

Extremely large anisotropic transport caused by electronic phase separation in Ti-doped $\text{Ca}_3\text{Ru}_2\text{O}_7$

To cite this article: Jin Peng *et al* 2016 *J. Phys. D: Appl. Phys.* **49** 245004

Manuscript version: Accepted Manuscript

Accepted Manuscript is “the version of the article accepted for publication including all changes made as a result of the peer review process, and which may also include the addition to the article by IOP Publishing of a header, an article ID, a cover sheet and/or an ‘Accepted Manuscript’ watermark, but excluding any other editing, typesetting or other changes made by IOP Publishing and/or its licensors”

This Accepted Manuscript is © .

During the embargo period (the 12 month period from the publication of the Version of Record of this article), the Accepted Manuscript is fully protected by copyright and cannot be reused or reposted elsewhere.

As the Version of Record of this article is going to be / has been published on a subscription basis, this Accepted Manuscript is available for reuse under a CC BY-NC-ND 3.0 licence after the 12 month embargo period.

After the embargo period, everyone is permitted to use copy and redistribute this article for non-commercial purposes only, provided that they adhere to all the terms of the licence <https://creativecommons.org/licenses/by-nc-nd/3.0>

Although reasonable endeavours have been taken to obtain all necessary permissions from third parties to include their copyrighted content within this article, their full citation and copyright line may not be present in this Accepted Manuscript version. Before using any content from this article, please refer to the Version of Record on IOPscience once published for full citation and copyright details, as permissions will likely be required. All third party content is fully copyright protected, unless specifically stated otherwise in the figure caption in the Version of Record.

View the [article online](#) for updates and enhancements.

1
2
3
4
5 **Extremely large anisotropic transport caused by electronic phase**
6
7 **separation in Ti-doped $\text{Ca}_3\text{Ru}_2\text{O}_7$**
8
9
10
11

12 Jin Peng^{a, b}, J. Y. Liu^b, Xiaomin Gu^a, Guotai Zhou^a, Wei Wang^a, J. Hu^b, F. M. Zhang^a and X. S. Wu^{a,*}
13
14
15

16 *^a Collaborative Innovation Center of Advanced Microstructures, Lab of Solid State Microstructures,
17 School of Physics, Nanjing University, Nanjing 210093, P. R. China*

18 *^bDepartment of Physics and Engineering Physics, Tulane University, New Orleans, Louisiana 70118,
19 USA*

20 **Abstract**
21
22

23 In this paper, we reported an extremely large out-of-plane/in-plane anisotropic transport ($\rho_c/\rho_{ab} \sim$
24 10^9) in double layer ruthenates. The mechanism that may be responsible for this phenomenon is also
25 explored here. Distinct from previously well studied layered materials which show large out-of-plane/in-
26 plane electronic anisotropy ($10^3 \sim 10^6$), the Ti doped $\text{Ca}_3\text{Ru}_2\text{O}_7$ single crystals not only form quasi-2D
27 layered structure, but also show phase separation within the layers. We found that Ti doping in $\text{Ca}_3\text{Ru}_2\text{O}_7$
28 induced electronic phase separation between the insulating phase and weak localized phase. The ratio of
29 these two phases is very sensitive to the Ti concentration. At typical concentration, the weak localized
30 phase may forms a channel on the background of insulating phase within the *ab* plane. However, the
31 small volume of weak localized phase makes it less likely to overlap in different layers. This results in a
32 much larger electronic anisotropy ratio than pristine compound $\text{Ca}_3\text{Ru}_2\text{O}_7$. This new mechanism
33 provides a route for further increase electronic anisotropy, which will remarkably reduce current leak
34 and power consumption in electronic devices.
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

53 *Keywords:* ruthenates, phase separation, electronic anisotropy.
54
55
56
57

58 * Corresponding author.
59 *E-mail address:* xswu@nju.edu.cn
60

1 5.1. Introduction

2 6 Transition metal oxides (TMOs) have been widely studied during last few decades since they have a
3 7 wide range of unique behaviors owing to several simultaneously active degrees of freedom involving
4 8 charge, spin, lattice and orbital.[1] The most famous compounds of this system are high-temperature
5 9 superconductivity cuprates [2] and colossal magnetoresistivity manganites.[3] A productive area of
6 10 TMOs is Ruddlesden-Popper (RP) type layered materials $A_{n+1}B_nO_{3n+1}$, where A can be trivalent rare-
7 11 earth or divalent alkaline-earth ions; B is transition metal ions.[4,5] These types of materials are built by
8 12 alternate stacking of n -layers BO_2 and rock-salt-type block layers A_2O_2 along c -axis. Therefore, even
9 13 prepared as 3D bulk crystals, these materials can be viewed as quasi-2D layered structure. One of the
10 14 most remarkable feature of these quasi-2D materials is their anisotropic characteristic, resulting in
11 15 special properties in charge-transport, magnetic, optical conductivity, thermal conductivity and so on.
12 16 These properties favor applications in industry, such as spintronic device,[6] magnetic sensor,[7]
13 17 navigation systems, *et al.*

