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Lightweight	
  Kernel	
  Timeline	
  

2004 
BG/L CNK 

2007 
BG/P CNK 

2012 
BG/Q CNK FusedOS 

2007 
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2002 
Catamount 

 

Lightweight Kernel

Timeline

1990 – Sandia/UNM OS (SUNMOS), nCube-2

1991 – Linux 0.02

1993 – SUNMOS ported to Intel Paragon (1800 nodes)

1993 – SUNMOS experience used to design Puma

First implementation of Portals communication architecture

1994 – Linux 1.0

1995 – Puma ported to ASCI Red (4700 nodes)

Renamed Cougar, productized by Intel

1997 – Stripped down Linux used on Cplant (2000 nodes)

Difficult to port Puma to COTS Alpha server

Included Portals API

2002 – Cougar ported to ASC Red Storm (13000 nodes)

Renamed Catamount, productized by Cray

Host and NIC-based Portals implementations

2004 – IBM develops LWK (CNK) for BG/L/P (106000 nodes)

2005 – IBM & ETI develop LWK (C64) for Cyclops64 (160 cores/die)

Nov 2007 Top500

Top 10 System

Compute Processors:

82% run a LWK

2008 
Kitten 

2007 
Cray Compute 

Node Linux 

Hobbes 

Green = Open Source 
Red    = Closed Source 

§  Ki#en	
  and	
  CNK	
  similar	
  in	
  concept	
  
§  Both	
  support	
  Linux	
  API	
  subset	
  and	
  ABI	
  

compaCbility	
  
§  Ki#en	
  targets	
  x86	
  (ARM	
  underway),	
  

CNK	
  targets	
  PowerPC	
  only	
  
§  Ki#en	
  leverages	
  Linux	
  source	
  code,	
  

CNK	
  uses	
  no	
  Linux	
  source	
  code	
  

2002 
Virtuoso 

§  Palacios	
  and	
  Xen	
  are	
  both	
  hypervisors	
  
§  Palacios	
  designed	
  to	
  be	
  embeddable	
  in	
  a	
  host	
  OS,	
  

Ki#en	
  or	
  Linux	
  
§  Palacios	
  is	
  designed	
  for	
  HPC,	
  low	
  overhead,	
  

predictable	
  performance	
  
§  Palacios	
  targets	
  x86,	
  

Xen	
  targets	
  x86	
  +	
  other	
  archs	
  



HPC	
  OS	
  Kernel	
  Design	
  Space	
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General-Purpose 
Full Complexity OS Kernel 

Full Linux 
User-Space 
Compatibility 

No Linux 
User-Space 
Compatibility 

No OS Kernel 

Catamount 

Kitten + 
CNK 

Kernel.org 

Cray CNL / 
ZeptoOS 

OSv 



MoCvaCon	
  
•  Catamount	
  worked	
  well,	
  wanted	
  LWK	
  opCon	
  to	
  go	
  forward	
  

•  Less	
  cogniCve	
  load	
  to	
  modify	
  and	
  extend	
  compared	
  to	
  Linux	
  
•  Lower	
  bar	
  to	
  entry	
  for	
  HPC	
  specific	
  changes	
  
•  Point	
  of	
  comparison	
  against	
  CNL	
  

•  To	
  add	
  HPC-­‐specific	
  OS-­‐level	
  funcConality	
  to	
  Lightweight	
  Linux	
  
•  Must	
  comprehend	
  large	
  Linux	
  code	
  base,	
  complex	
  interacCons	
  
•  Must	
  keep	
  forward	
  porCng	
  changes,	
  or	
  get	
  them	
  into	
  Linux	
  (high	
  bar)	
  
•  Must	
  work	
  around	
  issues	
  not	
  relevant	
  to	
  MPP-­‐style	
  HPC	
  

(e.g.,	
  memory	
  pinning,	
  swapping	
  large	
  page	
  fragmentaCon,	
  OOM	
  killer)	
  

