SAND2013- 97/60P

Sandia

Exceptional service in the national interest National
Laboratories

lon Trap Modeling And Simulation

14 November 2013

U.S. DEPARTMENT OF ' [y 1Y
v
r Sec

) YA XY
EN ERGY TN A mﬂ Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Natlonal Nuclear Securlty Administration Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP




Welcome and Introduction ) i,

= Topics:
= Visual Studio 2012 Quick Introduction
= Geometry
= Parametric Layout
= Meshing
= Boundary Element Solution
= Control Solution
= Flight Simulation

= Optimization




Sandia

Visual Studio Solutions )t

= Work is grouped by solutions
= Solutions consist of one or more projects

= Each solution may contain at most one executable project




Visual Studio Settings ii

= To set search path for header files:
= Select project in solution explorer
= Project->properties or right-click->properties

= |n left-hand pane, under Configuration Properties, select C/C++ then
general

= Add directory to Additional Include Directories
= To set search path for library (.lib) files:
= From property dialog, select Linker then general
= Add directory to Additional Library Directories
= To add alibrary as a dependency

= From property dialog, select Linker then input
= Type name of library in Additional Dependencies

Sandia
National
Laboratories



Visual Studio Compile and Debug @

= To build the current solution, press F7 or select BUILD->Build
Solution from the menu bar

= To start fresh, BUILD->Clean Solution then build the solution
again

= To start debugging a project, press F5 or click the play symbol
on the toolbar

= Set breakpoints by clicking to the left of the code in the gray
area

= F10single steps execution treating functions as atomic, F11 is
the same but enters functions as they are called




Visual Studio Directories ) =,

= Solutions are grouped into directories

= Each solution directory contains a Debug folder and a folder
for each project

= The debug folder contains all projects’ output files

= The project folders contain all source and header files




Visual Studio Hello World =

= To make a “Hello, World” project in visual studio:
= FILE->New Project...
= Select Win32 Console Application
= Type “HelloWorld” in the Name entry field at the bottom
= Click Finish
= Click Finish on the next dialog
= Write code to print “Hello, World” in _tmain function
= Build the solution
= Run either in debugger or bring up the DOS prompt

= Exercise: Write a Hello, World program

= Advanced: Make a solution with 2 projects: an executable and a static
library. Create format_hello in the static library and call from the .exe

= Advanced: Create a test project that tests format_hello in the solution

7




BEDraw ) g

= Displays various file formats in 3D:

= DoublePolygon files

= GDSII files

= Boundary Element Solution files

* Includes colored differentiation of charge densities

= Basic Movement

= Select polygons with shift+left click

= Unselect by “selecting” any blank region

= Zoom in on region with shift+drag

= Zoom in and out with mouse wheel




BEDraw Cont. rh) p_

= Basic Commands
= Return to initial view with ‘@’
= Show vertices with Vv’
= Show polygon information with ‘i’
= Rotate with ‘0’ and arrow keys
= Full listing under view->info
= Filtering
= Found in view->index filter...
= Display only data[0]==1 with “-1,1”
= Reset with “-2”

= Useful in GDSII files to view only certain layers

= Exercise



Geometry Library - DoublePolygon (&

= Foundin geometry.h

typedef struct DoublePolygon {
struct DoublePolygon *prev;
struct DoublePolygon *next;

int n; // number of vertices

int data[4]; // implementer-defined metadata

Point3D origin; // origin if local coordinates in global coordinates
Point3D x; // local x-axis unit vector in global coordinates
Point3Dy; // local y-axis unit vector in global coordinates
Point3D z; // local z-axis unit vector in global coordinates
Point3DPtr vertex; // vertices in local coordinates

} DoublePolygon, *DoublePolygonPtr;




Geometry Library ) £,

= Manipulating DoublePolygon lists
= AllocateDoublePolygon
= FreeDoublePolygonlList
= DoublePolygonLinkLists
= DoublePolygonUnlink
= SaveDoublePolygonlList

= ReadDoublePolygonlList




Geometry Library ) £,

= Transforming and Creating Polygons
= AllocateDoublePolygon

= DoublePolygonRectangle
= DoublePolygonRotate
= DoublePoygonListReflectAboutXAxis

= Exercise




National

Fixing Geometry Problems ) 5.