14 18 For anisotropic transport properties based applications, a large out-of-plane/in-plane transport
15 19 anisotropy ratio (defined as ρ_c/ρ_{ab}) is one of the most important goals. In electrodes, sensors,
16 20 transistors, it can remarkably reduce current leakage and power consumption.[8] In pixilated displays, it
17 21 is strongly related to crosstalk.[9] Many kinds of layered materials (including bulk quasi-2D materials,
18 22 films, organic-inorganic hybrid materials) have been synthesized and their anisotropic transport are
19 23 extensively studied. In optimally doped single layered cuprates $Bi_{2}Sr_{2-x}La_xCuO_{6+\delta}$,[10] the anisotropy
20 24 ratio (AR) can reach as high as 10^6 and in double layered manganites $La_{2-2x}Sr_{1+2x}Mn_2O_7$, around 10^3 .[11]
21 25 In organic-inorganic hybrids function materials, anisotropic ratio can reach around 10^5 .[8,9,12,13] For
22 26 these types of materials, the anisotropic resistivity can be attributed to the morphology: the alternation of
23 27 highly conductive layer (BO_2 layer in TMOs and organic layers in hybrid materials) and lower
24 28 conductive layer (rock-salt-type layers A_2O_2 in TMOs and inorganic layers in hybrid materials) in the
25 29 through-plane direction. The schematic diagrams of these two types of materials are shown in Figure 1.
26 30 Efforts, such as trying different types of conductive layer and insulating layer; different manufacturing
27 31 methods have been made to increase AR.[8,12] Unfortunately, AR were limited to around $10^3 \sim 10^6$ for
28 32 this morphology.[9,10] In this letter, a new route, increasing the complexity of the materials, has been
29 33

1
2
3
4
5 proposed to further increase AR. A material with real composition $\text{Ca}_3(\text{Ru}_{0.972}\text{Ti}_{0.028})_2\text{O}_7$ whose AR is
6 around 10^9 at 5 K was observed
7
8

9 $\text{Ca}_3\text{Ru}_2\text{O}_7$ which is the pristine compound of this system, undergoes an antiferromagnetic (AFM)
10 transition at 56 K from high temperature Paramagnetic (PM) phase to AFM-a (ferromagnetic(FM)
11 bilayers coupled antiferromagnetically along c axis with spin along a/a axis), followed by a metal-
12 insulator transition (MIT) at 48 K[14]. For single crystals grown by floating zone method, its in-plane
13 resistivity recovers to metallic behavior below 30 K, resulting a quasi-2D metallic ground state [15].
14 While Photoconductivity and Raman spectroscopy measurements reveals a charge gap opening associate
15 with the MIT,[16,17] angle-resolved photoemission spectroscopy measurements (ARPES) proved the
16 existence of small metallic pockets survived at non-nested Fermi surface.[18] The reentrance of metallic
17 state below 30 K originates from these small metallic pockets. Our previous work found that a few
18 percent of Ti doping on Ru site can tune the system from AFM-b magnetic state (FM bilayers coupled
19 antiferromagnetically along c axis with spin along b/b axis) to G-AFM state which is characterized by
20 the nearest-neighbor AFM coupling for both in-plane and our-of-plane directions.[19-21] For clarity,
21 magnetic phase diagram of Ti doped $\text{Ca}_3\text{Ru}_2\text{O}_7$ systems summarized from previous work is presented in
22 Fig. 2a.[19-21] Samples around the critical composition of phase transition are characterized by a phase
23 separation between the insulating G-AFM phase and weak localized AFM-b phase.[19-21] This phase
24 separation are illustrated by gradient colored and shadowed region in Fig. 2a. The ratio of G-AFM phase
25 to AFM-b phase is very sensitive to the Ti concentration in shadowed region.[21] Electronic ground state
26 evolves from quasi-2D metallic state ($\text{Ca}_3\text{Ru}_2\text{O}_7$) to weak localized state and finally to Mott insulating
27 state. Before the system enters single G-AFM Mott insulating state, it shown complex phase transitions
28 with decreasing temperature. An intermediate magnetic (IM) state emerges between AFM-a and AFM-
29 b/G-AFM. This IM state is consisted by both commensurate and incommensurate magnetic order.[19,20]
30
31

51 2. Experimental procedure

52

53 High quality single crystalline samples of $\text{Ca}_3(\text{Ru}_{0.972}\text{Ti}_{0.028})_2\text{O}_7$ used in this study were grown by
54 floating zone technique. All samples used for measurements were examined by X-ray diffraction (XRD)
55 and a superconducting quantum interference device (SQUID, Quantum Design) and were shown to be
56 composed of pure bilayered phase. The chemical compositions were determined by Energy-dispersive
57

