Sandia
National
Laboratories

Exceptional

service
in the
national

interest

SAND2013- 9592P

Kitten Lightweight Kernel
Overview

October 28, 2013

Kevin Pedretti

Scalable System Software
Sandia National Laboratories
ktpedre@sandia.gov

7%, U.S. DEPARTMENT OF V/ VY A | ‘\Q,'\qg
ENERGY /IVA A
% ‘National Nuclear Security Administration
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Outline

= Background and Motivation

Kitten Overview

Basic architecture

Physical memory management
Kernel memory

Address spaces

Tasks / Threads

System calls

Networking + 1/0O

Getting started

Discussion

Sandia
National
Laboratories

Lightweight Kernel Timeline) .

% {3

2002 2008
Catamount Kitten Hobbes

2002 | . 2007

Virtuoso Palacios
2004 2007 2012
BG/L CNK " BG/P CNK “BG/QCNK ~~ FusedOS
2007
Cray Compute

Green = Open Source Node Linux

Red = Closed Source

= Kitten and CNK similar in concept = Palacios and Xen are both hypervisors
= Both support Linux APl subset and ABI = Palacios designed to be embeddable in a host OS,
compatibility Kitten or Linux
= Kitten targets x86 (ARM underway), = Palacios is designed for HPC, low overhead,
CNK targets PowerPC only predictable performance
= Kitten leverages Linux source code, = Palacios targets x86,
CNK uses no Linux source code Xen targets x86 + other archs

HPC OS Kernel Design Space

No Linux

General-Purpose

Full Complexity OS Kernel
o

Sandia
m National
Laboratories

Kernel.org

Cray CNL/
ZeptoOS

Full Linux

User-Space <
Compatibility

CNK

v

No OS Kernel

> User-Space
Compatibility

Motivation i) feat

e Catamount worked well, wanted LWK option to go forward
* Less cognitive load to modify and extend compared to Linux
* Lower bar to entry for HPC specific changes
* Point of comparison against CNL

* To add HPC-specific OS-level functionality to Lightweight Linux

* Must comprehend large Linux code base, complex interactions

* Must keep forward porting changes, or get them into Linux (high bar)

* Must work around issues not relevant to MPP-style HPC

(e.g., memory pinning, swapping large page fragmentation, OOM Kkiller)

* To add HPC-specific OS-level functionality to LWK

* Must comprehend smaller codebase compared to Linux

* Must convince smaller, HPC-oriented dev community (low bar)

* No need to work around issues that should not exist for MPP-style HPC
5

Sandia
’11 National

Laboratories

Overall Design Goals for Kitten

= Support DOE’s scientific computing application workloads
running on extreme-scale, distributed-memory
supercomputers with a tightly-coupled interconnect

= Provide partial Linux APl and ABI compatibility (fit in better)
= Add hypervisor capability for full OS support (LWK escape hatch)

= Maintain key characteristics of Catamount
= Build a good platform for HPC OS R&D

1 m ﬁ?n?igi?al
O u t I I n e Laboratories

= Background and Motivation

= Kitten Overview

= Basic architecture

= Physical memory management
= Kernel memory

= Address spaces

= Tasks / Threads

= System calls

= Networking +1/0

= Getting started

= Discussion

Kitten Basic Architecture

Sandia
"1 National _
Laboratories

Memory Management

Page 3

Page 2

Page 1

Page 0

LI '§ ; Guest
Maker ,S Standard % 0OS
(init_task)| &| Libca |ig FEED W
- <[i PG
libmpi.a : Page N+2
: . Page N+1
Policy Enforcer/HAL/Hypervisor 9
(Kitten Kernel + Palacios) Page N
Privileged Hardware Physical
Memory

= POSIX-like environment

= |nverted resource management

= Low noise OS noise/jitter

= Straight-forward network stack (e.g., no pinning)
= |ess to go wrong, easier to harden

Application
Virtual
Memory

Sandia
’11 National
Laboratories

Kitten Kernel Implementation

= Monolithic, C code, GNU toolchain, Kbuild configuration

= Supports x86-64 architecture only, porting to ARM
= Boots on standard PC architecture, Cray XT, and in virtual machines

= Boots identically to Linux (Kitten bzlmage and init_task)