•  To	
  add	
  HPC-­‐specific	
  OS-­‐level	
  funcConality	
  to	
  LWK	
  
•  Must	
  comprehend	
  smaller	
  codebase	
  compared	
  to	
  Linux	
  
•  Must	
  convince	
  smaller,	
  HPC-­‐oriented	
  dev	
  community	
  (low	
  bar)	
  
•  No	
  need	
  to	
  work	
  around	
  issues	
  that	
  should	
  not	
  exist	
  for	
  MPP-­‐style	
  HPC	
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Overall	
  Design	
  Goals	
  for	
  Ki#en	
  

§  Support	
  DOE’s	
  scien1fic	
  compu1ng	
  applica1on	
  workloads	
  
running	
  on	
  extreme-­‐scale,	
  distributed-­‐memory	
  
supercomputers	
  with	
  a	
  1ghtly-­‐coupled	
  interconnect	
  

§  Provide	
  parCal	
  Linux	
  API	
  and	
  ABI	
  compaCbility	
  (fit	
  in	
  be#er)	
  
§  Add	
  hypervisor	
  capability	
  for	
  full	
  OS	
  support	
  (LWK	
  escape	
  hatch)	
  
§  Maintain	
  key	
  characterisCcs	
  of	
  Catamount	
  
§  Build	
  a	
  good	
  pla`orm	
  for	
  HPC	
  OS	
  R&D	
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Ki#en	
  Basic	
  Architecture	
  

§  POSIX-like environment 
§  Inverted resource management 
§  Low noise OS noise/jitter 
§  Straight-forward network stack (e.g., no pinning) 
§  Less to go wrong, easier to harden 



Ki#en	
  Kernel	
  ImplementaCon	
  
§  Monolithic,	
  C	
  code,	
  GNU	
  toolchain,	
  Kbuild	
  configuraCon	
  
§  Supports	
  x86-­‐64	
  architecture	
  only,	
  porCng	
  to	
  ARM	
  

§  Boots	
  on	
  standard	
  PC	
  architecture,	
  Cray	
  XT,	
  and	
  in	
  virtual	
  machines	
  
§  Boots	
  idenCcally	
  to	
  Linux	
  (Ki#en	
  bzImage	
  and	
  init_task)	
  

§  Repurposes	
  basic	
  funcConality	
  from	
  Linux	
  
§  Hardware	
  bootstrap	
  
§  Basic	
  OS	
  kernel	
  primiCves	
  (lists,	
  locks,	
  wait	
  queues,	
  etc.)	
  
§  Directory	
  structure	
  similar	
  to	
  Linux,	
  arch	
  dependent/independent	
  dirs	
  

§  Custom	
  address	
  space	
  management	
  and	
  task	
  management	
  
§  User-­‐level	
  API	
  for	
  managing	
  physical	
  memory,	
  building	
  virtual	
  address	
  

spaces	
  
§  User-­‐level	
  API	
  for	
  creaCng	
  tasks,	
  which	
  run	
  in	
  virtual	
  address	
  spaces	
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Physical	
  Memory	
  Management	
  

§  Region	
  based	
  physical	
  memory	
  management	
  
§  Broadly	
  separated	
  into	
  two	
  parCCons	
  

§  Kmem	
  (Kernel	
  Memory)	
  
§  Umem	
  (User	
  Memory)	
  

§  Kmem	
  pool	
  is	
  fixed	
  at	
  boot	
  Cme,	
  doesn’t	
  grow	
  
§  Size	
  configurable	
  using	
  kmem_size	
  boot	
  parameter,	
  64	
  MB	
  by	
  default	
  
§  Kernel	
  uses	
  kmem	
  API	
  to	
  allocate	
  kmem	
  

§  Umem	
  pool	
  managed	
  by	
  user-­‐space	
  
§  PCT	
  uses	
  pmem	
  syscall	
  API	
  to	
  allocate	
  physical	
  memory	
  
§  PCT	
  uses	
  aspace	
  syscall	
  API	
  to	
  bind	
  physical	
  memory	
  to	
  address	
  spaces	
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Pmem	
  Region	
  Data	
  Structure	
  
(include/lwk/pmem.h	
  and	
  kernel/mm/pmem.c)	
  

/**!
 * Defines a physical memory region.!
 */!

struct pmem_region {!
        paddr_t         start;             /* region occupies: [start, end) */!
        paddr_t         end;!
!
        bool            type_is_set;       /* type field is set? */!
        pmem_type_t     type;              /* physical memory type */!

