imax Imax const const

Initial target radius (40) Imax Imax I
5/14
max I

5/14
max

Liner mass per-unit-length (41) I2
max I2

max I
9/7
max I

9/7
max

Aspect ratio (thin-shell limit) (42) const const I
�4/7
max I

�4/7
max

Preheat pressure (43) const const I
9/7
max I

9/7
max

Target height (45) Imax I
4/3
max const I

3/7
max

Fuel density (46) const I
�2/3
max I

9/7
max I

3/7
max

Fuel temperature (47) const I
2/3
max const I

6/7
max

Preimposed magnetic field (48) const const I
9/7
max const

tory Tfuel(t) in the absence of alpha heating58 is preserved
from preheat through stagnation and burn across all
scaled-up experiments. This scaling approach is reminis-
cent to the “hydro-equivalent” scaling approach for laser
ICF targets.43 The primary motivation for this scaling
path is simple. Many key processes governing the energy
balance of the fuel exhibit a strong functional dependence
on Tfuel, such as fusion reactivity, alpha-particle stop-
ping power, electron and ion thermal conduction, and
radiative and other collisional processes. Quantitative
descriptions of these processes often require making cer-
tain assumptions in the theory, for example, assuming
Maxwellian or near-Maxwellian distribution functions for
the plasma particles. However, erroneous assumptions
for describing the processes above can potentially man-
ifest themselves as unanticipated sensitivities to plasma
temperature. These di�cult-to-quantify sensitivities can
be circumvented by forcing our scaled MIF experiments
to follow identical temperature histories. Note that,
because Tfuel(t) and Pfuel(t) are conserved in this ap-
proach, ⇢fuel(t) must also be conserved. Also, due to
the longer timescales of the scaled-up implosions, scaling
path PVC-t requires that h / Imax to maintain relative
fuel end losses. (The arguments leading to this conclu-
sion will be presented in Sec. V D.)

The second PVC scaling approach is scaling path
PVC-r, which refers to the “pressure–velocity-conserving,
radiation-conserving” approach. This scaling path ac-
knowledges that the primary drawback of scaling path
PVC-t is that, at larger driver-energy scales, the relative
radiative energy losses from the fuel are enhanced and
grow linearly with Imax (to be shown in Sec. V B). If a
present-day MIF design exhibits insu�cient margin to
tolerate an increase in radiative-energy losses at higher
energy scales, one either needs to improve the present-
day experimental platforms to increase the tolerance to
such losses, or one must pursue a di↵erent scaling path to
avoid this pitfall. Regarding the latter, one can note that
the radiative losses have a strong quadratic dependence

on the fuel density [see Eq. (62)]. Thus, to maintain neu-
tral scaling of the relative contribution of radiative losses
compared to the adiabatic work rate of the imploding
liner, scaling path PVC-r proposes to decrease the ini-
tial fuel density at larger driver energy scales, which in-
creases the corresponding fuel temperature history given
the same Pfuel(t). (The respective scaling rules are shown
in Table III.) As a consequence of the increase in fuel
temperature, the target height must scale as h / I

4/3
max

to mitigate fuel end losses (see Sec. V D). This variable-
temperature scaling path relies more heavily on the va-
lidity of our present-day plasma transport models, so it
may be exposed to other unknown risks. Nonetheless,
the scaling rules of the dimensionless parameters char-
acterizing our classical transport models encouragingly
indicate that path PVC-r maintains or improves much of
the other key physics of MIF plasmas.

The next family of scaling paths in Table III are the
“implosion-time-conserving” (ITC) scaling approaches.
These scaling paths di↵er from the PVC approaches since
they hold fixed the implosion time of scaled-up MIF im-
plosions, which implies ↵ = 0. Since our scaling strate-
gies are self-similar, conserving the implosion time timp

implies all other time scales are conserved, including the
current rise time trise of the driver. The primary motiva-
tion for this design choice is as follows. The pulsed-power
community has a long history of developing a variety of
drivers operating at similar timescales. For example, nu-
merous facilities exist at the 1-10 MA scale that have
similar rise times and pulse shapes as Z.59–61 Moreover,
new designs have been identified for future generators
that obtain much higher peak currents with approxi-
mately the same rise time and pulse-shaping capabilities
as Z.62 In these scaling strategies, the initial target radius
scales weakly with Imax, cf., Eq. (55). Consequently, the
drive pressures pushing on the liner surface increase as
Imax increases, cf., Eq. (58). To compensate for this and
maintain neutral scaling of deleterious MRT instabilities,
these scaling paths require that the initial target AR de-
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Initial target radius (40) Imax Imax I
5/14
max I