X-ray spectroscopy. The in-plane crystallographic directions were determined using Laue X-ray diffraction measurements. Every sample used in the experiments was carefully examined by SQUID to ensure twin-domain free. The magnetoresistivity of the samples were measured with a four-probe method in a physical property measurement system (PPMS, Quantum Design). ρ_{ab} is measured on thin rectangular plate-like samples with size $\sim 0.5\text{mm}^*1\text{mm}^*0.1\text{mm}$. Voltage leads are attached on the top surface of the samples. Current Leads are connected to the two opposite side faces of the samples. ρ_c is measured on thin square plate-like samples with size $\sim 0.5\text{mm}^*0.5\text{mm}^*0.1\text{mm}$. The current leads are formed by a circular pattern of epoxy with a small notch on the top and bottom of the samples. Voltage leads are attached in the center of the circle. Schematic diagrams of leads configuration are shown in Supplementary material. Both in-plane and out-of-plane resistivity measurements are repeated on several samples. They show consistent magnitude and temperature dependency (see Supplementary material). Samples' dimensions are measured under microscope with precision of 1/45 mm. External magnetic field are applied along in-plane directions a or b .

3. Results and discussions

The temperature dependent ρ_c/ρ_{ab} for $\text{Ca}_3(\text{Ru}_{0.972}\text{Ti}_{0.028})_2\text{O}_7$ is plotted in Fig. 2a. This compound show complex magnetic transitions with temperature. [19,20] It first shows the AFM- a order below 65 K, and then evolves into the G-AFM order below $T_{\text{MIT}} \sim 46$ K. Within a very narrow temperature range (40 K – 44 K), the mixed phase is present. There exist three magnetic phases in this mixed phase region: AFM- a , G-AFM and an incommensurate magnetic order (IM). Below 40 K, the incommensurate component vanishes and the weakened AFM- a component transforms into AFM- b with small volume fraction. The G-AFM order survives as a major phase.[19,20]

Let's take a look at the anisotropic ratio at different magnetic phases. In the PM and AFM- a range, ρ_c is one order larger than ρ_{ab} and show weakly temperature dependence. A steep increase of ρ_c/ρ_{ab} on a logarithmic scale to 10^9 happens accompany by the magnetic phase transition from AFM- a to major G-AFM phase. To explore this abnormality, the temperature-dependent in-plane and out-of-plane resistivity within the same temperature range are presented in Fig. 2b inset. Metal-semiconductor/insulator transitions are observed in ρ_{ab} and ρ_c at T_{MIT} respectively. However, ρ_{ab} show semi-conducting/insulating behavior below T_{MIT} with resistivity around only 0.003 Ω cm at 5 K; ρ_c show

1
2
3
4 insulating behavior with resistivity above $10^6 \Omega \text{ cm}$ at 5 K. As we state above, layered TMOs can be
5 viewed as self-assembled stacks of two-dimensional materials weakly coupled to each other. Therefore,
6 they always show anisotropic characteristics in charge-transport behavior. However, the anisotropic ratio
7 in $\text{Ca}_3(\text{Ru}_{0.972}\text{Ti}_{0.028})_2\text{O}_7$ is 3 orders larger than the largest one observed in perovskite type TMOs. What
8 is the unique mechanism responsible for the huge anisotropic ratio?

9
10 To answer this question, we plotted temperature dependent ρ_c/ρ_{ab} for parent compound $\text{Ca}_3\text{Ru}_2\text{O}_7$
11 (see Fig. 2c) within the same temperature range. In the PM and AFM-*a* range, ρ_c is constantly one order
12 larger than ρ_{ab} , similar to $\text{Ca}_3(\text{Ru}_{0.972}\text{Ti}_{0.028})_2\text{O}_7$. A jump of anisotropic ratio happened at T_{MIT} to around
13 4000. The temperature-dependent in-plane and out-of-plane resistivities within the same temperature
14 range of $\text{Ca}_3\text{Ru}_2\text{O}_7$ are presented in Fig. 2c inset. We found that in-plane resistivity of $\text{Ca}_3\text{Ru}_2\text{O}_7$ are
15 almost at the same order of $\text{Ca}_3(\text{Ru}_{0.972}\text{Ti}_{0.028})_2\text{O}_7$ both below and above T_{MIT} . However, out-of-plane
16 resistivity of $\text{Ca}_3\text{Ru}_2\text{O}_7$ are 1 order smaller than $\text{Ca}_3(\text{Ru}_{0.972}\text{Ti}_{0.028})_2\text{O}_7$ above T_{MIT} , 9 orders smaller than
17 $\text{Ca}_3(\text{Ru}_{0.972}\text{Ti}_{0.028})_2\text{O}_7$ below T_{MIT} . The large bifurcation of anisotropic ratio between
18 $\text{Ca}_3(\text{Ru}_{0.972}\text{Ti}_{0.028})_2\text{O}_7$ ($\sim 10^9$) and $\text{Ca}_3\text{Ru}_2\text{O}_7$ (~ 4000) is caused by the large divergence of ρ_c when the
19 two compounds enter different magnetic phase (G-AFM+AFM-*b* for $\text{Ca}_3(\text{Ru}_{0.972}\text{Ti}_{0.028})_2\text{O}_7$ and AFM-*b*
20 for $\text{Ca}_3\text{Ru}_2\text{O}_7$). To clarify the mechanism of huge resistivity anisotropy, the study of magneto-electric
21 coupling is desirable.