!
        bool            numa_node_is_set;  /* numa_node field is set? */!
        numa_node_t     numa_node;         /* locality group region is in */!
!
        bool            allocated_is_set;  /* allocated field set? */!
        bool            allocated;         /* region is allocated? */!

!
        bool            name_is_set;       /* name field is set? */!
        char            name[32];          /* human-readable name of region */!
};!
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Pmem	
  Core	
  API	
  
(include/lwk/pmem.h	
  and	
  kernel/mm/pmem.c)	
  

/* Add a region of physical memory to the pmem pool */!
int pmem_add(const struct pmem_region *rgn);!
!
/* Update a region of physical memory’s meta-data */!
int pmem_update(const struct pmem_region *update);!
!
/* Find a region of physical memory meeting given criteria */!
int pmem_query(const struct pmem_region *query,!
               struct pmem_region *result);!
!
/* Atomically query and mark result as allocated */!
int pmem_alloc(size_t size, size_t alignment,!
               const struct pmem_region *constraint,!
               struct pmem_region *result);!
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Example	
  Pmem	
  Layout	
  aAer	
  Boot	
  

Physical Memory Map:!
    [0000000000000000, 0x00000000083000) BOOTMEM    numa_node=0  (Bootstrap allocs)!
    [0x00000000083000, 0x0000000009f000) KMEM       numa_node=0!

    [0x0000000009f000, 0x00000000100000) BOOTMEM    numa_node=0  (BIOS reserved)!
    [0x00000000100000, 0x00000000200000) KMEM       numa_node=0!
    [0x00000000200000, 0x00000000413000) BOOTMEM    numa_node=0!
    [0x00000000413000, 0x00000004000000) KMEM       numa_node=0!
    [0x00000004000000, 0x00000004119000) INITRD     numa_node=0!
    [0x00000004119000, 0x00000006162000) INIT_TASK  numa_node=0!

    [0x00000006162000, 0x000000bfee0000) UMEM       numa_node=0!
    [0x000000bfee0000, 0x000000bff00000) BOOTMEM    numa_node=0  (ACPI stuff)!
    [0x000000bff00000, 0x000000c0000000) UMEM       numa_node=0!
    [0x000000c0000000, 0x00000100000000) BOOTMEM    numa_node=0  (GPU, APIC, ...)!
    [0x00000100000000, 0x00000140000000) UMEM       numa_node=0!
!

Total User-Level Managed Memory: 4192722944 bytes!
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§  VMware	
  guest	
  configured	
  for	
  4	
  GB	
  memory:	
  



Kmem	
  Management	
  API	
  
(include/lwk/kmem.h	
  and	
  kernel/mm/kmem.c)	
  

§  All	
  Kmem	
  managed	
  by	
  buddy	
  allocator	
  (kernel/mm/buddy.c)	
  

§  Two	
  ways	
  to	
  allocate:	
  
§  malloc()	
  style 	
  give	
  me	
  some	
  memory	
  
§  Page-­‐based 	
  give	
  me	
  a	
  conCguous	
  set	
  of	
  pages	
  

/* malloc-style, implementation tracks block size internally */!
extern void *kmem_alloc(size_t size);!
extern void kmem_free( const void *addr);!
!
/* page-based, caller must remember order of the block */!
extern void *kmem_get_pages(unsigned long order);!
extern void kmem_free_pages(const void *addr,!
                            unsigned long order);!
!