5/14
max

Liner mass per-unit-length (41) I2
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9/7
max I

9/7
max

Aspect ratio (thin-shell limit) (42) const const I
�4/7
max I

�4/7
max
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9/7
max I

9/7
max
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4/3
max const I

3/7
max

Fuel density (46) const I
�2/3
max I

9/7
max I

3/7
max
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2/3
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6/7
max
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9/7
max const
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ICF targets.43 The primary motivation for this scaling
path is simple. Many key processes governing the energy
balance of the fuel exhibit a strong functional dependence
on Tfuel, such as fusion reactivity, alpha-particle stop-
ping power, electron and ion thermal conduction, and
radiative and other collisional processes. Quantitative
descriptions of these processes often require making cer-
tain assumptions in the theory, for example, assuming
Maxwellian or near-Maxwellian distribution functions for
the plasma particles. However, erroneous assumptions
for describing the processes above can potentially man-
ifest themselves as unanticipated sensitivities to plasma
temperature. These di�cult-to-quantify sensitivities can
be circumvented by forcing our scaled MIF experiments
to follow identical temperature histories. Note that,
because Tfuel(t) and Pfuel(t) are conserved in this ap-
proach, ⇢fuel(t) must also be conserved. Also, due to
the longer timescales of the scaled-up implosions, scaling
path PVC-t requires that h / Imax to maintain relative
fuel end losses. (The arguments leading to this conclu-
sion will be presented in Sec. V D.)

The second PVC scaling approach is scaling path
PVC-r, which refers to the “pressure–velocity-conserving,
radiation-conserving” approach. This scaling path ac-
knowledges that the primary drawback of scaling path
PVC-t is that, at larger driver-energy scales, the relative
radiative energy losses from the fuel are enhanced and
grow linearly with Imax (to be shown in Sec. V B). If a
present-day MIF design exhibits insu�cient margin to
tolerate an increase in radiative-energy losses at higher
energy scales, one either needs to improve the present-
day experimental platforms to increase the tolerance to
such losses, or one must pursue a di↵erent scaling path to
avoid this pitfall. Regarding the latter, one can note that
the radiative losses have a strong quadratic dependence

on the fuel density [see Eq. (62)]. Thus, to maintain neu-
tral scaling of the relative contribution of radiative losses
compared to the adiabatic work rate of the imploding
liner, scaling path PVC-r proposes to decrease the ini-
tial fuel density at larger driver energy scales, which in-
creases the corresponding fuel temperature history given
the same Pfuel(t). (The respective scaling rules are shown
in Table III.) As a consequence of the increase in fuel
temperature, the target height must scale as h / I

4/3
max

to mitigate fuel end losses (see Sec. V D). This variable-
temperature scaling path relies more heavily on the va-
lidity of our present-day plasma transport models, so it
may be exposed to other unknown risks. Nonetheless,
the scaling rules of the dimensionless parameters char-
acterizing our classical transport models encouragingly
indicate that path PVC-r maintains or improves much of
the other key physics of MIF plasmas.

