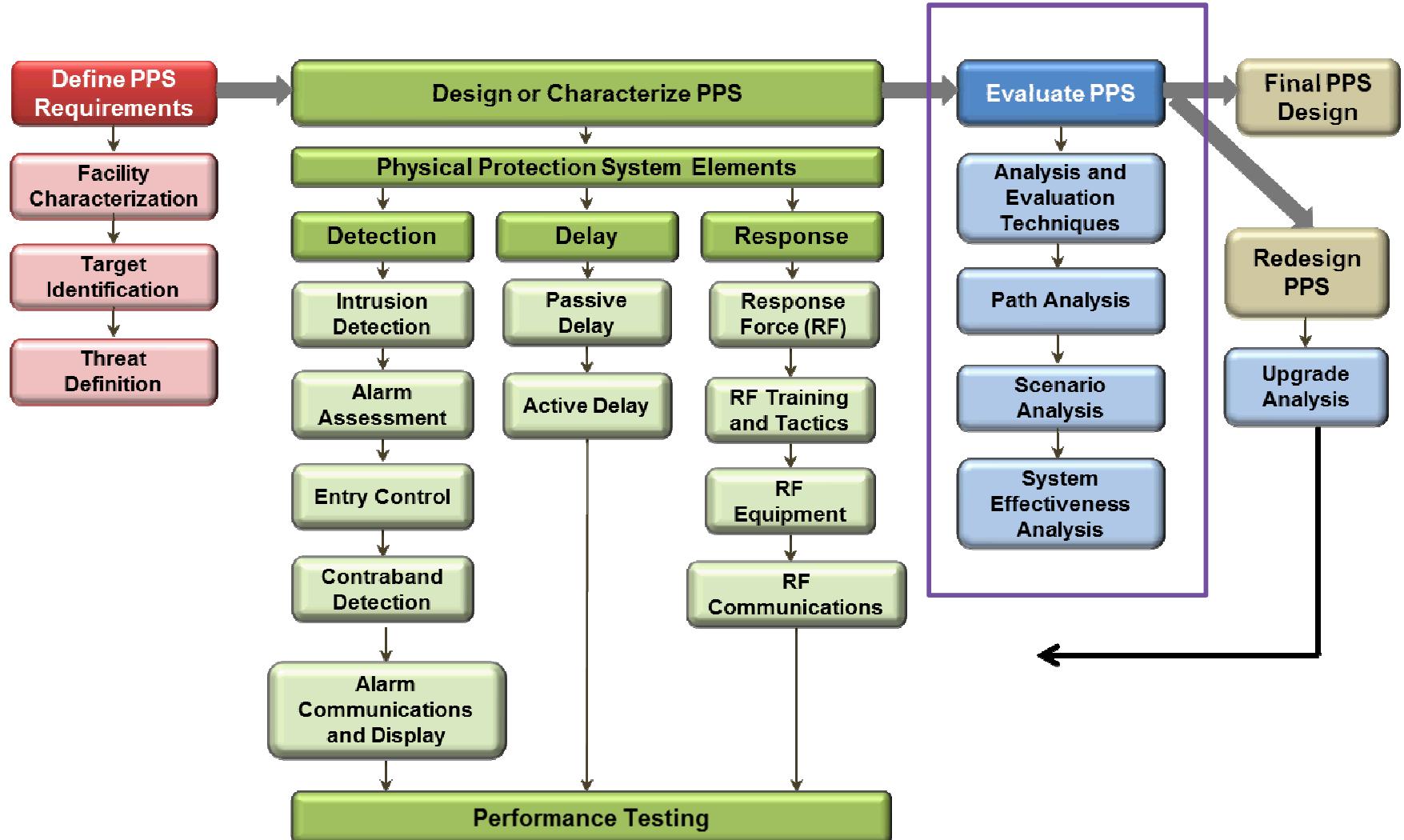


Exceptional service in the national interest

Overview of Physical Protection System (PPS) Evaluation

Felicia A. Durán, Ph.D.
Security Systems Analysis

Korea Hydro Nuclear Power/Central Research Institute
Daejon, South Korea – November 18-22, 2013


Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND 2013-XXXX

Presentation Outline

- System effectiveness measures
 - Probability of interruption (P_I)
 - Probability of neutralization (P_N)
 - System effectiveness (P_E)
- Physical protection system (PPS) evaluation approaches
 - Performance tests
 - Interruption analysis
 - Path analysis
 - Neutralization analysis
 - Scenario analysis

Design and Evaluation Process

Evaluation of PPS

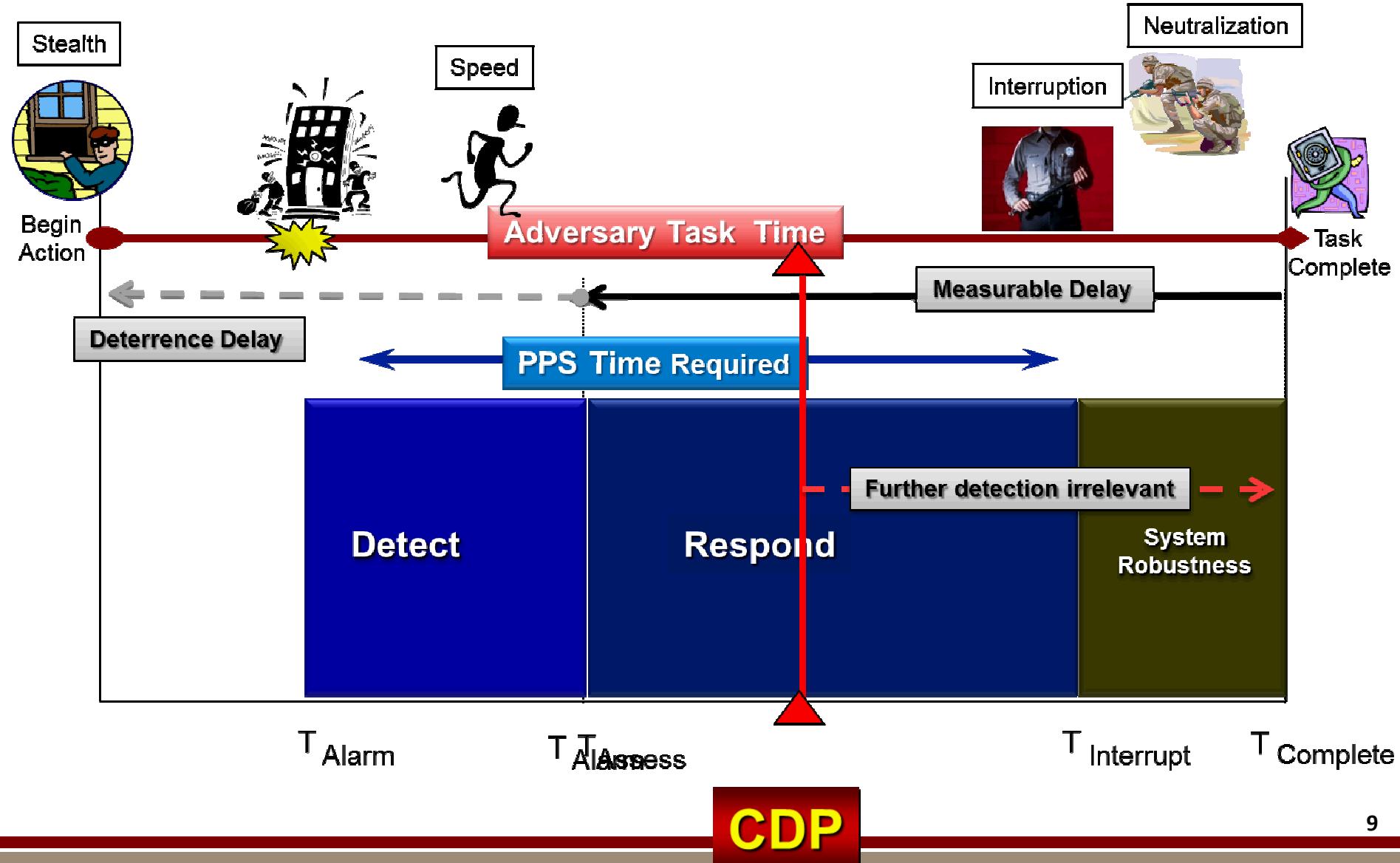
- Evaluation of effectiveness of PPS should
 - Verify that PPS satisfies requirements
 - Identify system deficiencies
 - Analyze system upgrades
 - Compare cost versus performance
 - Be repeated periodically
 - Threat may change
 - Facility and/or operations may change