14	
  



LWK	
  Virtual	
  Memory	
  Regions	
  
§  User	
  address	
  space	
  divided	
  into	
  virtual	
  

memory	
  regions:	
  
§  Text	
  
§  Data	
  
§  Heap	
  
§  Stack	
  

§  Each	
  region	
  is	
  mapped	
  to	
  a	
  conCguous	
  
region	
  of	
  physical	
  memory	
  
§  Straigh`orward	
  to	
  use	
  large	
  pages	
  
§  PCT	
  in	
  user-­‐space	
  sets	
  up	
  the	
  mapping	
  

§  All	
  virtual<-­‐>physical	
  mapping	
  occurs	
  
before	
  applicaCon	
  starts	
  
§  No	
  demand	
  paging	
  
§  No	
  memory	
  oversubscripCon	
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Aspace	
  Management	
  

§  Every	
  execuCon	
  context	
  must	
  execute	
  in	
  the	
  context	
  of	
  a	
  
virtual	
  address	
  space,	
  represented	
  by	
  an	
  aspace	
  structure	
  

§  AAer	
  bootstrap,	
  all	
  address	
  spaces	
  have	
  the	
  kernel	
  mapped	
  
into	
  them	
  above	
  PAGE_OFFSET	
  (matches	
  Linux	
  design)	
  
§  Avoids	
  context	
  switch	
  to	
  enter	
  kernel	
  
§  Enables	
  kernel	
  threads	
  to	
  run	
  without	
  context	
  switch	
  

§  Address	
  space	
  consists	
  of	
  non-­‐overlapping	
  virtual	
  memory	
  
regions,	
  each	
  mapped	
  to	
  physical	
  memory	
  or	
  hardware	
  

§  Currently	
  no	
  support	
  for	
  handing	
  page	
  faults	
  
§  In	
  future	
  may	
  allow	
  dynamic	
  binding	
  of	
  virtual	
  memory	
  region	
  

to	
  a	
  physical	
  memory	
  pool	
  for	
  NUMA	
  first-­‐touch	
  support	
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Aspace	
  Core	
  API	
  
(include/lwk/aspace.h	
  and	
  kernel/mm/aspace.c)	
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/* Create a new aspace, possibly with a specific ID */                  !
int aspace_create(id_t id_request, const char * name,!
                  id_t *id);        !
                                                                        !
/* Create a virtual memory region */                                    !
int aspace_add_region(id_t id, vaddr_t start, size_t extent,            !
                      vmflags_t flags, vmpagesize_t pagesz,             !
                      const char * name);                               !
!
/* Map physical memory to a virtual memory region */                    !
int aspace_map_pmem(id_t id, paddr_t pmem,                              !
                    vaddr_t start, size_t extent);                      !
!
/* Map one aspace into another at a given virtual address */            !
int aspace_smartmap(id_t src, id_t dst,!
                    vaddr_t start, size_t extent); !



SMARTMAP	
  Intra-­‐node	
  Op1miza1on	
  
Eliminates	
  Unnecessary	
  Memory	
  Copies	
  

§  Basic	
  Idea:	
  Each	
  process	
  on	
  a	
  node	
  maps	
  the	
  memory	
  of	
  
all	
  other	
  processes	
  on	
  the	
  same	
  node	
  into	
  its	
  virtual	
  
address	
  space	
  

§  Enables	
  single	
  copy	
  process	
  to	
  process	
  message	
  passing	
  
(vs.	
  mul1ple	
  copies	
  in	
  tradi1onal	
  approaches)	
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Task	
  Management	
  

§  Every	
  context	
  of	
  execuCon	
  represented	
  by	
  a	
  task	
  
§  Each	
  task	
  is	
  associated	
  with	
  an	
  aspace	
  
§  Threads	
  implemented	
  as	
  mulCple	
  tasks	
  associated	
  with	
  the	
  same	
  aspace	
  

§  Each	
  task	
  represented	
  by	
  a	
  kernel-­‐level	
  task_struct	
  
§  ConCguous	
  block	
  of	
  memory	
  including	
  TCB	
  and	
  kernel	
  stack	
  (on	
  x86)	
  
§  Includes	
  the	
  task’s	
  permissions	
  (uid/gid),	
  fdtable,	
  signal	
  table,	
  etc.	
  