22
23 Before the study of magneto-electric coupling, I will focus on the magnetic structure first. Isothermal
24 magnetization measurements at typical temperatures (5 K, 10 K and 15 K) for external magnetic field
25 applied along *a* and *b* axis respectively are shown in Fig. 3a and 3b. From our previous study, the
26 $\text{Ca}_3(\text{Ru}_{0.972}\text{Ti}_{0.028})_2\text{O}_7$ compound falls in the range of G-AFM and AFM-*b* coexistence ground state. The
27 volume ratio of these two phases can be estimated from isothermal magnetization measurements. When
28 field is applied along *b* axis, which is the easy axis of both AFM-*b* and G-AFM phase; *a* first-order
29 metamagnetic transition occurs at ~ 5 T, similar to the metamagnetic transition from AFM-*b* to canted
30 antiferromagnetic (CAFM) in $\text{Ca}_3\text{Ru}_2\text{O}_7$ whose ground state magnetic structure is solely AFM-*b*.[22,23]
31 However, the saturated magnetic moment is only around $0.08 \mu_B/\text{Ru}$ above the transition field, far away
32 from the expected value of fully polarized spin moment of Ru^{4+} ($S = 1, M_s = 2 \mu_B/\text{Ru}$) or the saturated
33 moment of $\text{Ca}_3\text{Ru}_2\text{O}_7$ ($\sim 1.7 \mu_B/\text{Ru}$). [14,24] There is a trace for the second transition at higher field
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3
4
5 since the $M(B)$ curve show a large positive slope above the first transition field (~ 5 T). This result
6 indicates that the volume fraction of AFM-*b* phase in $\text{Ca}_3(\text{Ru}_{0.972}\text{Ti}_{0.028})_2\text{O}_7$ compound is quite low. M
7 (B) for $B \parallel a$ at low temperature (< 30 K) is almost linear as a function of field, up to 7 T (see Fig. 3(c)),
8 indicating no twin domain in this sample.
9

10
11 With temperature increase, the hysteresis of the metamagnetic transition at 5 T is reduced due to the
12 increase of thermal fluctuation, meanwhile, a second transition at higher field appears. This transition is
13 thought to be originated from the polarization of major G-AFM phase based on the evidence below: (1)
14 We extend the isothermal magnetization measurements to temperature range above 30 K (see Fig. 3b),
15 the second transition is completely moved into the equipment capable region (≤ 7 T) and transition field
16 decreases with increasing temperature. The saturated moment for $T = 35$ K is around $1.5 \mu_B/\text{Ru}$, three
17 quarters of the fully polarized spin moment of Ru^{4+} . It is nature to estimate that at lower temperature, the
18 saturated moment should be more close to $2 \mu_B/\text{Ru}$, with higher transition field, indicating the fully
19 polarization of major phase. (2) When field is applied along *a*-axis, for temperature above 30 K, the M
20 (B) curve is similar to that for $B \parallel b$ with slightly higher transition field. This is understandable with the
21 approximation above. Due to the canted spin configuration in G-AFM phase: the spin is point to the
22 direction which is $\sim 30^\circ$ to *b* axis, $\sim 60^\circ$ to *a* and *c* axis.[19] Therefore, at same temperature, larger
23 magnetic field is required to polarized spins to a direction.
24
25

26 To study the relationship between transport behavior and magnetic structure, we performed
27 magnetoresistivity measurements. Currents are applied along both in-plane and out-of-plane directions;
28 magnetic fields are along easy axis *b*. In Fig. 4a, red curve shows the ratio of in-plane resistivity at
29 certain field to that at zero field versus external magnetic field; blue curve exhibits the magnetization of
30 the same sample verses external magnetic field. All data are taken at 10 K. As we state above, the
31 metamagnetic transition at ~ 5 T should have the same origin of the transition in $\text{Ca}_3\text{Ru}_2\text{O}_7$: the spin
32 flip/flop of AFM-*b* phase, and it only reach a magnetic moment of $\sim 0.08 \mu_B/\text{Ru}$. The in-plane
33 magnetoresistivity $\rho_{ab}(B)$ shows a sudden jump right at the metamagnetic transition field (~ 5 T),
34 indicating that the in-plane transport behavior is in strong correlation to the minor AFM-*b* phase.
35
36

