
Photos placed in
horizontal position
with even amount

of white space
 between photos

and header

Photos placed in horizontal
position

with even amount of white
space

 between photos and header

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Ki#en	
 Lightweight	
 Kernel	

Overview	

October	
 28,	
 2013	

	

Kevin	
 Pedre;	

Scalable	
 System	
 SoAware	

Sandia	
 NaConal	
 Laboratories	

ktpedre@sandia.gov	

	

SAND2013-9592P

Outline	

§  Background	
 and	
 MoCvaCon	

§  Ki#en	
 Overview	

§  Basic	
 architecture	

§  Physical	
 memory	
 management	

§  Kernel	
 memory	

§  Address	
 spaces	

§  Tasks	
 /	
 Threads	

§  System	
 calls	

§  Networking	
 +	
 I/O	

§  Ge;ng	
 started	

§  Discussion	

Lightweight	
 Kernel	
 Timeline	

2004
BG/L CNK

2007
BG/P CNK

2012
BG/Q CNK FusedOS

2007
Palacios

2002
Catamount

Lightweight Kernel

Timeline

1990 – Sandia/UNM OS (SUNMOS), nCube-2

1991 – Linux 0.02

1993 – SUNMOS ported to Intel Paragon (1800 nodes)

1993 – SUNMOS experience used to design Puma

First implementation of Portals communication architecture

1994 – Linux 1.0

1995 – Puma ported to ASCI Red (4700 nodes)

Renamed Cougar, productized by Intel

1997 – Stripped down Linux used on Cplant (2000 nodes)

Difficult to port Puma to COTS Alpha server

Included Portals API

2002 – Cougar ported to ASC Red Storm (13000 nodes)

Renamed Catamount, productized by Cray

Host and NIC-based Portals implementations

2004 – IBM develops LWK (CNK) for BG/L/P (106000 nodes)

2005 – IBM & ETI develop LWK (C64) for Cyclops64 (160 cores/die)

Nov 2007 Top500

Top 10 System

Compute Processors:

82% run a LWK

2008
Kitten

2007
Cray Compute

Node Linux

Hobbes

Green = Open Source
Red = Closed Source

§  Ki#en	
 and	
 CNK	
 similar	
 in	
 concept	

§  Both	
 support	
 Linux	
 API	
 subset	
 and	
 ABI	

compaCbility	

§  Ki#en	
 targets	
 x86	
 (ARM	
 underway),	

CNK	
 targets	
 PowerPC	
 only	

§  Ki#en	
 leverages	
 Linux	
 source	
 code,	

CNK	
 uses	
 no	
 Linux	
 source	
 code	

2002
Virtuoso

§  Palacios	
 and	
 Xen	
 are	
 both	
 hypervisors	

§  Palacios	
 designed	
 to	
 be	
 embeddable	
 in	
 a	
 host	
 OS,	

Ki#en	
 or	
 Linux	

§  Palacios	
 is	
 designed	
 for	
 HPC,	
 low	
 overhead,	

predictable	
 performance	

§  Palacios	
 targets	
 x86,	

Xen	
 targets	
 x86	
 +	
 other	
 archs	

HPC	
 OS	
 Kernel	
 Design	
 Space	

4	

General-Purpose
Full Complexity OS Kernel

Full Linux
User-Space
Compatibility

No Linux
User-Space
Compatibility

No OS Kernel

Catamount

Kitten +
CNK

Kernel.org

Cray CNL /
ZeptoOS

OSv

MoCvaCon	

•  Catamount	
 worked	
 well,	
 wanted	
 LWK	
 opCon	
 to	
 go	
 forward	

•  Less	
 cogniCve	
 load	
 to	
 modify	
 and	
 extend	
 compared	
 to	
 Linux	

•  Lower	
 bar	
 to	
 entry	
 for	
 HPC	
 specific	
 changes	

•  Point	
 of	
 comparison	
 against	
 CNL	

•  To	
 add	
 HPC-­‐specific	
 OS-­‐level	
 funcConality	
 to	
 Lightweight	
 Linux	

