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Introduction 

• Goal: Use NS to simulate upper-atmospheric flight 

– Chemical and thermal non-equilibrium 

– Reaction rates extrapolated  

 

• Quantum-Kinetic reaction model 

– Originally proposed by Bird for DSMC 

– Phenomenological model based on colliding molecules 

• Uses microscopic data to calculate reaction rates 

– Reproduce equilibrium rates 

• Within uncertainty for temperature ranges measured 

– Model predicts rates in thermal non-equilibrium 

– Allows for closed-form solutions for use in Navier-Stokes (NS) 

and hybrid DSMC/NS codes 

 



Current Study 

• Test Q-K model in a NS simulation 

– Implement Q-K reaction models in a three-temperature NS code, 

DPLR 

• Obtain better agreement between DSMC and NS 

• Verify Q-K as a general chemistry model 

– Apply chemical reaction models to high-altitude flight test (BSUV) 

– Compare with previous studies: NS and DSMC 

 

 



Quantum-Kinetic Model 

• “QK Vib.” 

• Dissociation reaction rate: 

 

 

 

 

• Exchange reaction rate: 



Quantum-Kinetic Model 

• “QK Rot.” 

• Dissociation reaction rate: 

 

 

 

 



Quantum-Kinetic Model 

• Exchange reaction rate: 

 



Computational Method 

• Reaction Rates 

– Park ’90 and ’94 models 

• Modified Arrhenius equation 

• TTv model for dissociation 

– Q-K model 

• Chemistry model 

– 5-species, 5-reaction air 

– Dissociation 

• Park or Q-K 

– Recombination 

• Park equilibrium curve fit 

– Endothermic exchange 

• Park or Q-K 

– Exothermic exchange 

• Park equilibrium curve fit 

 

 

 

 



Computational Method 

• Navier-Stokes: DPLR 

– Reacting, 2D NS equations based on finite volume formulation 

– Diffusive properties 

• Viscosity: Blottner-Wilke  

• Conduction: Eucken relation 

• Diffusion: Constant Lewis number 

– T-R-V non-equilibrium 

• Simple harmonic oscillator for vibrational energies 

• Rigid rotor for rotational energies 

• Collisional relaxation times based on: 

– Parker’s model for rotational relaxation 

– Millikan and White for vibrational relaxation 



Computational Method 

• DSMC: Icarus 

– Collision cross-section 

• General Larsen-Borgnakke model 

• Molecular properties based on Bird’s data for VSS 

– Chemical reactions 

• Q-K model 

– T-R-V non-equilibrium 

• Simple harmonic oscillator for vibrational energies 

• Rigid rotor for rotational energies 

• Collisional relaxation times based on: 

– Parker’s model for rotational relaxation 

– Millikan and White for vibrational relaxation 

 

 



Reaction Rate Comparison 

• Park model vs. Q-K model: 

thermal non-equilibrium 

– Dissociation 

• Q-K higher than Park 

– 𝑁2 + 𝑁2 → 2𝑁 +𝑁2  

• Lower for other reactions 

– Exchange 

• Q-K usually higher than Park 

• Correct behavior at low Tv 

– Rate is finite, not zero 

 

 
𝑁2 + 𝑁2 → 2𝑁 + 𝑁2 



BSUV Flight Conditions 

• Bow Shock UltraViolet (BSUV) flight 2 

– Measure stagnation line UV radiation: measured NO properties 

– Only simulate the nose of each vehicle 

• 0.1016 m (4 in.) radius 

• NS: 500 K isothermal wall 

• DSMC: 500 K diffuse wall 

87.5 km 



87.5 km 

• Mass Fraction of NO 

– Park 4-6 orders less 

– Higher Tt with Rot. Non-Eq 

results in more NO 

– QK Rot. rate reduces NO  

• Comparisons 

– Current model predictions 

in the range of DSMC data  

• Translational temperature 

– Rot. Non-Eq. results in 

higher Tt  

Mass fraction of NO along the 

stagnation line at 87.5 km. 



87.5 km 

• Mass Fraction of NO 

– Park 4-6 orders less 

– Higher Tt with Rot. Non-Eq 

results in more NO 

– QK Rot. rate reduces NO  

• Comparisons 

– Current model predictions 

in the range of DSMC data  

• Translational temperature 

– Rot. Non-Eq. results in 

higher Tt  

Particle density of NO along 

the stagnation line at 87.5 km. 



Summary and Conclusions 

• Quantum-Kinetic model versus Park model 

– Thermal equilibrium 

• Q-K predicts greater rates for some reactions, lesser rates for others 

– Thermal non-equilibrium 

• Q-K avoids the low dissociation rates observed with the TTv model in 

cases of strong thermal non-equilibrium 

• Effect of rotational energy is minimal on dissociation reaction rates 

• Q-K generally predicts greater rates for exchange reactions 

• BSUV Simulations 

– Q-K models predict NO densities more consistent with previous 

studies compared to Park model 

– Current implementation lacks more detailed energy modeling  

 