37 How about the interlayer transport behavior? We increase the environment temperature to 35 K to
38 investigate the relationship between $\rho_c(B)$ and the magnetization M . The ratio of interlayer resistivity at
39

certain field to that at zero field versus magnetic field ($\rho_c(B)/\rho_c(0)$) as well as the magnetization versus magnetic field taken at 35 K are shown in Fig. 4b. Obviously, the huge jump of ρ_c happened at the same field of the polarization of major G-AFM phase. Indicate that the interlayer transport behaviors are closely related to the major G-AFM phase of this material. $\rho_c(B)/\rho_c(0)$ versus magnetic field at 10 K are also plotted as Fig. 4c. Clearly, the sudden jump of ρ_c do not happen at the same field as the metamagnetic transition of AFM-b phase at ~ 5 T. Instead, it happened at a higher field ~ 8 T at 10 K, which corresponds to the polarization field of G-AFM phase even this transition cannot be reflected by magnetization measurements due to equipment limitation.

This highly anisotropic transport behavior is strongly dependent on the magnetic structure. A promising explanation of this feature is in-plane percolation effect. The minor AFM-b phase, even only occupy a small volume fraction, it may form in-plane conducting channel if that AFM-b domains have some sort of internal organizations, such as “stripe shape” domain observed in $\text{Sr}_3(\text{Ru}_{1-x}\text{Mn}_x)_2\text{O}_7$.[25] Our-of-plane magnetoresistivity $\rho_c(B)$ should be explained by tunneling magnetoresistance (TMR) effects since that this material is naturally composed of magnetic bilayers $(\text{Ru, Ti})\text{O}_2$ separated by nonmagnetic insulating layers Ca_2O_2 . Parallel circuit model can be applied in $\rho_c(B)$. One channel is composed of AFM-b/ Ca_2O_2 /AFM-b Sandwich structure, resulting a bulk spin valve effect in which ρ_c is very strongly suppressed by the antiferromagnetic alignment. This suppression can be destroyed in favor of ferromagnetism at the critical field of AFM-b polarization (~ 5 T). The other channel is composed of G-AFM/ Ca_2O_2 /G-AFM or G-AFM/ Ca_2O_2 /AFM-b layered structure. Considering that AFM-b phase only occupied quite small volume fraction, it is unlikely that the AFM-b ranges overlap at different layers. Field sweep $\rho_c(B)$ measurements confirm this assumption. It shows spin-valve effect at the polarization field of G-AFM phase. The lower resistivity channel which are composed of AFM-b/ Ca_2O_2 /AFM-b sandwich structure are turned off. This mechanism can be applied not only in bulk materials, but also in materials that are more commonly used in applications, such as films, hybrid materials and so on. The key point of this new mechanism is to increase the inhomogeneity from one dimensional (along out-of-plane direction) to three dimensional.

4. Conclusions

1
2
3
4
5 In summary, we observed highly anisotropic transport properties for currents applied along and
6 perpendicular to *c*-axis in $\text{Ca}_3(\text{Ru}_{0.972}\text{Ti}_{0.028})_2\text{O}_7$ compound. The change of magnetoresistivity in a
7 magnitude $\sim 50\%$ and $\sim 10^8$ are obtained for ρ_{ab} and ρ_c respectively for field along *b*-axis. This unique
8 magneto-electronic coupling is possibly attributed to the electronic phase separated ground state and in-
9 plane percolation effect. This special case may stimulate a new path for reducing current leakage and
10 power consumption in electronic devices.
11
12

13 Acknowledgements

14

15 This work is supported by the Natural Science Foundation of China (Nos. 11304149, U1332205,
16 11274153, 11204124, 51202108). The work at Tulane is supported by the U.S. Department of Energy
17 under EPSCoR Grant No. DE-SC0012432 with additional support from the Louisiana Board of Regents
18 (support for crystal growth and magnetic measurements) and NSF under Grant DMR-1205469. J. P.
19 conducted crystal growth, structural characterization, magnetization and transport measurements; wrote
20 the manuscript. X. G., G. Z. and W. W. contributed to transport measurements in part. J. L. and J. H.
21 contributed to magnetization measurements in part. X. S. Wu supervised the project. All authors
22 reviewed and commented on the manuscript. We are also thankful to a number of researchers who
23 critically commented on an earlier version of this manuscript or provided helpful input: Z. Q. Mao
24 (Tulane University), Mingqiang Gu (Northwestern University) and Yuechun Shi (Nanjing University).
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3
4
5
6
7 **References**

8 [1] E. Dagotto, *Science* **309**, 257 (2005).

9 [2] K. A. M. J. G. Bednorz, *Zeitschrift fur Physik B Condensed Matter* **64**, 189 (1986).

10 [3] A. P. Ramirez, *Journal of Physics: Condensed Matter* **9**, 8171 (1997).