•  Must	
 comprehend	
 large	
 Linux	
 code	
 base,	
 complex	
 interacCons	

•  Must	
 keep	
 forward	
 porCng	
 changes,	
 or	
 get	
 them	
 into	
 Linux	
 (high	
 bar)	

•  Must	
 work	
 around	
 issues	
 not	
 relevant	
 to	
 MPP-­‐style	
 HPC	

(e.g.,	
 memory	
 pinning,	
 swapping	
 large	
 page	
 fragmentaCon,	
 OOM	
 killer)	

•  To	
 add	
 HPC-­‐specific	
 OS-­‐level	
 funcConality	
 to	
 LWK	

•  Must	
 comprehend	
 smaller	
 codebase	
 compared	
 to	
 Linux	

•  Must	
 convince	
 smaller,	
 HPC-­‐oriented	
 dev	
 community	
 (low	
 bar)	

•  No	
 need	
 to	
 work	
 around	
 issues	
 that	
 should	
 not	
 exist	
 for	
 MPP-­‐style	
 HPC	

5	

Overall	
 Design	
 Goals	
 for	
 Ki#en	

§  Support	
 DOE’s	
 scien1fic	
 compu1ng	
 applica1on	
 workloads	

running	
 on	
 extreme-­‐scale,	
 distributed-­‐memory	

supercomputers	
 with	
 a	
 1ghtly-­‐coupled	
 interconnect	

§  Provide	
 parCal	
 Linux	
 API	
 and	
 ABI	
 compaCbility	
 (fit	
 in	
 be#er)	

§  Add	
 hypervisor	
 capability	
 for	
 full	
 OS	
 support	
 (LWK	
 escape	
 hatch)	

§  Maintain	
 key	
 characterisCcs	
 of	
 Catamount	

§  Build	
 a	
 good	
 pla`orm	
 for	
 HPC	
 OS	
 R&D	

6	

Outline	

§  Background	
 and	
 MoCvaCon	

§  Ki#en	
 Overview	

§  Basic	
 architecture	

§  Physical	
 memory	
 management	

§  Kernel	
 memory	

§  Address	
 spaces	

§  Tasks	
 /	
 Threads	

§  System	
 calls	

§  Networking	
 +	
 I/O	

§  Ge;ng	
 started	

§  Discussion	

A
pp

lic
at

io
n

1

libmpi.a

Standard
Libc.a

Guest
OS

G
ue

st
 O

S
1

Policy Enforcer/HAL/Hypervisor
(Kitten Kernel + Palacios)

Privileged Hardware

Policy
Maker

(init_task)

…

Page N+3

Page N+2

Page N+1

Page N

…

Page 3

Page 2

Page 1

Page 0

Physical
Memory

Application
Virtual

Memory

Memory Management

Ki#en	
 Basic	
 Architecture	

§  POSIX-like environment
§  Inverted resource management
§  Low noise OS noise/jitter
§  Straight-forward network stack (e.g., no pinning)
§  Less to go wrong, easier to harden

Ki#en	
 Kernel	
 ImplementaCon	

§  Monolithic,	
 C	
 code,	
 GNU	
 toolchain,	
 Kbuild	
 configuraCon	

§  Supports	
 x86-­‐64	
 architecture	
 only,	
 porCng	
 to	
 ARM	

§  Boots	
 on	
 standard	
 PC	
 architecture,	
 Cray	
 XT,	
 and	
 in	
 virtual	
 machines	

§  Boots	
 idenCcally	
 to	
 Linux	
 (Ki#en	
 bzImage	
 and	
 init_task)	

§  Repurposes	
 basic	
 funcConality	
 from	
 Linux	

§  Hardware	
 bootstrap	

§  Basic	
 OS	
 kernel	
 primiCves	
 (lists,	
 locks,	
 wait	
 queues,	
 etc.)	