Evaluation Objectives

- Competent authority / government agency and operators have complementary objectives for PPS evaluation
 - Meet regulatory and operator requirements
 - Self-assessment by operators
 - Inspection by competent authority
 - Periodic revalidation
 - Verify and/or improve PPS performance
 - Verify PPS satisfies requirements
 - Identify system deficiencies
 - Analyze system upgrades
 - Compare cost versus performance
 - Select and implement overall best option

System Effectiveness

- Probability of interruption (P_I)
 - Estimates likelihood of response force arriving before adversary completes attack
 - Estimates likelihood of response force interrupting adversary during attack
 - Based on *principle of timely detection* and *concept of critical detection point (CDP)*
- Probability of neutralization (P_N)
 - Estimates likelihood, given interruption, of response force preventing adversary from completing attack
 - Response force gains control of adversary
 - Response force must neutralize adversary following interruption for PPS to be effective
- System effectiveness (P_E)
 - Probability that the PPS will defeat the outsider threat: $P_E = P_I * P_N$
 - Probability that the PPS will defeat the insider threat: $P_E = P_I$


Performance Tests

- Objectives
 - Validate vulnerability analysis input data, assumptions, activities, results, and conclusions
 - Demonstrate protection capabilities
- Methodical means to
 - Establish or confirm performance level of PPS element
 - Test PPS elements over their planned range of operation
 - Provide statistical basis for calculation of P_E

Interruption Analysis: Terminology

- Principle of timely detection
 - Detection must occur early enough along the adversary path so that response force has time to interrupt adversary before task completion
- Critical detection point (CDP)
 - Last detection point along adversary path for which system response time is less than remaining adversary task time

Critical Detection Point

Interruption Analysis: Calculation

- P_I is the first factor in system effectiveness (P_E)
- P_I depends on relationship of two timelines
 - Adversary path and task timeline
 - PPS timeline in response to adversary
- Calculating P_I
 - At each element along the adversary pathway, there is a probability of detection (P_D) as well as a probability of non-detection (P_{ND})
 - P_{ND} of each detection point before the CDP is used to calculate the probability that the adversary will not be detected along each step along the path

Calculating P_I – Example

Adversary Task	Task Time (s)	Time Delay Remaining (s)	P_D
Penetrate fence	10	284	0.4
Run to outer door	25	274	0.02
Penetrate outer door	36	249	0.5
Run to wall	8	213	0.02
Penetrate wall	100	205	0.75
Run to inner door	6	105	0.02
Penetrate inner door	60	99	0.9
Run to target	4	39	0.0
Sabotage target	35	35	1.0

Total task time = 284 s

Response Force Time (RFT) = 200 s

Where is the CDP?

Calculating P_I – Example (cont.)