11 [4] S. N. Rugglesden and P. Popper, *Acta Crystallographica* **10**, 538 (1957).

12 [5] S. N. Rugglesden and P. Popper, *Acta Crystallographica* **11**, 54 (1958).

13 [6] A. M. Haghiri-Gosnet and J. P. Renard, *Journal of Physics D: Applied Physics* **36**, R127 (2003).

14 [7] J. Heremans, *Journal of Physics D: Applied Physics* **26**, 1149 (1993).

15 [8] S. Fujii, Y. Suzuki, J. Kawamata, and R. Tsunashima, *Journal of Materials Chemistry C* **3**, 7153 (2015).

16 [9] A. M. Nardes, M. Kemerink, R. A. J. Janssen, J. A. M. Bastiaansen, N. M. M. Kiggen, B. M. W. Langeveld, A. J. J. M. van Breemen, and M. M. de Kok, *Adv Mater* **19**, 1196 (2007).

17 [10] S. Ono and Y. Ando, *Phys Rev B* **67**, 104512 (2003).

18 [11] T. G. Perring, G. Aeppli, T. Kimura, Y. Tokura, and M. A. Adams, *Phys Rev B* **58**, R14693 (1998).

19 [12] J. F. Hulvat and S. I. Stupp, *Adv Mater* **16**, 589 (2004).

20 [13] Q. Wei, M. Mukaida, K. Kirihara, and T. Ishida, *ACS Macro Letters* **3**, 948 (2014).

21 [14] G. Cao, S. McCall, J. E. Crow, and R. P. Guertin, *Phys Rev Lett* **78**, 1751 (1997).

22 [15] Y. Yoshida, I. Nagai, S.-I. Ikeda, N. Shirakawa, M. Kosaka, and N. Môri, *Phys Rev B* **69**, 220411 (2004).

23 [16] J. S. Lee, S. J. Moon, B. J. Yang, J. Yu, U. Schade, Y. Yoshida, S. I. Ikeda, and T. W. Noh, *Phys Rev Lett* **98**, 097403 (2007).

24 [17] H. L. Liu, S. Yoon, S. L. Cooper, G. Cao, and J. E. Crow, *Phys Rev B* **60**, R6980 (1999).

25 [18] F. Baumberger *et al.*, *Phys Rev Lett* **96**, 107601 (2006).

26 [19] X. Ke, J. Peng, D. J. Singh, T. Hong, W. Tian, C. R. Dela Cruz, and Z. Q. Mao, *Phys Rev B* **84**, 201102 (2011).

27 [20] J. Peng, X. Ke, G. Wang, J. E. Ortmann, D. Fobes, T. Hong, W. Tian, X. Wu, and Z. Q. Mao, *Phys Rev B* **87**, 085125 (2013).

28 [21] J. Peng, J. Y. Liu, J. Hu, Z. Q. Mao, F. M. Zhang, and X. S. Wu, *Scientific Reports* **6**, 19462 (2016).

29 [22] W. Bao, Z. Q. Mao, Z. Qu, and J. W. Lynn, *Phys Rev Lett* **100**, 247203 (2008).

30 [23] Y. Yoshida, S.-I. Ikeda, H. Matsuhata, N. Shirakawa, C. H. Lee, and S. Katano, *Phys Rev B* **72**, 054412 (2005).

31 [24] Z. Qu *et al.*, *Phys Rev B* **78**, 180407 (2008).

32 [25] M. A. Tae-Hwan Kim, B. Hu, R. Jin, X.-G. Zhang, J. F. Wendelken, E. W. Plummer, and An-Ping Li, *PNAS* **107**, 5272 (2010).