"= Repurposes basic functionality from Linux
= Hardware bootstrap
= Basic OS kernel primitives (lists, locks, wait queues, etc.)
= Directory structure similar to Linux, arch dependent/independent dirs

= Custom address space management and task management

= User-level APl for managing physical memory, building virtual address
spaces
= User-level API for creating tasks, which run in virtual address spaces

National

Physical Memory Management)

= Region based physical memory management
= Broadly separated into two partitions

= Kmem (Kernel Memory)
= Umem (User Memory)
= Kmem pool is fixed at boot time, doesn’t grow
= Size configurable using kmem_size boot parameter, 64 MB by default
= Kernel uses kmem API to allocate kmem
= Umem pool managed by user-space
= PCT uses pmem syscall APl to allocate physical memory
= PCT uses aspace syscall APl to bind physical memory to address spaces

10

Pmem Region Data Structure) e,

(include/lwk/pmem.h and kernel/mm/pmem.c)

[**
* Defines a physical memory region.
*/

struct pmem region ({

paddr t start; /* region occupies: [start, end) */

paddr t end;

bool type is set; /* type field is set? */

pmem type t type; /* physical memory type */

bool numa node is set; /* numa node field is set? */

numa node t numa_ node; /* locality group region is in */

bool allocated is set; /* allocated field set? */

bool allocated; /* region is allocated? */

bool name is set; /* name field is set? */

char name[32]; /* human-readable name of region */
}i

11

Pmem Core API rh) e

(include/lwk/pmem.h and kernel/mm/pmem.c)

/* Add a region of physical memory to the pmem pool */
int pmem add(const struct pmem region *rgn);

/* Update a region of physical memory’s meta-data */
int pmem update(const struct pmem region *update);

/* Find a region of physical memory meeting given criteria */
int pmem query(const struct pmem region *query,
struct pmem region *result);

/* Atomically query and mark result as allocated */
int pmem alloc(size t size, size t alignment,
const struct pmem region *constraint,

struct pmem region *result);

12

Example Pmem Layout after Boot

= VMware guest configured for 4 GB memory:

Physical Memory Map:
[0000000000000000,
[0x00000000083000,
[0x0000000009£f000,
[0x00000000100000,
[0x00000000200000,
[0x00000000413000,
[0x00000004000000,
[0x00000004119000,
[0x00000006162000,
[0x000000bfee0000,
[0x000000b££00000,
[0x000000c0000000,
[0x00000100000000,

Total User-Level Managed Memory:

0x00000000083000)
0x0000000009£000)
0x00000000100000)
0x00000000200000)
0x00000000413000)
0x00000004000000)
0x00000004119000)
0x00000006162000)
0x000000bfee0000)
0x000000b£f£00000)
0x000000c0000000)
0x00000100000000)
0x00000140000000)

BOOTMEM
KMEM
BOOTMEM
KMEM
BOOTMEM
KMEM
INITRD
INIT TASK
UMEM
BOOTMEM
UMEM
BOOTMEM
UMEM

4192722944 bytes

numa node=0
numa_node=0
numa node=0
numa node=0
numa_node=0
numa node=0
numa node=0
numa_node=0
numa node=0
numa_node=0
numa node=0
numa node=0

numa_node=0

Sandia
National _
Laboratories

i\

(Bootstrap allocs)

(BIOS reserved)

(ACPI stuff)

(GPU, APIC, ...)

13

Kmem Management API) e,

(include/lwk/kmem.h and kernel/mm/kmem.c)

= All Kmem managed by buddy allocator (kernel/mm/buddy.c)
= Two ways to allocate:

= malloc() style give me some memory
= Page-based give me a contiguous set of pages

/* malloc-style, implementation tracks block size internally */
extern void *kmem alloc(size t size);
extern void kmem free(const void *addr);

/* page-based, caller must remember order of the block */
extern void *kmem get pages(unsigned long order);

extern void kmem free pages(const void *addr,
unsigned long order);

14

LWK Virtual Memory Regions) &

Laboratories

= User address space divided into virtual
memory regions:

Kernel = Text
= Data
= Heap
Stack Anonymous = Stack
mmap() grows . . .
down = Each region is mapped to a contiguous
region of physical memor
Heap l egion of physical memory
T = Straightforward to use large pages
UNIX Heap = PCT in user-space sets up the mapping
Grows Up . . .
Data = All virtual<->physical mapping occurs
before application starts
Text = No demand paging