The next family of scaling paths in Table III are the
“implosion-time-conserving” (ITC) scaling approaches.
These scaling paths di↵er from the PVC approaches since
they hold fixed the implosion time of scaled-up MIF im-
plosions, which implies ↵ = 0. Since our scaling strate-
gies are self-similar, conserving the implosion time timp

implies all other time scales are conserved, including the
current rise time trise of the driver. The primary motiva-
tion for this design choice is as follows. The pulsed-power
community has a long history of developing a variety of
drivers operating at similar timescales. For example, nu-
merous facilities exist at the 1-10 MA scale that have
similar rise times and pulse shapes as Z.59–61 Moreover,
new designs have been identified for future generators
that obtain much higher peak currents with approxi-
mately the same rise time and pulse-shaping capabilities
as Z.62 In these scaling strategies, the initial target radius
scales weakly with Imax, cf., Eq. (55). Consequently, the
drive pressures pushing on the liner surface increase as
Imax increases, cf., Eq. (58). To compensate for this and
maintain neutral scaling of deleterious MRT instabilities,
these scaling paths require that the initial target AR de-

5.3. Main result #2: Identifying viable scaling strategies and calculating the
expected gains in performance

From the dimensionless parameters introduced in the previous section, we identified
several specific scaling paths that satisfied the majority of the constraints imposed [4]. For
the sake of brevity, in this report, I shall only discuss the implosion-time conserving (ITC)
scaling paths, which assume a constant rise time trise ' 100 ns for future pulsed-power
drivers.

Table 5.2 shows the obtained scaling laws for the main parameters describing a MIF
target. The second and third columns contain the scaling laws for the implosion-time–
conserving, temperature-conserving (ITC-t) scaling path and implosion-time–conserving,
temperature-conserving (ITC-r) scaling path, respectively. In terms of the parameters de-
scribing the liner itself, both strategies have the same scaling laws. Some interesting trends
to note are that, in general, MIF targets will tend to be grow radially (R0 ∝ I

5/14
max ) when

increasing the peak current Imax. The liners themselves will also be subject to larger mag-
netic pressures at higher peak currents since PB ∝ I2

max/R
2
0 ∝ I

9/7
max. In order to take

into account the compression of the liner due to the higher magnetic pressure, the tar-
get AR

.
= R0/δR0 must decrease. (Physically, the thickness of the liners relative to the liner

outer radius increases.) Another trend worth noting is that the preheat energy scales as

I
(2+β)
max , where β is the scaling exponent of the target height. This scaling law is obtained

from Epreheat ∝ PpreheatR
2
0h ∝ I

(2+β)
max . For the temperature conserving ITC-t path, the scal-

ing of the preheat energy is Epreheat ∝ I2
max, while for radiation-conserving ITC-r path, the

scaling is Epreheat ∝ I2.43
max.
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The ITC-t and ITC-r strategies differ in the scaling of the fuel parameters and of the
preimposed magnetic field. The goal of the ITC-t path is to maintain the peak fuel tem-
peratures when scaling to higher peak currents. This scaling strategy intends to mitigate
the risk associated to unforeseen kinetic effects that might occur once the fuel temperature
becomes too high. In order to maintain the fuel temperature, the ITC-t path advocates for
a relatively strong scaling law for the fuel density as shown in Table 5.2. One disadvantage
of the ITC-t path is that the plasma becomes more collisional at stagnation. This effectively
lowers the electron Hall parameter and could increase conduction losses. In order to miti-
gate this effect, the ITC-t path requires an increase in the magnetic-field strength. Another
disadvantage of the ITC-t path is that, by increasing the fuel density, the relative radiation
losses are expected to increase. This might bring the risk of having the targets operate in a
regime where radiation losses become too important. As an alternative scaling strategy, the
ITC-r path is designed to keep the relative radiation losses constant. However, this comes at
the expense of having to increase the fuel temperature. Due to the relative scaling between
the initial fuel density and the fuel temperature, the degree of electron magnetization of the
plasma increases in the ITC-r path. Therefore, this path does not require improvements in
the preimposed magnetic field. (This is not entirely true when considering ions. To mitigate
any risks due to increases in ion conduction, there might be a need to increase slightly the
magnetic field.) A major disadvantage of the ITC-r path is that, since the fuel temperature
rises, end losses are expected to increase because of the higher ion acoustic velocities. To
mitigate this effect, the target height must increase in the ITC-r path. In consequence,
more preheat energy needs to be delivered to the target in order to reach the required pre-
heat pressure (because there is more fuel mass). Also, since the target initial inductance
is proportional to the target height, the ITC-r path will require additional energy from the
pulsed-power driver to reach the same maximum peak current as compared to targets scaled
using the ITC-t strategy.