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

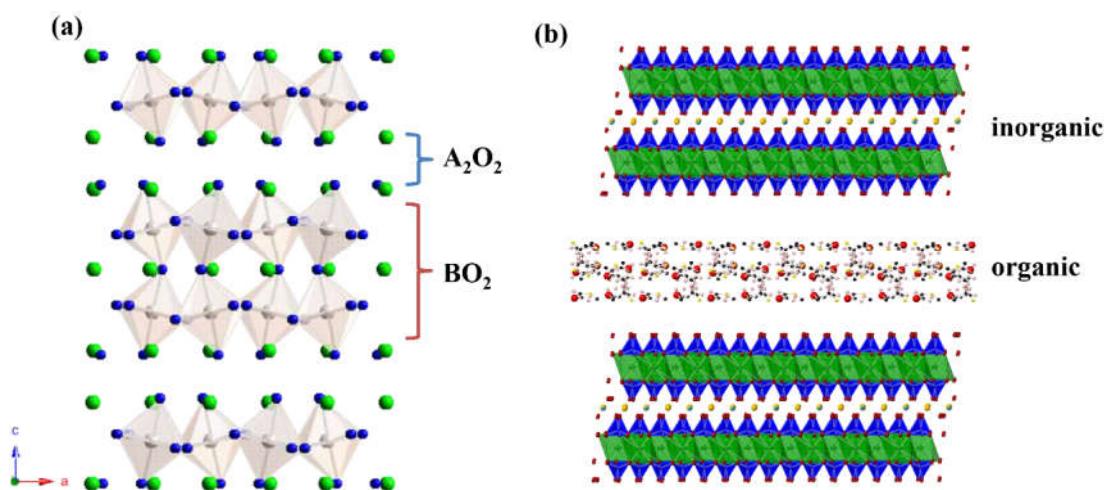


Figure 1: Schematic diagrams of crystal structures of (a) RP type layered materials $A_{n+1}B_nO_{3n+1}$ ($n = 2$); (b) organic-inorganic hybrids materials. Lower conductivity A_2O_2 (a) or inorganic (b) layers and higher conductivity BO_2 (a) or organic (b) layers are labeled in the diagrams.

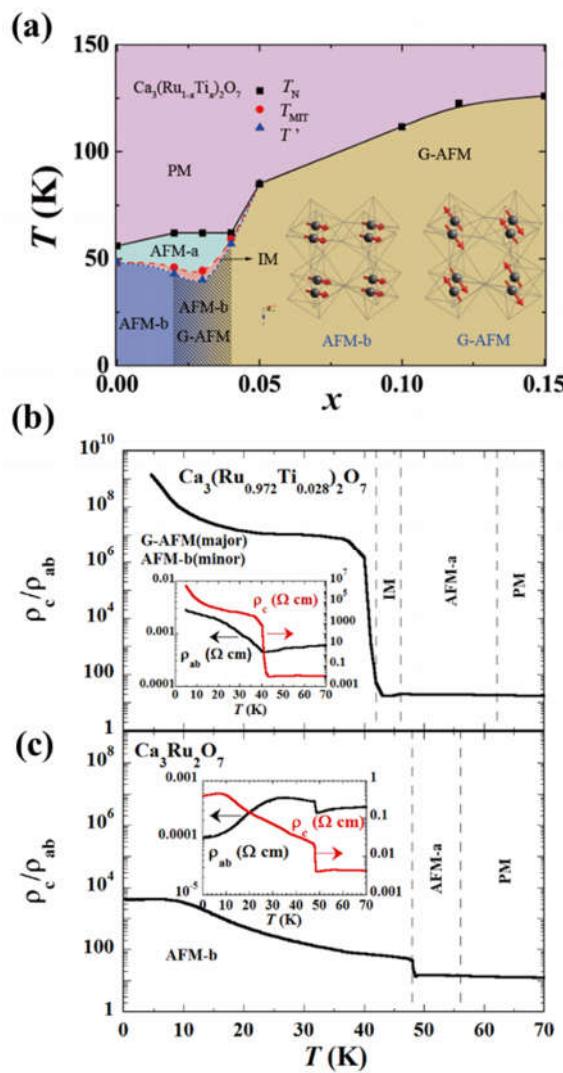


Figure 2: (a) Magnetic phase diagram of $\text{Ca}_3(\text{Ru}_{1-x}\text{Ti}_x)_2\text{O}_7$ ($0 \leq x \leq 0.15$). Distinct magnetic phases are represented by different colors and labels. Magnetic phase separation regions are illustrated by a shadow with gradient color background. Inset: Schematic diagrams of AFM-b and G-AFM magnetic structures. (b) Temperature dependence of ρ_c/ρ_{ab} of $\text{Ca}_3(\text{Ru}_{0.972}\text{Ti}_{0.028})_2\text{O}_7$. PM: paramagnetic; IM: incommensurate magnetic phase; G-AFM: G-type antiferromagnetic. Inset: temperature dependence of the in-plane (ρ_{ab}) and out-of-plane (ρ_c) resistivity for $\text{Ca}_3(\text{Ru}_{0.972}\text{Ti}_{0.028})_2\text{O}_7$. (c) Temperature dependence of ρ_c/ρ_{ab} of $\text{Ca}_3\text{Ru}_2\text{O}_7$. Inset: temperature dependence of the in-plane (ρ_{ab}) and out-of-plane (ρ_c) resistivity for $\text{Ca}_3\text{Ru}_2\text{O}_7$.