§  Each	
  CPU	
  maintains	
  its	
  own	
  task	
  queue	
  
§  Runnable	
  tasks	
  schedule	
  round-­‐robin	
  
§  Blocked	
  tasks	
  are	
  idle	
  unCl	
  they	
  are	
  woken	
  up	
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Task	
  Core	
  API	
  
(include/lwk/task.h	
  and	
  kernel/task.c)	
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/* Specifies the initial conditions to use when spawning a new task */!
typedef struct {!
    id_t       task_id;                                !

    char       task_name[32];                          !
                                                                        !
    id_t       user_id;        // User ID the task executes as  !
    id_t       group_id;       // Group ID the task executes as !
    id_t       aspace_id;      // Address space the task executes in                    !
    id_t       cpu_id;         // CPU ID the task starts executing on                                                           !

!
    vaddr_t    stack_ptr;      // Ignored for kernel tasks      !
    vaddr_t    entry_point;    // Instruction address to start executing at                                                     !
!
    int        use_args;       // If true, pass args to entry_point()!
    uintptr_t  arg[4];         // Args to pass to entry_point()!

} start_state_t;!
        !
/* Spawn a new task with the requested start_state */!
int task_create(const start_state_t *start_state, id_t *task_id);       !
!
int task_switch_cpus(id_t cpu_id);  /* allow task to migrate itself */!



Thread	
  Support	
  
§  Ki#en	
  user-­‐applicaCons	
  link	
  with	
  standard	
  GNU	
  C	
  library	
  

(Glibc)	
  and	
  other	
  system	
  libraries	
  installed	
  on	
  the	
  Linux	
  build	
  
host	
  

§  FuncConality	
  added	
  to	
  Ki#en	
  to	
  support	
  Glibc	
  NPTL	
  POSIX	
  
threads	
  implementaCon	
  
§  Futex()	
  system	
  call	
  (fast	
  user-­‐level	
  locking)	
  
§  Basic	
  support	
  for	
  signals	
  
§  Match	
  Linux	
  implementaCon	
  of	
  thread	
  local	
  storage	
  
§  Support	
  for	
  mulCple	
  threads	
  per	
  CPU	
  core,	
  preempCvely	
  scheduled	
  

§  Ki#en	
  supports	
  runCmes	
  that	
  work	
  on	
  top	
  of	
  POSIX	
  threads	
  
§  GOMP	
  OpenMP	
  implementaCon	
  
§  Qthreads	
  
§  Probably	
  others	
  with	
  a	
  li#le	
  effort	
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Task	
  MigraCon	
  OpCmizaCon	
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Operating System 
Round-trip Task Migration Time 

(task on core A migrates to core B, 
then back to A) 

Linux 2.6.35.7 4435 ns 

Kitten 1.3 2630 ns 

Core-switching performance between two cores in 
the same Intel X5570 2.93 GHz processor.  Kitten 

achieves a speedup of 1.7 compared to Linux, 
due to simpler implementation.   



System	
  Calls	
  
§  Ki#en	
  syscall	
  calling	
  convenCons	
  idenCcal	
  to	
  Linux	
  
§  Syscall	
  linkage	
  defined	
  in	
  include/arch/unistd.h	
  
§  Syscall	
  implementaCons	
  

§  Linux	
  syscall	
  implementaCons 	
  kernel/linux_syscalls/	
  
§  LWK	
  specific	
  syscalls 	
   	
  kernel/lwk_syscalls	
  

§  General	
  approach	
  is	
  to	
  implement	
  a	
  Linux	
  syscall	
  when	
  we	
  find	
  
it	
  is	
  needed,	
  only	
  implement	
  as	
  much	
  as	
  is	
  needed	
  

§  Current	
  Linux	
  syscall	
  list,	
  some	
  are	
  –ENOSYS	
  stubs:	
  
