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Electrical Double Layers
© 5. Models:

v i
® ° = Poisson-Boltzmann Theory
S| @ © = Compact-Diffuse Layer Models
o ® g (Kilic et. al. 2007)
.'® e = Mean-Field Models (Borukhov et. al. 2000)
~2 A\ @ : D=¢E=¢,E+P
Comlpact Biﬁuse All layers modeled by bulk

dielects'c constant

We need better polarization models to depict reality.
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Objective

Macroscopic Electrostatics:

P?d% macroscopic free-charge density

DD > macroscopic electric displacement

I = macroscopic electric field
D=¢E+P=¢E E - dielectric constant

P > macroscopic polarization

How do we calculate “P” using Molecular
Information using Molecular Dynamics?



Today...

Polarization in terms of molecular positions and
charges.

Dielectric constant of bulk water

Application to electrical double layers

At the interface

= Water at the interface: Dipole and Quadrupole Moments




Microscopic-Macroscopic Connection
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Can we derive macroscopic electrostatics equation from
the microscopic electrostatics equation?

Mandadapu et. al. J. Chem. Phys. (2013);
Jackson, Classical Electrodynamics (1999)



Microscopic-Macroscopic Connection

Coarse- gralnmg Charge: Phase-space

dlstr/but'/on
pM(y,t) = @ )dI" dx

Coarse-graining function X

Properties of coarse-graining function :

fA(y—x)dx=1 / \
A(y-x)=0, when x €E0R

‘€ > V¥

Intermediate asymptotic length scale
A << R ymp g
supp o

Coarse-graining length scale

»
>

Mandadapu et. al. J. Chem. Phys. (2013) 6



Coarse-graining the microscopic electrostatic equation:

) , , , i Ak o ,
/R/ra.eoe(x,t)A(x—x)f(l‘,t)dl"dx — fR/rp (x )A(x — %) f(T, £)dT dx

Macroscopic electric field

D Bx.1) = | [ 7. )80c = x) £(D T

Macroscopic
free charge

Gives rise to dipole and quadrouple moments
when expanded around the center of mass of
the solvent molecule.



I n=1j=1 n=1 j=1
\ }
| |
Macroscopic Macroscopic
Dipole Moment Quadrupole Moment

Order of Coarse Graining function A:

" Constant: gives only dipole moment
" Linear: gives up to quadrupole moment

Mandadapu et. al., J. Chem. Phys (2013)



Scalable Implementation

| Processor 2

1
Compute all properties / Proportional weighing of

coarse-graining functions

Processor 1



Bulk Water-TIP3P(Validation)
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Polarization as a time average at the center of the Quad{‘upO/e moments are-neg//glble
simulation box for varying averaging length in the bulk. No surprises /



. Bulk Water-TIP3P(Validation)
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are supposed to be averaged with the
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3 Water at the Interfaces

=

e

"Applied field
>

1
A(z-z)= Al

I-|z-2/|
[

0 else

) if lz-z7'l<l

1
08
06 f
04t
0.2t

0 f—

-0.2 f

POLARIZATION [C/m?]

—0.4 |

-0.6 |

-0.8

20 15 0 -5 0 5 10 15
CHANNEL WIDTH [A]
Quadrupole moments are NOT

negligible at the interface !!!

20

» »F
» P » B

I A X
» ” p’

o
o

dipole —++
04} ¢ quadrupole - |

DIPOLE AND QUADRUPOLE MOMENT[C/mZ]

20 -15 -10 -5 0 5 10 15 20
CHANNEL WIDTH [A]

Dipole and Quadrupole Moments across the channel

width for averaging length of 0.05 Angstroms.
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Electrical Double Layer — Water +

€,
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POLARIZATION [C/m2]

POLARIZATION [C/m2]
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POLARIZATION [C/m?]
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Case Number

Case Number

Case Number

Electrical Double Layer — High Charge
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Lee, Templeton, Mandadapu, Zimmerman, J. Chem. Theor. Comp (2013)
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POLARIZATION [C/m2]

POLARIZATION [C/m2]

Electrical Double Layer — Anode
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Electrical Double Layer — Cathode
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POLARIZATION [C/m2]

POLARIZATION [C/m?]
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Conclusions

 Atheoretical and computational procedure in real space exists
now for systematically calculating the moments that contribute
to the total polarization vector.

* Intermediate asymptotic scales and therefore length scales of
the diffuse layers can be found for various concentrations and
surface charges.

* Quadrupole moments do not seem to be negligible at the
interface.
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Willard, Chandler (2008)

e Study polarization in stern, compact and diffuse layers.
 Develop new models by understanding hydrogen bonding

networks. -
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ELECTRIC FIELD [V/A]

Advantages - Polarization
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Electric fields do not converge even for large
number of timesteps !!!
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Coarse-graining the microscopic electrostatic equation:

/ / cepe(x',t)A(x — x') f(T',t)dldx" = /7‘2/I“pm(x',t)A(x —x') f(T, t)dI’ dx’

Macroscopic electric field
d

g oBOot) = [ [ 5,0 %) S(T, T ax

N,

Ny
;—x eE(x,t) = _/ |:Z‘b X — xj)*Z(ZQ'A(x—XH))] f(T, t)dl+
|:./. quj x]nA(x Xn) f(I‘ t)dI‘ / ~

n=1 j=1

\ }

Order of Coarse Graining function A: |

Macroscopic Macroscopic

DigvletAmsmegives only dipole mesaensole Moment
" Linear: gives up to quadrupole moment

pE—

Irving and Kirkwood, 1950 3



Descriptions of Scales
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V- e(x,t) = gpm(x,t) V-D(y,t) = p¥(y,t)



