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2 | Hyperspectral Target Detection

Hyperspectral Imagery Target Detection
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3 | Classical Statistical Detectors

VNIR Pseudo Color (R=670 nm, G=540 nm, B=480 nm)
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4 | Adaptive Cosine Estimator
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s | The Expanding Library Problem

When are ACE assumptions poor? Solution: measure target in
> Complex target morphology many conditions!

° Off-nadir collection geometry and

illumination

I
o

° Hrrors in reflectar
° Transmissive targe

> Non-linear mixing

Idea: What if we could design a function that
mitigates these effects for target detection?

x" = hg(x)




6 | Contrastive Loss

Dy = |[hg(pr) — ho (x>
We desire:

> Small Dg when x; contains target t

The distance between a target prototype spectra and pixel spectra: I
o Large Dg when x; does not contain target t “

1 1
L =y3Df+(1 —y);{max(0,m — Dg)y’

We can evaluate the goodness of a particular hg with the contrastive loss I



7 | Paired Neural Networks
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s | Paired Neural Networks
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o I Paired Neural Networks for Hyperspectral Target Detection

Training set consists of: Detections

° (pixel spectra, target spectra,

target/non-target) Distance

New target materials can be
detected during inference!

Pixel Embedding Prototype Embedding

Converting distance to
similarity (target score):

1
1+Dg

hg hg

59=

Pixel Spectra Prototype Spectra




0 I Megascene Experiment
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Megascene Experiment

> > .
ST S SIS ST

LS

Spectrum Hidden1 Hidden2 Hidden 3
Input 150 units 150 units 100 units
Up to 3,000 positive pairs per material
Resample pairs every 100 epochs
10,000 epochs

Hidden 4 Hidden 5 Embedding
100 units 50 units 25 units

Rel .U activations
Adam optimizer

Contrastive margin 175



2 I MLS 1200 CFAR Results

target = green_paint_1 target = yellow_paint
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13 | CFAR Results
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14 I CFAR Results — By Scene
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s | Performance on SHARE2012
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16 1 Discussion

Detections

Distance
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Thank you for your attention!

Paired Neural Networks for Hyperspectral
Target Detection

Dylan Anderson, Joshua Zollweg, Braden Smith
Sandia National Laboratories



18 | Indian Pines Experiments

Scene Class Labels Target Labels
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Data
> Corn-notill as “target” class
> 60% train/20% val/20% test

° 10 same/different pairs per pixel in
the train set

| -
Model v O
IR®
° 5 layer, fully connected EE % 0.75 —
> RelLU activation = 0O
£ % 0.50
. . o v
> Contrastive margin 2 ‘-5 >
> Adam optimizer =5 0427
L m
° 100 epochs 2 2 0.00-
= Paired Network ACE

method