In Ref. [4], we also calculated the scaling laws of several dimensionless parameters that are
commonly used to characterize hydrodynamical mixing, energy-loss channels, and other fuel-
related parameters concerning transport and the potential of α heating. These scaling laws
are summarized in Table 5.3. For both scaling paths, most of the dimensionless parameters
characterizing various metrics of mix remain constant when scaling to higher peak currents.
This is a consequence of the self-similar scaling constraint for the liner implosions that was
imposed in our framework. Concerning the energy-loss channels, the ITC-t path has an
unfavorable scaling for the relative radiation losses (5.7). In contrast, the ITC-r path shows
unfavorable scaling laws for ion-conduction losses. (Conduction losses in the Bohm regime
could be mitigated by increasing the magnetic field slightly when increasing peak current.)
It is exciting to note that both scaling strategies show favorable scaling laws for plasma
conditions to allow α heating. The last rows in Table 5.3 show the expected scaling laws for
various fuel quantities, including the electron magnetization, Knudsen-type parameters, the
Nernst effect, and parameters characterizing α heating. Ultimately, these relations provide
guidance on the risks involved with each scaling law. The relations also provide information
on the tradeoffs that are made when selecting a scaling path over another, or when deviating
from the prescribed scaling rules presented in Table 5.2. Finally, this framework also provides
guidance on what sort of experiments need to be done on present-day Z to address issues
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Table 5-2. Summary of the scaling rules for the relevant characteristic param-
eters regarding hydrodynamical instabilities and mix, nonideal energy gain and
loss mechanisms, and other fuel parameters for MIF targets. Green, yellow, and
red cells respectively indicate favorable, neutral, and unfavorable scaling rules
for MIF targets with higher energy drivers.
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rules for the ITC scaling approaches are obtained by assuming � = 9/4 for the adiabatic constant of the liner equation of state.
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Dimensionless quantity Gen. scaling PVC-t PVC-r ITC-t ITC-r
(↵, �, ✏, ⇠) equation (1, 1, 0, 0) (1, 4/3, � 2/3, 0) (0, 0, 9/7, 9/7) (0, 3/7, 3/7, 0)

Growth of most damaging MRTI modes (25) const const const const
Normalized mix layer width (A = 1) (33) const const const const

Atwood number deviation (93) const I
�2/3
max I

5/7
max I

�1/7
max

Normalized fall-line time (34) const const const const

Relative radiative loss ratio (60) Imax const I
9/7
max const

Electron relative conductive loss ratio (magnetized) (70) I�1
max I�2

max I�2
max I

�5/7
max

Ion relative conductive loss ratio (unmagnetized) (76) I�1
max I

4/3
max I�2

max Imax

Ion relative conductive loss ratio (Bohm) (78) I�1
max I

�1/3
max I�2

max I
1/7
max

Relative end loss ratio (81) const const const const

Relative ↵-heating ratio (86) Imax I
5/3
max I

9/7
max I

15/7
max

Electron Hall parameter (67) const I
5/3
max const I

6/7
max

Plasma thermal/magnetic pressure ratio (88) const const I
�9/7
max I

9/7
max

Knudsen parameter (97) I�1
max I

2/3
max I

�9/7
max I

6/7
max

Magnetic Knudsen parameter (100) I�1
max I

�2/3
max I

�23/14
max I

1/14
max

Nernst parameter (104) I�1
max I�2

max I�2
max I

�5/7
max
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�9/7
max I

6/7
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where we substituted the scaling rules in Eqs. (35)–(43).
(As a reminder, the subscript in bP↵ should not be con-
fused with the parameter ↵ that denotes the scaling of
trise). Let us define the relative ↵-heating ratio as the
ratio of ↵ heating to the compressional PdV work rate:

f↵
.
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bP↵

bPPdV

' 76 · ⇢R(g/cm
2
) · [T(keV)]2

Ushell(km/s)
· ⌘↵. (85)

Although current MagLIF experiments do not implode
equimolar DT fuel, substituting the typical stagnation
parameters and assuming perfect trapping and deposi-
tion of ↵ particles (⌘↵ ! 1) gives f↵ ' 0.07. Thus, ↵
heating would not be a major contributor to the energy
balance in present-day MagLIF experiments.

