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Introduction

CENTE?‘

« Goal: Use NS to simulate upper-atmospheric flight
— Chemical and thermal non-equilibrium
— Reaction rates extrapolated

* Quantum-Kinetic reaction model
— Originally proposed by Bird for DSMC
— Phenomenological model based on colliding molecules
» Uses microscopic data to calculate reaction rates
— Reproduce equilibrium rates
» Within uncertainty for temperature ranges measured
— Model predicts rates in thermal non-equilibrium

— Allows for closed-form solutions for use in Navier-Stokes (NS)
and hybrid DSMC/NS codes
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Current Study
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 Test Q-K model in a NS simulation

— Implement Q-K reaction models in a three-temperature NS code,
DPLR

» Obtain better agreement between DSMC and NS
» Verify Q-K as a general chemistry model

— Apply chemical reaction models to high-altitude flight test (BSUV)
— Compare with previous studies: NS and DSMC
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Quantum-Kinetic Model
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e “QK Vib.”
* Dissociation reaction rate:

1—w 1/2
20, T 2kpT e
buies (1,7 = 2 ;(Tﬂf) & f) By (1,1,) + By (1,)

?:91_1 7;91:
(T ZQ[ = ]exp(_n)

« Exchange reaction rate:
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Quantum-Kinetic Model

CENTE‘?‘

e “QK Rot.”
* Dissociation reaction rate:

2, T N\ 2T\ 2
baies (1.1, T,) = 2 \/_f( f) (%) By (1. o) + By (T, 1)

oc ia(d) . ) .
AR 5 0a(j) —ib, i0,
Dipt = Zt.‘ab(T (T E [ 2j + 1) exp ( j+1) Tr) E Q [5 —w, #] exp (— T, )
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L, (N=0,()/0,=U,3))]0,

U ()
. (/) =1+3.82x107 j+3.80x107 /> +3.25x107° /* (N,)
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U (j ,
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Quantum-Kinetic Model

CenTeR

« Exchange reaction rate:

20’.,,8f T 1=w QkBTref 172 Cl Cz
kower, (1,1.,7T,) = _ _ _
exch (1 1. 1o) ey/m (Tmf ) ( my P Ty, (1.7,.7T,) P Too (1.5 T,)
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Computational Method

CENTEQ

« Reaction Rates

— Park '90 and '94 models
* Modified Arrhenius equation

No+ M < 2N + M
 TTv model for dissociation

~ Q-Kmodel Oy +M 20+ M
e Chemistry model NO+ Mo NLEO+-M
— 5-species, 5-reaction air NO+O < Oy + N
— Dissociation N, + 0 NO+ N
« Park or Q-K

— Recombination

» Park equilibrium curve fit
— Endothermic exchange

» Park or Q-K
— Exothermic exchange

» Park equilibrium curve fit @ Sandia
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Computational Method

CENTEQ

 Navier-Stokes: DPLR

— Reacting, 2D NS equations based on finite volume formulation
— Diffusive properties
* Viscosity: Blottner-Wilke
« Conduction: Eucken relation
 Diffusion: Constant Lewis number
— T-R-V non-equilibrium
« Simple harmonic oscillator for vibrational energies
 Rigid rotor for rotational energies
» Collisional relaxation times based on:
— Parker’s model for rotational relaxation
— Millikan and White for vibrational relaxation
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Computational Method

CENTEQ

« DSMC: Icarus

— Collision cross-section
» General Larsen-Borgnakke model
* Molecular properties based on Bird’s data for VSS
— Chemical reactions
* Q-K model
— T-R-V non-equilibrium
« Simple harmonic oscillator for vibrational energies
 Rigid rotor for rotational energies
» Collisional relaxation times based on:
— Parker’s model for rotational relaxation
— Millikan and White for vibrational relaxation
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« Park model vs. Q-K model:
thermal non-equilibrium
— Dissociation
* Q-K higher than Park
- N,+N, > 2N+ N,
» Lower for other reactions

— Exchange
* Q-K usually higher than Park

» Correct behavior at low T,
— Rate is finite, not zero
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CENTEQ
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BSUV Flight Conditions 9
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 Bow Shock UltraViolet (BSUV) flight 2
— Measure stagnation line UV radiation: measured NO properties
— Only simulate the nose of each vehicle

* 0.1016 m (4 in.) radius
« NS: 500 K isothermal wall
« DSMC: 500 K diffuse wall

87.5 km

Density (kg/m?) | 5.33-107°
Velocity (m/s) 5100
Temperature (K) 186.87
Mass Fraction N» 0.7663
Mass Fraction O, 0.2337
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87.5 km <

« Mass Fraction of NO TRV Park
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2_ ———— T-R-V QK Rot
— Park 4-6 orders less O T rRvVK Vib
. . —_— T-VPark
— Higher T, with Rot. Non-Eq 10°k T-V K Vib

results in more NO
— QK Rot. rate reduces NO

« Comparisons

— Current model predictions
In the range of DSMC data

« Translational temperature 10"

— Rot. Non-Eq. results in B I /Y I A T T
higher T, !
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Mass Fraction of NO
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Distance from Vehicle {cm)

Mass fraction of NO along the
stagnation line at 87.5 km.
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 Mass Fraction of NO TRV Park
— Park 4-6 orders less |/ TRvakui
— Higher T, with Rot. Non-Eq T joarus.
results in more NO Jo"
— QK Rot. rate reduces NO -
« Comparisons ="
Z

— Current model predictions el
In the range of DSMC data

« Translational temperature 1"

— Rot. Non-Eq. results in ol yaus T T
. 10 6 3 2 0
higher T,

Distance from Vehicle {cm)

Particle density of NO along
the stagnation line at 87.5 km.
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Summary and Conclusions

CENTEQ

* Quantum-Kinetic model versus Park model
— Thermal equilibrium
* Q-K predicts greater rates for some reactions, lesser rates for others
— Thermal non-equilibrium

* Q-K avoids the low dissociation rates observed with the TTv model in
cases of strong thermal non-equilibrium

 Effect of rotational energy is minimal on dissociation reaction rates
* Q-K generally predicts greater rates for exchange reactions

« BSUV Simulations

— Q-K models predict NO densities more consistent with previous
studies compared to Park model

— Current implementation lacks more detailed energy modeling
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