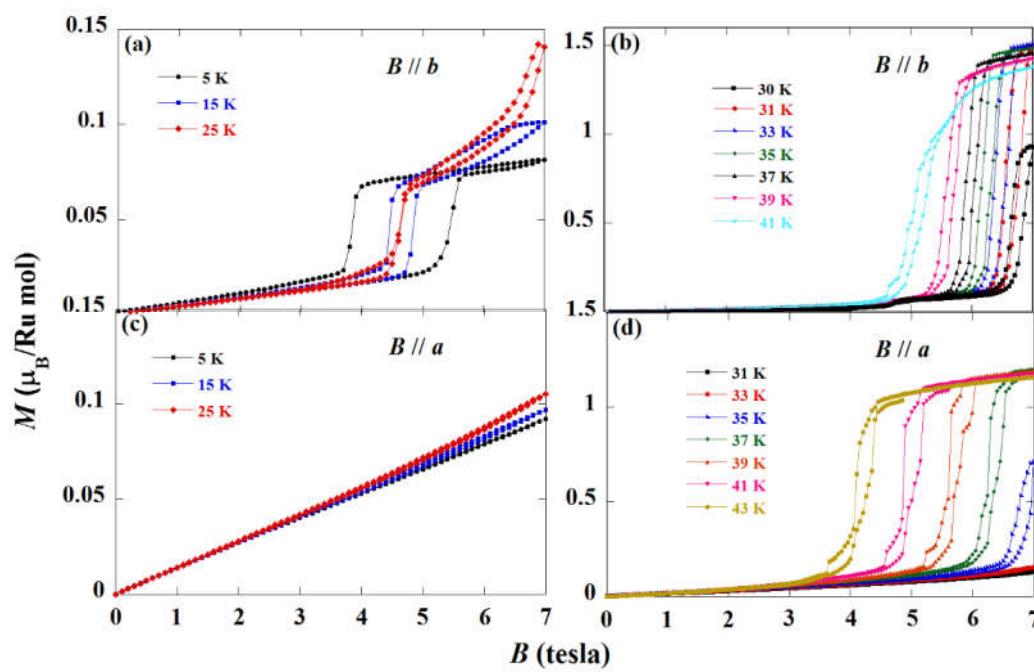


Figure 3: Magnetization versus external magnetic field at different temperature: (a) Magnetization for $B \parallel b$ measured at 5 K, 15 K and 25 K respectively. (b) Magnetization for $B \parallel b$ measured at 30 K, 31 K, 33 K, 35 K, 37 K, 39 K and 41 K respectively. (c) Magnetization for $B \parallel a$ measured at 5 K, 15 K and 25 K respectively. (d) Magnetization for $B \parallel a$ measured at 31 K, 33 K, 35 K, 37 K, 39 K, 41 K and 43 K respectively.

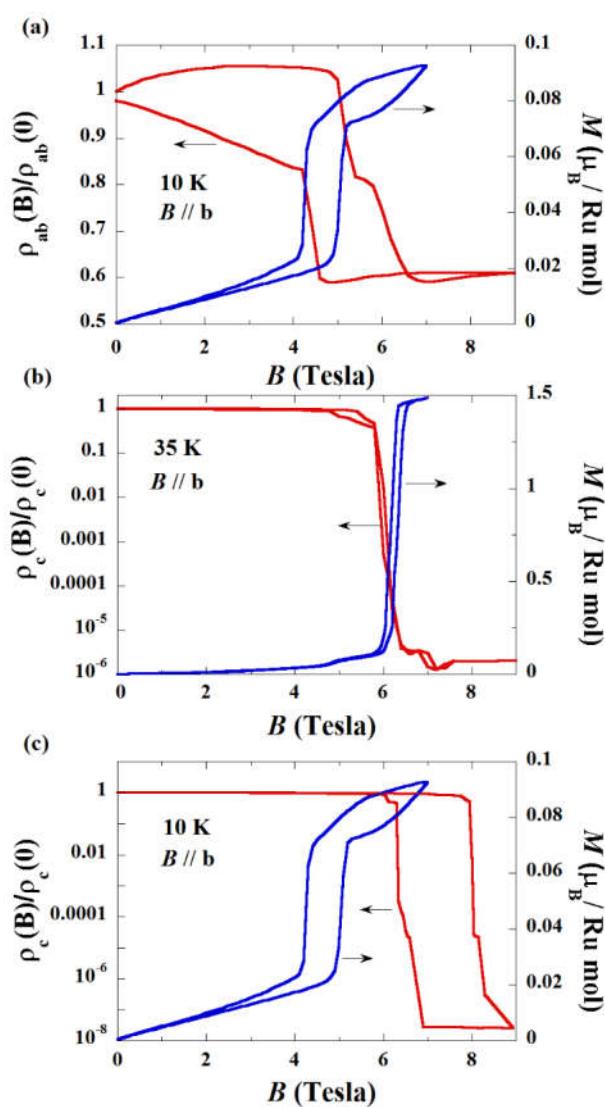


Figure 4: (a) Magnetic field dependent in-plane resistivity (ρ_{ab}) and magnetization taken at 10 K with field applied along b -axis. (b) Magnetic field dependent out-of-plane resistivity (ρ_c) and magnetization taken at 35 K with field applied along b -axis. (c) Magnetic field dependent out-of-plane resistivity (ρ_c) and magnetization taken at 10 K with field applied along b -axis.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60