Upon using the scaling relations in Eqs. (57) and (84),
we find that f↵ scales as follows in our framework:

f↵ / I(18�11↵)/7�✏
max . (86)

Substituting the values of ↵ and ✏ for the specific scaling
paths in Table III leads to

fPVC-t
↵ / Imax, fPVC-r

↵ / I5/3
max,

f ITC-t
↵ / I9/7

max, f ITC-r
↵ / I15/7

max .
(87)

Hence, scaling path ITC-r shows the most favorable scal-
ing for f↵ compared to the other paths. This is no sur-
prise: the scaling of Tfuel is the greatest for scaling path
ITC-r, and bP↵ is a strong function of fuel temperature.

One remark that is worth adding is the following. One
necessary condition for thermonuclear ignition is that
the ↵-heating process should dominate the other energy-
loss mechanisms. To evaluate the possibility of achiev-
ing ignition, one can then compare the scaling rules of
the energy-loss mechanisms and of ↵ heating. For the
temperature-conserving scaling paths, one finds that ↵
heating is expected to become more dominant over the
various energy-loss mechanisms as the driver energy in-
creases, except for radiation losses. In the latter case,
we find that bPrad/ bP↵ = frad/f↵ / const for scaling paths
PVC-t and ITC-t. In other words, greater relative contri-
butions from ↵ heating necessarily come at the expense of
greater radiation losses. Thus, to achieve ignition follow-
ing these scaling paths, it is imperative that present-day
MIF platforms demonstrate burn-weighted fuel temper-
atures Tfuel > 4.3 keV, implying that such targets are
already operating in a space where ↵ heating can demon-
strably overcome radiative losses.1 In contrast, for the
radiation-conserving scaling paths PVC-r and ITC-r, ↵
heating is expected to become more dominant over all
the energy-loss mechanisms, including radiation losses,
when scaling up to higher energy drivers. In these cases,
attractive scaling paths exist even for targets that have
not yet demonstrated Tfuel > Tid, since they have the po-
tential to cross that threshold at higher coupled energies.
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4/3
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6/7
max

where we substituted the scaling rules in Eqs. (35)–(43).
(As a reminder, the subscript in bP↵ should not be con-
fused with the parameter ↵ that denotes the scaling of
trise). Let us define the relative ↵-heating ratio as the
ratio of ↵ heating to the compressional PdV work rate:

f↵
.
=

bP↵

bPPdV

' 76 · ⇢R(g/cm
2
) · [T(keV)]2

Ushell(km/s)
· ⌘↵. (85)

Although current MagLIF experiments do not implode
equimolar DT fuel, substituting the typical stagnation
parameters and assuming perfect trapping and deposi-
tion of ↵ particles (⌘↵ ! 1) gives f↵ ' 0.07. Thus, ↵
heating would not be a major contributor to the energy
balance in present-day MagLIF experiments.
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Hence, scaling path ITC-r shows the most favorable scal-
ing for f↵ compared to the other paths. This is no sur-
prise: the scaling of Tfuel is the greatest for scaling path
ITC-r, and bP↵ is a strong function of fuel temperature.