= No memory oversubscription
15

National

Aspace Management) e

= Every execution context must execute in the context of a
virtual address space, represented by an aspace structure

= After bootstrap, all address spaces have the kernel mapped
into them above PAGE_OFFSET (matches Linux design)
= Avoids context switch to enter kernel
= Enables kernel threads to run without context switch

= Address space consists of non-overlapping virtual memory
regions, each mapped to physical memory or hardware

= Currently no support for handing page faults

" |n future may allow dynamic binding of virtual memory region
to a physical memory pool for NUMA first-touch support

16

Sandia
Aspace Core AP]) s
aboratories
(include/lwk/aspace.h and kernel/mm/aspace.c)
/* Create a new aspace, possibly with a specific ID */
int aspace create(id t id request, const char * name,
id t *id);

/* Create a virtual memory region */

int aspace add region(id t id, vaddr t start, size t extent,
vmflags t flags, vmpagesize t pagesz,
const char * name);

/* Map physical memory to a virtual memory region */
int aspace map pmem(id t id, paddr t pmem,
vaddr t start, size t extent);

/* Map one aspace into another at a given virtual address */
int aspace smartmap(id t src, id t dst,

vaddr_t start, size_t extent);
17

SMARTMAP Intra-node Optimization) S
Eliminates Unnecessary Memory Copies

= Basic Idea: Each process on a node maps the memory of
all other processes on the same node into its virtual SMARTMAP Example

address space Top of Virt

* Enables single copy process to process message passing Addr Space

(vs. multiple copies in traditional approaches) o
2
MPI Exchange (%
100000 n
. . CD
10000 Single copy impact o
©
z \ - T
= 1000 ad <_E
,é . ;/ , —:ortals-BTL C:U;
= ; , ortals -MTL ‘E
1 7 ——Shared Memory >
10 }: / /," —— SMARTMAP
SENEHRE PO P1 P2 P3
Message Size (Bytes) MPI Processes PO-P3

Sandia

Task Management) .

= Every context of execution represented by a task
= Each task is associated with an aspace

= Threads implemented as multiple tasks associated with the same aspace

= Each task represented by a kernel-level task_struct
= Contiguous block of memory including TCB and kernel stack (on x86)
= |ncludes the task’s permissions (uid/gid), fdtable, signal table, etc.

= Each CPU maintains its own task queue

= Runnable tasks schedule round-robin
= Blocked tasks are idle until they are woken up

19

Task Core API) o,

(include/lwk/task.h and kernel/task.c)

/* Specifies the initial conditions to use when spawning a new task */
typedef struct {

id t task id;

char task _name[32];

id t user id; // User ID the task executes as

id t group id; // Group ID the task executes as

id t aspace id; // Address space the task executes in

id t cpu_id; // CPU ID the task starts executing on

vaddr t stack ptr; // Ignored for kernel tasks

vaddr t entry point; // Instruction address to start executing at
int use args; // If true, pass args to entry point()
uintptr t arg[4]; // Args to pass to entry point()

} start state t;

/* Spawn a new task with the requested start_state */
int task create(const start state t *start state, id t *task id);

int task _switch cpus(id t cpu id); /* allow task to migrate itself */ 20

Sandia
’11 National
Laboratories

Thread Support

= Kitten user-applications link with standard GNU C library
(Glibc) and other system libraries installed on the Linux build
host

" Functionality added to Kitten to support Glibc NPTL POSIX
threads implementation
= Futex() system call (fast user-level locking)
= Basic support for signals
= Match Linux implementation of thread local storage
= Support for multiple threads per CPU core, preemptively scheduled

= Kitten supports runtimes that work on top of POSIX threads
= GOMP OpenMP implementation
= Qthreads
= Probably others with a little effort

21

Task Migration Optimization

Round-trip Task Migration Time

Operating System | (task on core A migrates to core B,
then back to A)

Linux 2.6.35.7 4435 ns

i\

Kitten 1.3 2630 ns

Core-switching performance between two cores in
the same Intel X5570 2.93 GHz processor. Kitten
achieves a speedup of 1.7 compared to Linux,
due to simpler implementation.