§  brk,	
  clock_ge;me,	
  clone,	
  close,	
  dup2,	
  dup,	
  exit,	
  exit_group,	
  fcntl,	
  fork,	
  

fstat,	
  futex,	
  getcpu,	
  getdents64,	
  getdents,	
  getgid,	
  getgroups,	
  getpid,	
  
getrlimit,	
  getrusage,	
  ge;d,	
  ge;meofday,	
  getuid,	
  ioctl,	
  kill,	
  lseek,	
  
madvise,	
  mkdir,	
  mknod,	
  mmap,	
  mprotect,	
  mremap,	
  munmap,	
  
nanosleep,	
  open,	
  pipe,	
  poll,	
  read,	
  readlink,	
  readv,	
  rmdir,	
  rt_sigacCon,	
  
rt_sigpending,	
  rt_sigprocmask,	
  sched_getaffinity,	
  sched_yield,	
  
sethostname,	
  set_robust_list,	
  set_Cd_address,	
  se;meofday,	
  stat,	
  Cme,	
  
uname,	
  unlink,	
  wait4,	
  write,	
  writev	
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Ki#en	
  Networking	
  
§  Ported	
  OFA	
  Infiniband	
  stack	
  to	
  Ki#en	
  a	
  couple	
  years	
  ago	
  

§  Implemented	
  Linux	
  compaCbility	
  layer	
  to	
  support	
  OFA	
  stack	
  mostly	
  
unmodified	
  

§  Turned	
  out	
  to	
  be	
  a	
  lot	
  of	
  work	
  
§  Difficult	
  to	
  make	
  work	
  on	
  new	
  IB	
  clusters	
  different	
  than	
  ours	
  

§  Recently	
  started	
  focusing	
  on	
  Portals4	
  
§  Target	
  Portals4	
  as	
  lowest-­‐level	
  communicaCon	
  API	
  
§  For	
  development	
  purposes,	
  create	
  implementaCons	
  over	
  Ethernet	
  and	
  

(possibly)	
  Infiniband	
  
§  Portals4	
  reference	
  implementaCon	
  currently	
  running	
  in	
  VMware	
  

virtual	
  machine	
  over	
  VMware’s	
  virtual	
  e1000	
  Ethernet	
  device	
  
§  Enables	
  Ki#en	
  virtual	
  cluster	
  development	
  environment	
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Ki#en	
  I/O	
  Forwarding	
  
§  Prototype	
  implementaCon	
  developed	
  over	
  summer	
  
§  Influenced	
  by	
  IOFSL,	
  wanted	
  to	
  use	
  SMARTMAP	
  and	
  Portals	
  
§  Supports	
  local	
  files	
  for	
  drivers,	
  forwards	
  all	
  else	
  off	
  node	
  
§  Ki#en	
  reflects	
  off-­‐node	
  I/O	
  calls	
  to	
  user-­‐space	
  

§  Avoids	
  need	
  for	
  custom	
  Glibc	
  port	
  
§  Only	
  control	
  reflected,	
  no	
  extra	
  buffer	
  copies	
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Other	
  Bits	
  
§  Pla`orm	
  independent	
  subsystems,	
  

rely	
  on	
  arch	
  code	
  to	
  implement	
  
§  ELF	
  loader	
  (mostly	
  in	
  user-­‐space	
  liblwk)	
  
§  PCI	
  enumeraCon,	
  reads/writes	
  to	
  config	
  space	
  
§  Driver	
  infrastructure	
  
§  Interrupt	
  registraCon	
  and	
  dispatch	
  
§  Cross-­‐calls	
  
§  Timekeeping	
  and	
  Cmers	
  
§  Console	
  subsystem	
  
§  KGDB	
  support	
  

§  Job	
  launch	
  tool	
  in	
  progress	
  
§  Similar	
  to	
  yod,	
  aprun,	
  mpirun,	
  etc…	
  Linux	
  tool	
  for	
  launching	
  Ki#en	
  apps	
  