One remark that is worth adding is the following. One
necessary condition for thermonuclear ignition is that
the ↵-heating process should dominate the other energy-
loss mechanisms. To evaluate the possibility of achiev-
ing ignition, one can then compare the scaling rules of
the energy-loss mechanisms and of ↵ heating. For the
temperature-conserving scaling paths, one finds that ↵
heating is expected to become more dominant over the
various energy-loss mechanisms as the driver energy in-
creases, except for radiation losses. In the latter case,
we find that bPrad/ bP↵ = frad/f↵ / const for scaling paths
PVC-t and ITC-t. In other words, greater relative contri-
butions from ↵ heating necessarily come at the expense of
greater radiation losses. Thus, to achieve ignition follow-
ing these scaling paths, it is imperative that present-day
MIF platforms demonstrate burn-weighted fuel temper-
atures Tfuel > 4.3 keV, implying that such targets are
already operating in a space where ↵ heating can demon-
strably overcome radiative losses.1 In contrast, for the
radiation-conserving scaling paths PVC-r and ITC-r, ↵
heating is expected to become more dominant over all
the energy-loss mechanisms, including radiation losses,
when scaling up to higher energy drivers. In these cases,
attractive scaling paths exist even for targets that have
not yet demonstrated Tfuel > Tid, since they have the po-
tential to cross that threshold at higher coupled energies.
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Hence, scaling path ITC-r shows the most favorable scal-
ing for f↵ compared to the other paths. This is no sur-
prise: the scaling of Tfuel is the greatest for scaling path
ITC-r, and bP↵ is a strong function of fuel temperature.

One remark that is worth adding is the following. One
necessary condition for thermonuclear ignition is that
the ↵-heating process should dominate the other energy-
loss mechanisms. To evaluate the possibility of achiev-
ing ignition, one can then compare the scaling rules of
the energy-loss mechanisms and of ↵ heating. For the
temperature-conserving scaling paths, one finds that ↵
heating is expected to become more dominant over the
various energy-loss mechanisms as the driver energy in-
creases, except for radiation losses. In the latter case,
we find that bPrad/ bP↵ = frad/f↵ / const for scaling paths
PVC-t and ITC-t. In other words, greater relative contri-
butions from ↵ heating necessarily come at the expense of
greater radiation losses. Thus, to achieve ignition follow-
ing these scaling paths, it is imperative that present-day
MIF platforms demonstrate burn-weighted fuel temper-
atures Tfuel > 4.3 keV, implying that such targets are
already operating in a space where ↵ heating can demon-
strably overcome radiative losses.1 In contrast, for the
radiation-conserving scaling paths PVC-r and ITC-r, ↵
heating is expected to become more dominant over all
the energy-loss mechanisms, including radiation losses,
when scaling up to higher energy drivers. In these cases,
attractive scaling paths exist even for targets that have
not yet demonstrated Tfuel > Tid, since they have the po-
tential to cross that threshold at higher coupled energies.
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Table 5-3. Scaling of various quantities concerning performance of MIF targets.
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TABLE V. Scaling of various quantities concerning performance of MIF targets. The scaling rules for the ITC scaling approaches
are obtained by assuming � = 9/4 for the adiabatic constant of the liner equation of state.

Performance metric Gen. scaling PVC-t PVC-r ITC-t ITC-r
(↵, �, ✏, ⇠) equation (1, 1, 0, 0) (1, 4/3, � 2/3, 0) (0, 0, 9/7, 9/7) (0, 3/7, 3/7, 0)

Energy-confinement time (126) Imax Imax const const
“no-↵” Neutron yield (130) I4

max I5
max I3.29

max I4.57
max

“no-↵” Neutron yield per unit length (132) I3
max I3.67

max I3.29
max I4.14

max

“no-↵” Neutron yield as funct. of driver energy (132) E1.33
driver E1.50

driver E1.64
driver E1.88

driver

Areal density (136) Imax Imax I0.93
max I0.93

max

Lawson ignition parameter (141) Imax I1.67
max I1.29

max I2.14
max

Lawson ignition parameter as a funct. of energy (143) E0.33
driver E0.50

driver E0.64
driver E0.88

driver

Table V presents the scalings for Y (Edriver) for each scal-
ing path proposed in our framework. As shown, the scal-
ing rule for Y (Edriver) lies between the range

Y / [E1.33
driver, E

1.88
driver]. (131)

The scaling of the neutron yield as a function of driver en-
ergy modestly favors the ITC paths relative to the PVC
paths, a consequence of the denser, more compact fuel
volumes generated in scaled ITC implosions to accom-
modate the initially thicker, IFAR-conserving liners.