§  Directory	
 structure	
 similar	
 to	
 Linux,	
 arch	
 dependent/independent	
 dirs	

§  Custom	
 address	
 space	
 management	
 and	
 task	
 management	

§  User-­‐level	
 API	
 for	
 managing	
 physical	
 memory,	
 building	
 virtual	
 address	

spaces	

§  User-­‐level	
 API	
 for	
 creaCng	
 tasks,	
 which	
 run	
 in	
 virtual	
 address	
 spaces	

9	

Physical	
 Memory	
 Management	

§  Region	
 based	
 physical	
 memory	
 management	

§  Broadly	
 separated	
 into	
 two	
 parCCons	

§  Kmem	
 (Kernel	
 Memory)	

§  Umem	
 (User	
 Memory)	

§  Kmem	
 pool	
 is	
 fixed	
 at	
 boot	
 Cme,	
 doesn’t	
 grow	

§  Size	
 configurable	
 using	
 kmem_size	
 boot	
 parameter,	
 64	
 MB	
 by	
 default	

§  Kernel	
 uses	
 kmem	
 API	
 to	
 allocate	
 kmem	

§  Umem	
 pool	
 managed	
 by	
 user-­‐space	

§  PCT	
 uses	
 pmem	
 syscall	
 API	
 to	
 allocate	
 physical	
 memory	

§  PCT	
 uses	
 aspace	
 syscall	
 API	
 to	
 bind	
 physical	
 memory	
 to	
 address	
 spaces	

10	

Pmem	
 Region	
 Data	
 Structure	

(include/lwk/pmem.h	
 and	
 kernel/mm/pmem.c)	

/**!
 * Defines a physical memory region.!
 */!

struct pmem_region {!
 paddr_t start; /* region occupies: [start, end) */!
 paddr_t end;!
!
 bool type_is_set; /* type field is set? */!
 pmem_type_t type; /* physical memory type */!

!
 bool numa_node_is_set; /* numa_node field is set? */!
 numa_node_t numa_node; /* locality group region is in */!
!
 bool allocated_is_set; /* allocated field set? */!
 bool allocated; /* region is allocated? */!

!
 bool name_is_set; /* name field is set? */!
 char name[32]; /* human-readable name of region */!
};!

	
 	
 11	

Pmem	
 Core	
 API	

(include/lwk/pmem.h	
 and	
 kernel/mm/pmem.c)	

/* Add a region of physical memory to the pmem pool */!
int pmem_add(const struct pmem_region *rgn);!
!
/* Update a region of physical memory’s meta-data */!
int pmem_update(const struct pmem_region *update);!
!
/* Find a region of physical memory meeting given criteria */!
int pmem_query(const struct pmem_region *query,!
 struct pmem_region *result);!
!
/* Atomically query and mark result as allocated */!
int pmem_alloc(size_t size, size_t alignment,!
 const struct pmem_region *constraint,!
 struct pmem_region *result);!

12	

Example	
 Pmem	
 Layout	
 aAer	
 Boot	

Physical Memory Map:!
 [0000000000000000, 0x00000000083000) BOOTMEM numa_node=0 (Bootstrap allocs)!
 [0x00000000083000, 0x0000000009f000) KMEM numa_node=0!

 [0x0000000009f000, 0x00000000100000) BOOTMEM numa_node=0 (BIOS reserved)!
 [0x00000000100000, 0x00000000200000) KMEM numa_node=0!
 [0x00000000200000, 0x00000000413000) BOOTMEM numa_node=0!
 [0x00000000413000, 0x00000004000000) KMEM numa_node=0!
 [0x00000004000000, 0x00000004119000) INITRD numa_node=0!
 [0x00000004119000, 0x00000006162000) INIT_TASK numa_node=0!

 [0x00000006162000, 0x000000bfee0000) UMEM numa_node=0!
 [0x000000bfee0000, 0x000000bff00000) BOOTMEM numa_node=0 (ACPI stuff)!
 [0x000000bff00000, 0x000000c0000000) UMEM numa_node=0!
 [0x000000c0000000, 0x00000100000000) BOOTMEM numa_node=0 (GPU, APIC, ...)!
 [0x00000100000000, 0x00000140000000) UMEM numa_node=0!
!

Total User-Level Managed Memory: 4192722944 bytes!