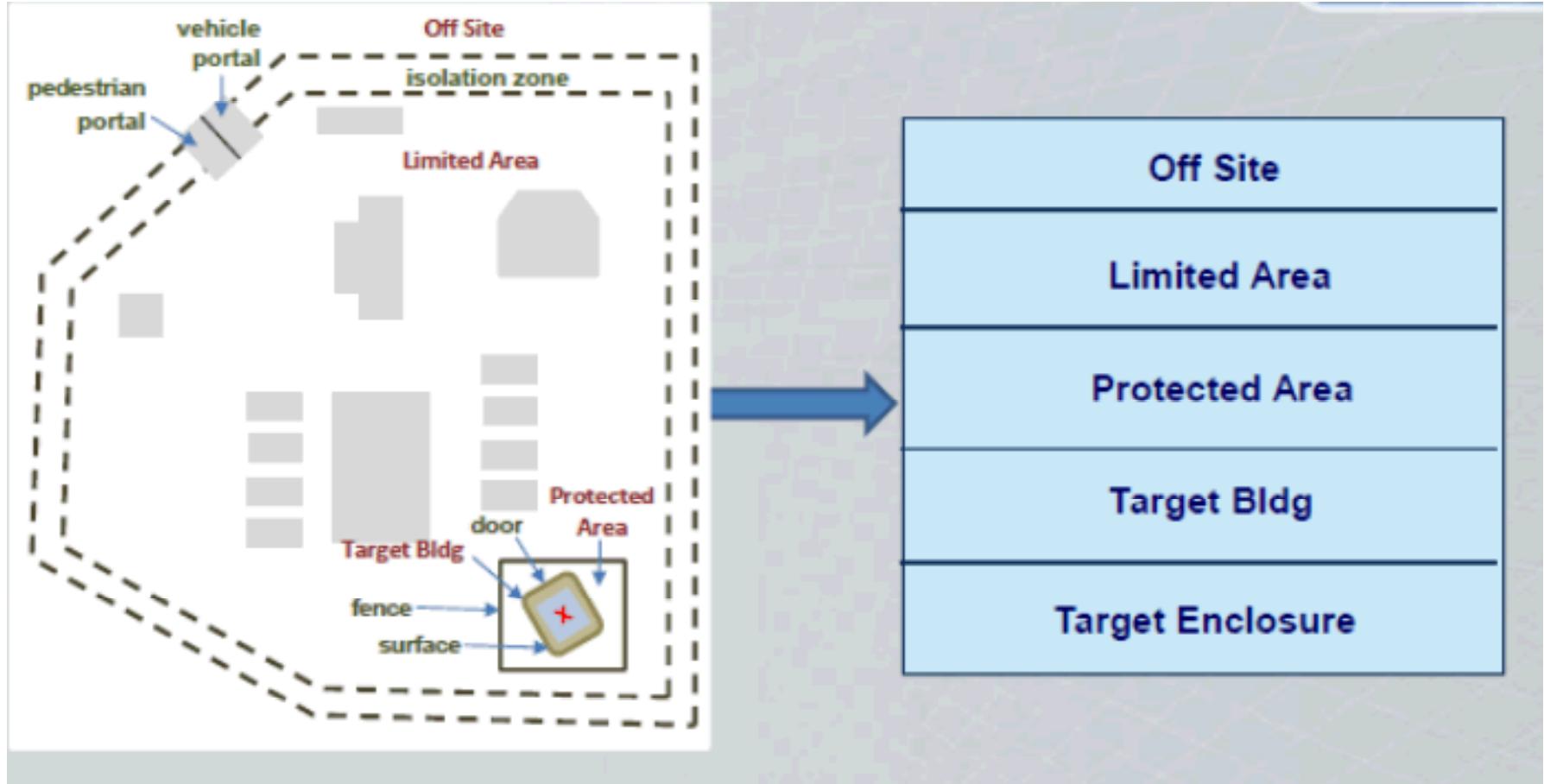
Adversary Task	Task Time (s)	Time Delay Remaining (s)	P_D
Penetrate fence	10	284	0.4
Run to outer door	25	274	0.02
Penetrate outer door	36	249	0.5
Run to wall	8	213	0.02
Penetrate wall	100	205	0.75
Run to inner door	6	105	0.02
Penetrate inner door	60	99	0.9
Run to target	4	39	0.0
Sabotage target	35	35	1.0