C. Areal density for confinement

Inertial confinement implies the use of a heavy tamp-
ing mass to confine the igniting portion of the fuel long
enough to lead to robust self-heating and fuel burn-up.
Viewed another way, ICF typically requires the hot fuel
to be confined by a su�ciently large tamper areal den-
sity, or ⇢�R in our notation (taken at the stagnation
time, tstag), to ensure acceptable inertial confinement.
(As a reminder, �R is the liner radial width.) Typical
requirements for the tamper areal density are roughly
⇢�R & 0.5 g/cm

2
.1 According to our framework, the

initial tamper areal density ⇢0�R0 / R0/AR / I
(8�↵)/7
max .

The tamper areal density evolves according to ⇢�R ⇡
⇢0�R0CR for cylindrical implosions. Since our approach
preserves the liner convergence ratio across scales (due to
self-similarity), the tamper ⇢�R at stagnation scales as

⇢�R / I(13+↵)/14
max . (132)

As shown in Table V, the areal density increases with
higher peak currents along all scaling paths considered
in a nearly indistinguishable manner.

D. Lawson criterion for ignition

Another figure of merit for MIF targets is the Law-
son ignition criterion, which compares the rate of energy
generated by fusion reactions to the rate of energy losses.
In the following, we examine the scaling of the general

Lawson criterion for steady-state thermonuclear ignition
expressed in a form useful for ICF:71

�
.
= "↵Phs⌧ES(Ths)/24 > 1, (133)

where "↵ = 3.5 MeV is the alpha-particle birth energy,
Phs is the pressure in the hot spot region, and

S(Ths)
.
=

1

Vhs

Z

Vhs

h�viDT

T 2
dV. (134)

Here Ths is the temperature at the center of the hot spot
and Vhs is the volume of the hot-spot region. As shown
in Eq. (129), h�viDT approximately has a cubic depen-
dence on temperature. Hence, the integrand in Eq. (138)
is proportional to the temperature field. A useful ap-
proximation for the temperature field is given in Ref. 57:

T (r) = Ths

"
1� '(Ths, Tbr)

✓
r

Rhs

◆⇣
#

, (135)

where '(Ths, Tbr) is a dimensionless function depending
on the hot spot temperature Ths and the radiation (or
brightness) temperature Tbr, Rhs is the hot-spot radius,
and ⇣ 2 [2, 8] is the power-law parameter describing the
steepness of the temperature profile. In terms of dimen-
sionless units, we can write Eq. (138) as

S(Ths) = Ths

Z 1

0

⇥
1� '(Ths, Tbr)br⇣

⇤
br dbr. (136)

For the sake of simplicity, we shall not determine the ex-
act scaling of the integral in Eq. (140) with respect to
peak current Imax. We shall only treat it as a geomet-
rical factor with a weak dependence on the peak driver
current Imax. Consequently, the function S(Ths) will ap-
proximately scale linearly with the hot spot temperature.

In our conservative scaling approach, the convergence
ratios CR of our scaled up MIF implosions remain con-
stant [see Eq. (15)]. Hence, Ths / Tfuel / I

9(1�↵)/7�✏
max and

Phs / P1 / I
9(1�↵)/7
max . After substituting these scaling

rules into Eq. (138), we find that the Lawson ignition
parameter (137) scales as

� / I(18�11↵)/7�✏
max . (137)
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proximately scale linearly with the hot spot temperature.
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ratios CR of our scaled up MIF implosions remain con-
stant [see Eq. (15)]. Hence, Ths / Tfuel / I
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max . After substituting these scaling
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that might appear in future scaled-up targets.

In Ref. [4], we also calculated the expected scaling laws of various performance metrics
that are usually used to characterize MIF targets. The obtained scaling laws are shown in
Table 5.3. It is to be noted that the estimates on neutron yield were calculated without
considering the effects of α heating. As shown, the ITC-t scaling path presents a robust
I3.29

max scaling for the neutron yield, while the ITC-r scaling path shows a more aggressive
I4.57

max scaling for the same metric. The difference between the two strategies is caused by
two reasons: (1) the ITC-r scaling path leads to higher fuel temperatures which increase
the fusion reactivity, and (2) the targets that scaled using the ICT-r strategy are taller and
therefore have more fusion fuel. In order to remove the effects of the target height, it might
be more appropriate to compare the scaling laws of the neutron yield per-unit-length or of
the neutron yield as a function of energy Edriver delivered to the target. According to these
metrics, Table 5.3 shows that there is only a slightly more favorable scaling law for yield
using the ITC-r strategy. The expected scaling laws for the Lawson ignition parameter are
also given in Table 5.3.