§  Uses	
  Portals4	
  for	
  all	
  communicaCon	
  
§  Implements	
  PMI	
  over	
  Portals4	
  
§  I/O	
  forwarding	
  layer	
  over	
  Portals4	
   26	
  



Ge;ng	
  Started	
  
hg	
  clone	
  h#ps://code.google.com/p/ki#en	
  
make	
  menuconfig	
  	
  	
  	
  (chose	
  all	
  defaults)	
  
make	
  isoimage	
  
	
  
§  Then	
  boot	
  the	
  isoimage	
  wherever	
  you’d	
  like	
  
§  You	
  should	
  see	
  a	
  bunch	
  of	
  boostrap	
  messages	
  detailing	
  the	
  hardware	
  

detected	
  
§  Once	
  boostrap	
  is	
  done,	
  the	
  “hello	
  world”	
  init	
  task	
  will	
  be	
  started	
  
§  You	
  can	
  replace	
  the	
  “hello	
  world”	
  init	
  task	
  with	
  an	
  ELF	
  executable	
  of	
  your	
  

choosing	
  (e.g.,	
  an	
  OpenMP	
  applicaCon)	
  
§  All	
  binaries	
  must	
  be	
  staCcally	
  linked	
  
§  By	
  default,	
  init_task	
  limited	
  to	
  64	
  MB.	
  	
  To	
  increase,	
  either	
  edit	
  	
  

kernel/init_task.c	
  	
  to	
  increase	
  defaults	
  or	
  use	
  kernel	
  command	
  line	
  
opCons:	
  
§  init_heap_size=1073741824	
  init_stack_size=4194304	
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Backup	
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Sandia	
  Lightweight	
  Kernel	
  Targets	
  

§  Massively-­‐parallel,	
  distributed-­‐memory	
  machine	
  with	
  a	
  
Cghtly-­‐coupled	
  network	
  

§  ScienCfic	
  and	
  engineering	
  modeling	
  and	
  simulaCon	
  
applicaCons	
  

§  Enable	
  fast	
  message	
  passing	
  and	
  execuCon	
  
§  Small	
  memory	
  footprint	
  
§  DeterminisCc	
  performance	
  
§  Emphasize	
  efficiency	
  over	
  funcConality	
  
§  Maximize	
  performance	
  delivered	
  to	
  applicaCon	
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Reasons	
  for	
  a	
  Specialized	
  Approach	
  
§  Maximize	
  available	
  compute	
  node	
  resources	
  

§  Maximize	
  CPU	
  cycles	
  delivered	
  to	
  applicaCon	
  
§  Minimize	
  Cme	
  taken	
  away	
  from	
  applicaCon	
  process	
  
§  No	
  daemons	
  
§  No	
  paging	
  
§  DeterminisCc	
  performance	
  

§  Maximize	
  memory	
  given	
  to	
  applicaCon	
  
§  Minimize	
  amount	
  of	
  memory	
  used	
  for	
  message	
  passing	
  
§  StaCc	
  kernel	
  size	
  

§  Maximize	
  memory	
  bandwidth	
  
§  Use	
  large	
  pages	
  to	
  avoid	
  TLB	
  misses,	
  speed	
  TLB	
  miss	
  handling	
  

§  Maximize	
  network	
  resources	
  
§  Physically	
  conCguous	
  memory	
  layout	
  
§  Simple	
  address	
  translaCon	
  and	
  validaCon,	
  no	
  pinning	
  

§  Increase	
  reliability	
  
§  RelaCvely	
  small	
  amount	
  of	
  source	
  code	
  
§  Reduced	
  complexity	
  
§  Support	
  for	
  small	
  number	
  of	
  devices	
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