$$P_{ND} = (0.6) (0.098) (0.5) (0.98) = 0.29$$

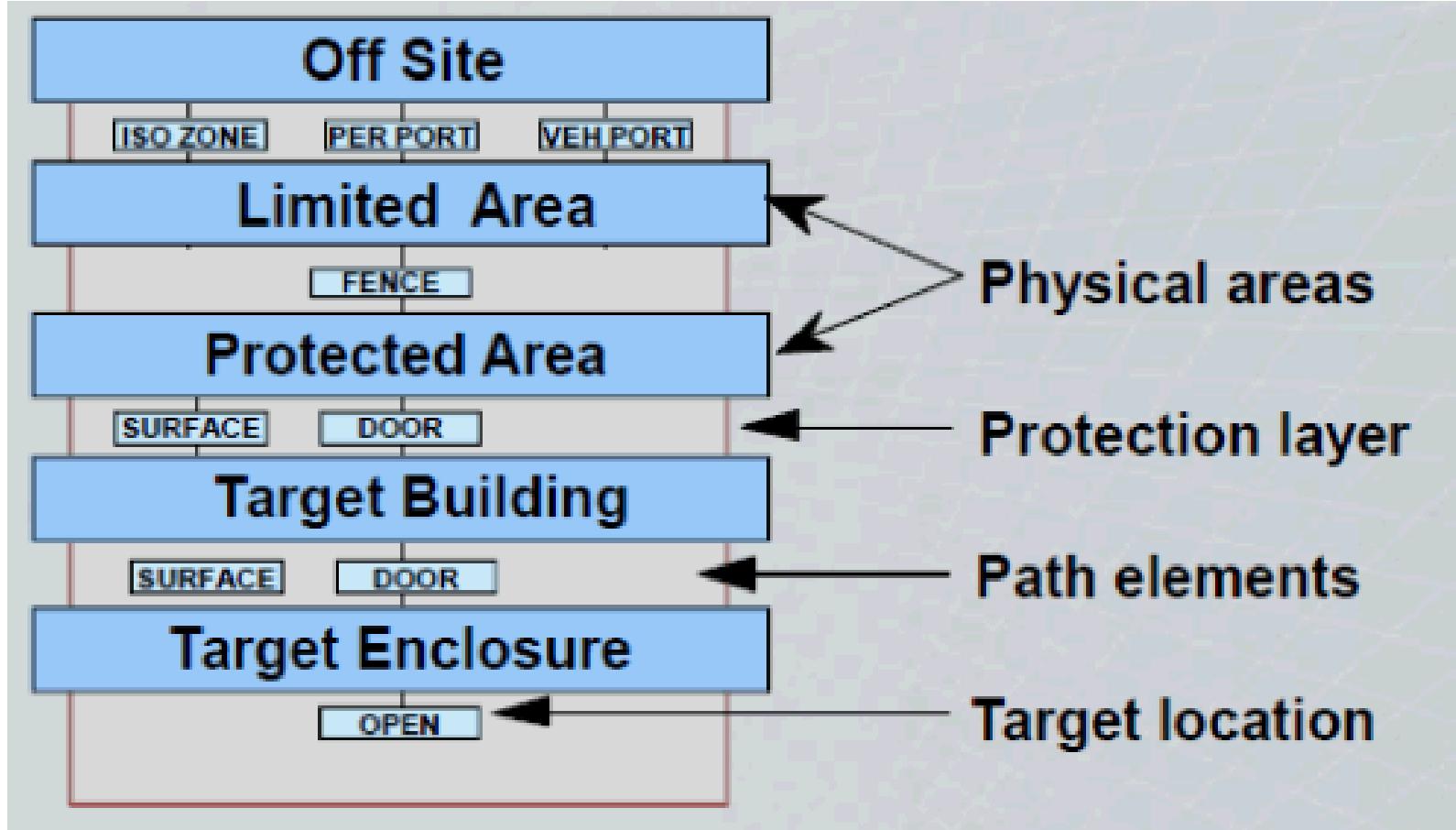
$$P_I = 1 - P_{ND} = 1 - 0.29 = 0.71$$

Path Analysis

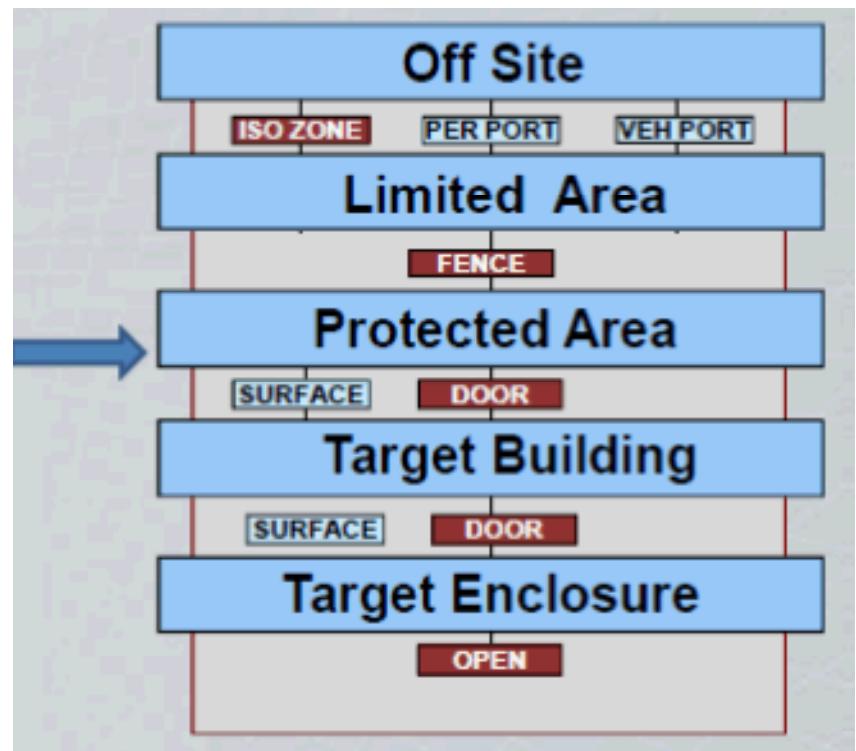
- Evaluation of P_I uses the concept of an adversary path for a defined threat against a security system
 - Adversary must traverse a path from starting point to target
 - Path is composed of a series of actions
 - Each action has a delay time based upon DBT capabilities
 - Detection may occur at various points along the path
 - Detection may be minimized or defeated based on DBT capabilities
 - Response Force may interrupt the adversary along the path
- Focus of path analysis is on most vulnerable paths – those with minimum P_I


Path Analysis

- Variety of tools available to estimate P_I
 - Single path models
 - Calculate P_I based on principle of timely detection and CDP
 - Single pathway analysis techniques are basis for multiple pathway analyses
 - Multipath tools
 - Calculate P_I for most vulnerable paths and generic scenarios of force, stealth, and deceit


Adversary Sequence Diagram

- Adversary sequence diagram (ASD) is a graphical representation of
 - Facility PPS
 - All adversary path
- PPS is modeled as concentric layers around adversary target
 - Each layer composed of PPS path elements
 - Each path element has associated detection and delay characteristics
 - Designed performance for initial path analysis
 - Degraded performance, if appropriate, for scenario analysis
 - Each adversary path traverses single path element in each protection layer


Adversary Sequence Diagram: Facility Model

Adversary Sequence Diagram: Facility Model

ASD Pathway

Path Analysis Tools

- Single path tools
 - Estimate of Adversary Sequence Interruption (EASI)
 - Very Simplified Estimate of Adversary Sequence Interruption (VEASI)
- Multipath tools
 - Analytic System and Software for Evaluating Safeguards and Security (ASSESS)
 - System Analysis of Vulnerability to Intrusion (SAVI)
 - Multipath VEASI

Neutralization Analysis

- P_N is second factor in system effectiveness (P_E)
- Definition of P_N
 - Probability, given interruption of the adversary by the response force, that the response force will gain physical control of the adversary
- Calculation
 - $P_N = N_{\text{wins}}/N_{\text{engagements}}$
 - $N_{\text{engagements}}$ is a statistically significant number of engagements
 - All engagements have the same initial conditions
 - Two possible outcomes per engagement: win or loss

Neutralization Analysis (cont.)