The scaling laws for neutron yield using the ITC-r and ITC-r scaling paths are plotted
in Fig. 5-2. There are two comments to be made here. First, it is not surprising that the
“conservative” scaling paths scale less favorably than the “optimized” scaling approach. In
conservative scaling, we try to keep the scaled MIF target within the same physical operating
regimes as present-day targets. Optimized scaling intends to maximize performance at each
peak current. Second, Fig. 5-2 shows that the present-day highest performing MagLIF
experiments will not scale to MJ yields within the framework of conservative scaling. There
might be a possibility of reaching the 1-MJ benchmark once α heating is taken into account,
but it would be extremely risky to solely rely on this effect to get over the finish line.
However, Fig. 5-2 also shows that an upgraded MagLIF platform could in fact scale to multi
MJs at 60 MA or lower within the conservative-scaling framework. This provides further
motivation to increase the preheat energy delivered to present-day MagLIF targets and to
increase the pre-imposed magnetic fields.
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5.4. Conclusions and future work

In Ref. [4], we proposed a framework to conservatively scale general MIF targets to
larger pulsed-power drivers. Using this framework, we derived explicit scaling laws for key
parameters characterizing a general MIF target. We also derived scaling laws for key metrics
characterizing the effects of hydrodynamic instabilities and mix, the effects due to various
energy-loss channels, fuel properties at stagnation, target performance, and risks concerning
LPI effects (not shown in this report). Overall, the proposed framework allows to intuitively
evaluate the advantages and disadvantages when considering a particular scaling path.

Excitingly, this research has opened several avenues for future work. There is ongoing
work to compare the derived scaling laws against detailed radiation-MHD simulations using
different codes. Preliminary results show good agreement between simulations and theory.
It will also be interesting to compare in detail the “optimized” scaling and “conservative”
scaling approaches that are currently proposed for the MagLIF platform (see Fig. 5-2). Such
exercise would provide insights into how these scaling strategies are similar and how they
are different.

Surprisingly too, the developed scaling framework is not only applicable to current scal-
ing. There are other interesting scaling paradigms for MagLIF targets that could potentially
be fielded in the present-day Z machine. Two alternative scaling methodologies are currently
being investigated. First, we are using the scaling framework to explore target configurations
that increase the stability of MagLIF liners. When considering Imax and trise constants, the
Π parameter in Eq. (5.1) can be conserved when maintaining the product m̂R2

0 constant.
This means that a target external radius can be reduced and its mass increased in order to
conserve the characteristic magnetic drive. This fact highlights a particular advantange of
MIF as compared to conventional laser-driven ICF: for same driving currents, reducing the
initial radius of the Z pinch leads to an increase in the magnetic pressure acting upon the
target. Making the liner more massive while reducing its outer radius means that the liner
AR must decrease. Therefore, the liner IFAR will also decrease, so the liner will become
more robust towards hydrodynamical instabilities [see Eq. (5.5)]. The second variation of
the scaling framework is to explore the scaling of target parameters with respect to the liner
material density ρ0. This study could help clarify the advantages and disadvantages of field-
ing MagLIF liners that are made of alternative materials, such as Lithium, Copper, or even
Gold. These new ideas for scaling, m̂R2

0 scaling and liner density ρ0 scaling, will continue to
be investigated after the end of this LDRD project.

Last but not the least, it is worth mentioning that Z shots were awarded this year and
the next to experimentally validate the current-scaling framework for the MagLIF platform.
These experiments will compare predictions from the theory and simulations against exper-
imental observables. The first shots are scheduled to occur in December 2020.
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