	
 13	

§  VMware	
 guest	
 configured	
 for	
 4	
 GB	
 memory:	

Kmem	
 Management	
 API	

(include/lwk/kmem.h	
 and	
 kernel/mm/kmem.c)	

§  All	
 Kmem	
 managed	
 by	
 buddy	
 allocator	
 (kernel/mm/buddy.c)	

§  Two	
 ways	
 to	
 allocate:	

§  malloc()	
 style 	
 give	
 me	
 some	
 memory	

§  Page-­‐based 	
 give	
 me	
 a	
 conCguous	
 set	
 of	
 pages	

/* malloc-style, implementation tracks block size internally */!
extern void *kmem_alloc(size_t size);!
extern void kmem_free(const void *addr);!
!
/* page-based, caller must remember order of the block */!
extern void *kmem_get_pages(unsigned long order);!
extern void kmem_free_pages(const void *addr,!
 unsigned long order);!
!

14	

LWK	
 Virtual	
 Memory	
 Regions	

§  User	
 address	
 space	
 divided	
 into	
 virtual	

memory	
 regions:	

§  Text	

§  Data	

§  Heap	

§  Stack	

§  Each	
 region	
 is	
 mapped	
 to	
 a	
 conCguous	

region	
 of	
 physical	
 memory	

§  Straigh`orward	
 to	
 use	
 large	
 pages	

§  PCT	
 in	
 user-­‐space	
 sets	
 up	
 the	
 mapping	

§  All	
 virtual<-­‐>physical	
 mapping	
 occurs	

before	
 applicaCon	
 starts	

§  No	
 demand	
 paging	

§  No	
 memory	
 oversubscripCon	

15	

Stack

Kernel

Heap

Data

Text

UNIX Heap
Grows Up

Anonymous
mmap() grows
down

Aspace	
 Management	

§  Every	
 execuCon	
 context	
 must	
 execute	
 in	
 the	
 context	
 of	
 a	

virtual	
 address	
 space,	
 represented	
 by	
 an	
 aspace	
 structure	

§  AAer	
 bootstrap,	
 all	
 address	
 spaces	
 have	
 the	
 kernel	
 mapped	

into	
 them	
 above	
 PAGE_OFFSET	
 (matches	
 Linux	
 design)	

§  Avoids	
 context	
 switch	
 to	
 enter	
 kernel	

§  Enables	
 kernel	
 threads	
 to	
 run	
 without	
 context	
 switch	

§  Address	
 space	
 consists	
 of	
 non-­‐overlapping	
 virtual	
 memory	

regions,	
 each	
 mapped	
 to	
 physical	
 memory	
 or	
 hardware	

§  Currently	
 no	
 support	
 for	
 handing	
 page	
 faults	

§  In	
 future	
 may	
 allow	
 dynamic	
 binding	
 of	
 virtual	
 memory	
 region	

to	
 a	
 physical	
 memory	
 pool	
 for	
 NUMA	
 first-­‐touch	
 support	

16	

Aspace	
 Core	
 API	

(include/lwk/aspace.h	
 and	
 kernel/mm/aspace.c)	

17	

/* Create a new aspace, possibly with a specific ID */ !
int aspace_create(id_t id_request, const char * name,!
 id_t *id); !
 !
/* Create a virtual memory region */ !
int aspace_add_region(id_t id, vaddr_t start, size_t extent, !
 vmflags_t flags, vmpagesize_t pagesz, !
 const char * name); !
!
/* Map physical memory to a virtual memory region */ !
int aspace_map_pmem(id_t id, paddr_t pmem, !
 vaddr_t start, size_t extent); !
!
/* Map one aspace into another at a given virtual address */ !
int aspace_smartmap(id_t src, id_t dst,!
 vaddr_t start, size_t extent); !