■ Terminology and Definitions

- Probability: Chance that a given event will occur; ratio of number of events with a specified outcome to total events in set
- Deterministic process: Outcomes are caused by preceding events or natural laws
- Stochastic process: Random process with various outcomes involving probability
- Engagements: Stochastic process in which two opposing forces use weapons and tactics to achieve a goal
- Win: Response force captures adversary or causes adversary to flee

Neutralization Analysis Tools

- Neutralization analysis requirements
 - Threat data
 - Response force data
 - Neutralization analysis
 - Scenarios of concern
 - Analysis methodology
- Wide range of methods to determine neutralization (PN)
 - Expert opinion
 - Simple calculations
 - Tabletop exercises
 - Complex simulations (STAGE)
 - Force-on-Force exercises
- Tradeoff between different methods is accuracy vs cost

Neutralization Analysis Tools (cont.)

- Examples of simple numerical methods
 - Data tables
 - Tabletop path analysis
 - Markov chains
 - Monte Carlo simulation
- Simulations
 - Tabletop exercises
 - Complex computer simulations
 - Force-on-Force exercises
- Actual engagements

Neutralization Accuracy

- Difficult to assess accuracy because rarely have actual battles to compare results
- Each neutralization methodology has strengths and weaknesses
- Use of several methods is better than use of any one alone

	Accuracy	Cost
Expert judgment	L – M	L
Simple numerical	M – H	L
Tabletop	L – M	L - M
Computer simulations	?	L – M
Force on Force (FOF)	L – M	?
Actual engagements	H	H

Scenario Analysis

- Methodology for analyzing system effectiveness, PE, by considering several alternative, possible, adversary attacks (scenarios)
 - Allows more detailed analysis of attack, defense, and results than path analysis
 - Focus is on identifying gaps in planning and vulnerabilities
- Purpose
 - Provides basis for confident evaluation of PPS performance
 - Helps create robust security plans to math and fully use capabilities of the PPS design

Scenario Analysis (cont.)

- Characteristics of a good scenario analysis
 - Credible
 - Internally consistent
 - Intellectually honest
 - Conservative
 - Transparent
 - Well documented
 - Vetted among stakeholders
 - Useful (i.e., provides useful results)

Scenario Analysis Methodology

1. Identify key objectives

- Determine PPS system effectiveness
- Determine response force effectiveness

2. Identify major drivers

- Numbers of adversaries, tactics, state of response force
- Facility state / PPS state

3. Collect necessary site data

- Detailed security plans and procedures
- Performance test results
- Detection and delay values developed for path analysis

Scenario Analysis Methodology (cont.)

4. Create a set of valid scenarios
5. Determine PE for each scenario using
 - Subject matter experts
 - Tabletops or simulations
6. Document scenario descriptions, results, conclusions

Quantitative vs Qualitative Analysis

- Qualitative Analysis
 - Uses subjective judgment based on non-quantifiable information
 - Assigns metric for system performance based on high, medium, or low performance
 - Typically involves subject matter expertise to assign a categorical description (acceptable/unacceptable)
- Quantitative Analysis
 - More rigorous method of analysis, typically used to assess facilities that protect very valuable assets
 - Uses numerical estimates of delay and/or response times
- Approach is more objective, not mathematically rigorous
 - Characterizing technology by testing is still the best technique to objectively assess security elements and systems

Potential Analysis Issues

- At some facilities, the number of individual targets may be too large to allow all to be analyzed
- Ways to reduce number of targets for analysis
 - Combine targets by type, protection, and location
 - Prioritize targets and analyze highest priority
 - Example: Based on adversary attractiveness or categorization

Conservative Estimate

- To avoid overestimating system effectiveness, we use two conservative yet credible assumptions
 - Assume adversary attacks most vulnerable path for operator (best path for the adversary)
 - For sabotage, entry path with lowest PI
 - For theft, combined entry/exit paths with lowest PI
 - Assume adversary defeat strategy for each path element is based on CDP
 - Prior to CDP, adversary uses stealth and/or deceit strategy
 - After CDP, adversary uses force strategy

Summary

- System effectiveness measures
 - Probability of interruption (P_I)
 - Probability of neutralization (P_N)
 - System effectiveness (P_E)
 - Outsider $P_E = P_I * P_N$
 - Insider $P_E = P_I$
- PPS evaluation approaches
 - Performance tests
 - Path analysis
 - Neutralization analysis
 - Scenario analysis