Sandia
National _
Laboratories

22

System Calls)

Laboratories

Kitten syscall calling conventions identical to Linux
Syscall linkage defined in include/arch/unistd.h

Syscall implementations
= Linux syscall implementations kernel/linux_syscalls/
= LWK specific syscalls kernel/lwk_syscalls

General approach is to implement a Linux syscall when we find
it is needed, only implement as much as is needed

Current Linux syscall list, some are —ENOSYS stubs:

= brk, clock_gettime, clone, close, dup2, dup, exit, exit_group, fcntl, fork,
fstat, futex, getcpu, getdents64, getdents, getgid, getgroups, getpid,
getrlimit, getrusage, gettid, gettimeofday, getuid, ioctl, kill, Iseek,
madvise, mkdir, mknod, mmap, mprotect, mremap, munmap,
nanosleep, open, pipe, poll, read, readlink, readv, rmdir, rt_sigaction,
rt_sigpending, rt_sigprocmask, sched getaffinity, sched yield,
sethostname, set_robust_list, set_tid address, settimeofday, stat, time,
uname, unlink, wait4, write, writev 23

Kitten Networking)

= Ported OFA Infiniband stack to Kitten a couple years ago

= |mplemented Linux compatibility layer to support OFA stack mostly
unmodified

= Turned out to be a lot of work
= Difficult to make work on new IB clusters different than ours

= Recently started focusing on Portals4
= Target Portals4 as lowest-level communication API

= For development purposes, create implementations over Ethernet and
(possibly) Infiniband

= Portals4 reference implementation currently running in VMware
virtual machine over VMware’s virtual e1000 Ethernet device

Enables Kitten virtual cluster development environment

24

Sandia
National
Kltten /O Forwarding Ll
Prototype implementation developed over summer
= |nfluenced by IOFSL, wanted to use SMARTMAP and Portals

= Supports local files for drivers, forwards all else off node

= Kitten reflects off-node 1/0 calls to user-space
= Avoids need for custom Glibc port
= Only control reflected, no extra buffer copies

User-level
Glibc iofwd
e =
App Panasas

. i ool
Other Bits
= Platform independent subsystems,
rely on arch code to implement

= ELF loader (mostly in user-space liblwk)

= PCl enumeration, reads/writes to config space

= Driver infrastructure

= |nterrupt registration and dispatch

= Cross-calls

= Timekeeping and timers

= Console subsystem

= KGDB support

= Job launch tool in progress
= Similar to yod, aprun, mpirun, etc... Linux tool for launching Kitten apps
= Uses Portals4 for all communication
= |mplements PMI over Portals4
= |/O forwarding layer over Portals4 26

Getting Started) i
hg clone https://code.coogle.com/p/kitten

make menuconfig (chose all defaults)
make isoimage

= Then boot the isoimage wherever you’d like

= You should see a bunch of boostrap messages detailing the hardware
detected

= Once boostrap is done, the “hello world” init task will be started

= You can replace the “hello world” init task with an ELF executable of your
choosing (e.g., an OpenMP application)

= All binaries must be statically linked

= By default, init_task limited to 64 MB. To increase, either edit
kernel/init_task.c to increase defaults or use kernel command line
options:

= jnit_heap_size=1073741824 init_stack_size=4194304 27

Backup) =,

Sandia Lightweight Kernel Targets

= Massively-parallel, distributed-memory machine with a
tightly-coupled network

= Scientific and engineering modeling and simulation
applications

= Enable fast message passing and execution
= Small memory footprint

= Deterministic performance

= Emphasize efficiency over functionality

= Maximize performance delivered to application

i\

Sandia
National _
Laboratories

29

Reasons for a Specialized Approach @#s.

= Maximize available compute node resources
= Maximize CPU cycles delivered to application
Minimize time taken away from application process
No daemons
No paging
Deterministic performance
= Maximize memory given to application
Minimize amount of memory used for message passing
Static kernel size
= Maximize memory bandwidth
Use large pages to avoid TLB misses, speed TLB miss handling
= Maximize network resources
Physically contiguous memory layout
Simple address translation and validation, no pinning

= |ncrease reliability
= Relatively small amount of source code
= Reduced complexity

= Support for small number of devices 30
-__