SMARTMAP	
 Intra-­‐node	
 Op1miza1on	

Eliminates	
 Unnecessary	
 Memory	
 Copies	

§  Basic	
 Idea:	
 Each	
 process	
 on	
 a	
 node	
 maps	
 the	
 memory	
 of	

all	
 other	
 processes	
 on	
 the	
 same	
 node	
 into	
 its	
 virtual	

address	
 space	

§  Enables	
 single	
 copy	
 process	
 to	
 process	
 message	
 passing	

(vs.	
 mul1ple	
 copies	
 in	
 tradi1onal	
 approaches)	

P0 P1 P2 P3

P0 P0 P0 P0

P1 P1 P1 P1

P2 P2 P2 P2

P3 P3 P3 P3

P0 P1 P2 P3

MPI Processes P0-P3
Vi

rtu
al

 A
dd

re
ss

 S
pa

ce

Virt Addr 0

Top of Virt
Addr Space

SMARTMAP Example

Single copy impact

MPI Exchange

Task	
 Management	

§  Every	
 context	
 of	
 execuCon	
 represented	
 by	
 a	
 task	

§  Each	
 task	
 is	
 associated	
 with	
 an	
 aspace	

§  Threads	
 implemented	
 as	
 mulCple	
 tasks	
 associated	
 with	
 the	
 same	
 aspace	

§  Each	
 task	
 represented	
 by	
 a	
 kernel-­‐level	
 task_struct	

§  ConCguous	
 block	
 of	
 memory	
 including	
 TCB	
 and	
 kernel	
 stack	
 (on	
 x86)	

§  Includes	
 the	
 task’s	
 permissions	
 (uid/gid),	
 fdtable,	
 signal	
 table,	
 etc.	

§  Each	
 CPU	
 maintains	
 its	
 own	
 task	
 queue	

§  Runnable	
 tasks	
 schedule	
 round-­‐robin	

§  Blocked	
 tasks	
 are	
 idle	
 unCl	
 they	
 are	
 woken	
 up	

19	

Task	
 Core	
 API	

(include/lwk/task.h	
 and	
 kernel/task.c)	

20	

/* Specifies the initial conditions to use when spawning a new task */!
typedef struct {!
 id_t task_id; !

 char task_name[32]; !
 !
 id_t user_id; // User ID the task executes as !
 id_t group_id; // Group ID the task executes as !
 id_t aspace_id; // Address space the task executes in !
 id_t cpu_id; // CPU ID the task starts executing on !

!
 vaddr_t stack_ptr; // Ignored for kernel tasks !
 vaddr_t entry_point; // Instruction address to start executing at !
!
 int use_args; // If true, pass args to entry_point()!
 uintptr_t arg[4]; // Args to pass to entry_point()!

} start_state_t;!
 !
/* Spawn a new task with the requested start_state */!
int task_create(const start_state_t *start_state, id_t *task_id); !
!
int task_switch_cpus(id_t cpu_id); /* allow task to migrate itself */!

Thread	
 Support	

§  Ki#en	
 user-­‐applicaCons	
 link	
 with	
 standard	
 GNU	
 C	
 library	

(Glibc)	
 and	
 other	
 system	
 libraries	
 installed	
 on	
 the	
 Linux	
 build	

host	

§  FuncConality	
 added	
 to	
 Ki#en	
 to	
 support	
 Glibc	
 NPTL	
 POSIX	

threads	
 implementaCon	

§  Futex()	
 system	
 call	
 (fast	
 user-­‐level	
 locking)	

§  Basic	
 support	
 for	
 signals	

§  Match	
 Linux	
 implementaCon	
 of	
 thread	
 local	
 storage	

§  Support	
 for	
 mulCple	
 threads	
 per	
 CPU	
 core,	
 preempCvely	
 scheduled	

§  Ki#en	
 supports	
 runCmes	
 that	
 work	
 on	
 top	
 of	
 POSIX	
 threads	

§  GOMP	
 OpenMP	
 implementaCon	

§  Qthreads	

§  Probably	
 others	
 with	
 a	
 li#le	
 effort	

21	

Task	
 MigraCon	
 OpCmizaCon	

22	

Operating System
Round-trip Task Migration Time

(task on core A migrates to core B,
then back to A)

Linux 2.6.35.7 4435 ns

Kitten 1.3 2630 ns

Core-switching performance between two cores in
the same Intel X5570 2.93 GHz processor. Kitten

achieves a speedup of 1.7 compared to Linux,
due to simpler implementation.