= |mperfections can cause issues during meshing

= Common types of problems

= Qverlapping polygons
= Qverlapping edges
= Nearly identical vertices

= Exercise




Sandia
m National
Laboratories

Parametric Layout - Parameter

= Found in BoundaryElement.h
= Read with ReadParametersFromTextFile

typedef struct Parameter {

char name[128]; // unique identifier for parameter
int fixed; // fixed = not used in optimization
double value; // current value

} Parameter, *ParameterPtr;




Parametric Layout ii

= Parametric Layout is used to programmatically generate a
layout that can be varied by input parameters.

= Useful for optimization and for performing studies without
redoing the layout

= Standard method is to write a function that creates a
DoublePolygon list from parameters.

= Exercise

Sandia
National
Laboratories




Meshing

= Start with cleaned up geometry — “Pre-model”
= Automated triangularization

= DoublePolygonListFractureLongestEdgeFracture
= DoublePolygonListShortestDivide
= Meshing Steps
1. Define region of interest by proximity to line segments

2. Determine target triangle size

3. Decide on rate of increase in triangle size with distance to line
segments

" Exercise

Sandia
National
Laboratories




Boundary Element Solution ) .

= Create matrix with BEMatrix

= |nvert matrix using GaussJordan

= The results may be cached using WriteBEArraySolutionVerl
= Time consuming for large matrices

= Exercise




Charge Vectors ) 5,

= The inverted matrix is not used directly

= For each electrode to which a voltage is applied, a basis
vector is created

= Potentials and Electric Fields may be computed as linear
combinations of basis vectors.

= Charge vectors are saved in same file as matrix, although
matrix is no longer necessary and may be omitted to save
space

= Code to create charge vectors not yet in library

" Exercise




Voltage Array )

= Computing electric potential is slow

= A good approximation can be efficiently produced by
sampling in a region and then interpolating

= These samples are stored in a voltage array file as a four-

dimensional array over the electrodes and all three spatial
dimensions

= ComputeVArrayMultithread works either from saved files or
data arrays

= Exercise




Control Solution )

= The control solution is a set of voltages applied to electrodes
over time used to move an ion from one point to another

= Function written in C, code is called from Python using ctypes

= Programmer required to give a time interval between DAC
steps and a position at each step

= Requires a text file mapping electrode indices in data[0] to
names in the output file

= Stores output in results folder. Folder must exist as a
subdirectory of the current directory

" Exercise




Flight Simulation )

= Flight Simulation uses entirely different techniques from the
control solution generation

= Good sanity check

= Shows exactly what the ion is doing under the given
conditions

= Qutput can be visualized using Plot
= Damping may be applied to simulate cooling
= |nputis a text file with many parameters

= Default values and explanations are provided in the exercise

" Exercise

21



Optimization Overview ) .

= Optimization requires a parametric layout
= Finds the best parameters satisfying some property

= Property is expressed as a cost function, a weighted sum of
various properties such as trap depth or trap frequency

= The literature contains many algorithms, we will use a simple
one called “slew”




Cost Function ) p_

= Cost function is used to evaluate the utility of a trap layout

= General form: Yw;V; where V are values derived from the
layout and w is a weight appropriated to each value

= Specific values must be computed by the user

= The function BEElectricField returns the electric field at a
point for a given basis vector and can be used to derive other
properties of the trap

" Exercise




Optimization — Slew pseudo code @

ket P = {pg, P1, ..., Pn—1} be the ordered list of parameters

let P:p; < q denote {py, ..., Pi-1, ¢, Pi+1, > Pn-1}
fori € [0..n — 1]

let C = {¢j:¢; = cost(P:p,; — qj)}

o < Di

d1 < Pi — Si

q2 < pi +5;

b CO-;CZ’ d — C2—2;1+C0

L seb
Q3<_p1+2_d

P =P:p; < Qargmax(c)
24




Optimization — Slew ) .

= Note that the pseudo code is partially declarative; that is we
define C before all its elements have values

= The algorithm iterates through all parameters, tries values in
a certain neighborhood, and computes a fourth value as a
guess of where the optimum may be given the current slope

= Exercise




Optimization — Putting it Together @&,

= Optimization Steps:

Optimization algorithm requests cost of a particular set of parameters
Cost function creates a trap layout from those parameters
Trap layout is meshed and run through the boundary element solver

The boundary element solution is used to compute properties of the
trap layout

The cost function returns a weighted sum of those factors

The optimizer requests a cost with a different set of parameters based
on the cost it received and the particulars of the algorithm

Final Exercise