System	
 Calls	

§  Ki#en	
 syscall	
 calling	
 convenCons	
 idenCcal	
 to	
 Linux	

§  Syscall	
 linkage	
 defined	
 in	
 include/arch/unistd.h	

§  Syscall	
 implementaCons	

§  Linux	
 syscall	
 implementaCons 	
 kernel/linux_syscalls/	

§  LWK	
 specific	
 syscalls 	
 	
 kernel/lwk_syscalls	

§  General	
 approach	
 is	
 to	
 implement	
 a	
 Linux	
 syscall	
 when	
 we	
 find	

it	
 is	
 needed,	
 only	
 implement	
 as	
 much	
 as	
 is	
 needed	

§  Current	
 Linux	
 syscall	
 list,	
 some	
 are	
 –ENOSYS	
 stubs:	

§  brk,	
 clock_ge;me,	
 clone,	
 close,	
 dup2,	
 dup,	
 exit,	
 exit_group,	
 fcntl,	
 fork,	

fstat,	
 futex,	
 getcpu,	
 getdents64,	
 getdents,	
 getgid,	
 getgroups,	
 getpid,	

getrlimit,	
 getrusage,	
 ge;d,	
 ge;meofday,	
 getuid,	
 ioctl,	
 kill,	
 lseek,	

madvise,	
 mkdir,	
 mknod,	
 mmap,	
 mprotect,	
 mremap,	
 munmap,	

nanosleep,	
 open,	
 pipe,	
 poll,	
 read,	
 readlink,	
 readv,	
 rmdir,	
 rt_sigacCon,	

rt_sigpending,	
 rt_sigprocmask,	
 sched_getaffinity,	
 sched_yield,	

sethostname,	
 set_robust_list,	
 set_Cd_address,	
 se;meofday,	
 stat,	
 Cme,	

uname,	
 unlink,	
 wait4,	
 write,	
 writev	
 23	

Ki#en	
 Networking	

§  Ported	
 OFA	
 Infiniband	
 stack	
 to	
 Ki#en	
 a	
 couple	
 years	
 ago	

§  Implemented	
 Linux	
 compaCbility	
 layer	
 to	
 support	
 OFA	
 stack	
 mostly	

unmodified	

§  Turned	
 out	
 to	
 be	
 a	
 lot	
 of	
 work	

§  Difficult	
 to	
 make	
 work	
 on	
 new	
 IB	
 clusters	
 different	
 than	
 ours	

§  Recently	
 started	
 focusing	
 on	
 Portals4	

§  Target	
 Portals4	
 as	
 lowest-­‐level	
 communicaCon	
 API	

§  For	
 development	
 purposes,	
 create	
 implementaCons	
 over	
 Ethernet	
 and	

(possibly)	
 Infiniband	

§  Portals4	
 reference	
 implementaCon	
 currently	
 running	
 in	
 VMware	

virtual	
 machine	
 over	
 VMware’s	
 virtual	
 e1000	
 Ethernet	
 device	

§  Enables	
 Ki#en	
 virtual	
 cluster	
 development	
 environment	

24	

Ki#en	
 I/O	
 Forwarding	

§  Prototype	
 implementaCon	
 developed	
 over	
 summer	

§  Influenced	
 by	
 IOFSL,	
 wanted	
 to	
 use	
 SMARTMAP	
 and	
 Portals	

§  Supports	
 local	
 files	
 for	
 drivers,	
 forwards	
 all	
 else	
 off	
 node	

§  Ki#en	
 reflects	
 off-­‐node	
 I/O	
 calls	
 to	
 user-­‐space	

§  Avoids	
 need	
 for	
 custom	
 Glibc	
 port	

§  Only	
 control	
 reflected,	
 no	
 extra	
 buffer	
 copies	

25	

Kitten

 App

Linux

User-level

Glibc I/O Daemon

Lustre

Panasas

NFS

iofwd

write()

Buffer

Other	
 Bits	

§  Pla`orm	
 independent	
 subsystems,	

rely	
 on	
 arch	
 code	
 to	
 implement	

§  ELF	
 loader	
 (mostly	
 in	
 user-­‐space	
 liblwk)	

§  PCI	
 enumeraCon,	
 reads/writes	
 to	
 config	
 space	

§  Driver	
 infrastructure	

§  Interrupt	
 registraCon	
 and	
 dispatch	

§  Cross-­‐calls	

§  Timekeeping	
 and	
 Cmers	

§  Console	
 subsystem	

§  KGDB	
 support	

§  Job	
 launch	
 tool	
 in	
 progress	

§  Similar	
 to	
 yod,	
 aprun,	
 mpirun,	
 etc…	
 Linux	
 tool	
 for	
 launching	
 Ki#en	
 apps	

§  Uses	
 Portals4	
 for	
 all	
 communicaCon	

§  Implements	
 PMI	
 over	
 Portals4	

§  I/O	
 forwarding	
 layer	
 over	
 Portals4	
 26	

Ge;ng	
 Started	

hg	
 clone	
 h#ps://code.google.com/p/ki#en	

make	
 menuconfig	
 	
 	
 	
 (chose	
 all	
 defaults)	

make	
 isoimage	

	

§  Then	
 boot	
 the	
 isoimage	
 wherever	
 you’d	
 like	

§  You	
 should	
 see	
 a	
 bunch	
 of	
 boostrap	
 messages	
 detailing	
 the	
 hardware	

detected	

§  Once	
 boostrap	
 is	
 done,	
 the	
 “hello	
 world”	
 init	
 task	
 will	
 be	
 started	

§  You	
 can	
 replace	
 the	
 “hello	
 world”	
 init	
 task	
 with	
 an	
 ELF	
 executable	
 of	
 your	

choosing	
 (e.g.,	
 an	
 OpenMP	
 applicaCon)	

§  All	
 binaries	
 must	
 be	
 staCcally	
 linked	

§  By	
 default,	
 init_task	
 limited	
 to	
 64	
 MB.	
 	
 To	
 increase,	
 either	
 edit	
 	

kernel/init_task.c	
 	
 to	
 increase	
 defaults	
 or	
 use	
 kernel	
 command	
 line	

opCons:	

§  init_heap_size=1073741824	
 init_stack_size=4194304	

	

27	

Backup	

28	

Sandia	
 Lightweight	
 Kernel	
 Targets	

§  Massively-­‐parallel,	
 distributed-­‐memory	
 machine	
 with	
 a	

Cghtly-­‐coupled	
 network	

§  ScienCfic	
 and	
 engineering	
 modeling	
 and	
 simulaCon	

applicaCons	

§  Enable	
 fast	
 message	
 passing	
 and	
 execuCon	

§  Small	
 memory	
 footprint	

§  DeterminisCc	
 performance	

§  Emphasize	
 efficiency	
 over	
 funcConality	

§  Maximize	
 performance	
 delivered	
 to	
 applicaCon	

29	

Reasons	
 for	
 a	
 Specialized	
 Approach	

§  Maximize	
 available	
 compute	
 node	
 resources	

§  Maximize	
 CPU	
 cycles	
 delivered	
 to	
 applicaCon	

§  Minimize	
 Cme	
 taken	
 away	
 from	
 applicaCon	
 process	

§  No	
 daemons	

§  No	
 paging	

§  DeterminisCc	
 performance	

§  Maximize	
 memory	
 given	
 to	
 applicaCon	

§  Minimize	
 amount	
 of	
 memory	
 used	
 for	
 message	
 passing	

§  StaCc	
 kernel	
 size	

§  Maximize	
 memory	
 bandwidth	

§  Use	
 large	
 pages	
 to	
 avoid	
 TLB	
 misses,	
 speed	
 TLB	
 miss	
 handling	

§  Maximize	
 network	
 resources	

§  Physically	
 conCguous	
 memory	
 layout	

§  Simple	
 address	
 translaCon	
 and	
 validaCon,	
 no	
 pinning	

§  Increase	
 reliability	

§  RelaCvely	
 small	
 amount	
 of	
 source	
 code	

§  Reduced	
 complexity	

§  Support	
 for	
 small	
 number	
 of	
 devices	
 30	

